An Integrated Project-Based Methods Course: Access Points and Challenges for Preservice Science and Mathematics Teachers

Citation
Print Friendly, PDF & Email

Rhodes, S., & Kier, M.W. (2018). An integrated project-based methods course: Access points and challenges for preservice science and mathematics teachers. Innovations in Science Teacher Education, 3(4). Retrieved from https://innovations.theaste.org/an-integrated-project-based-methods-course-access-points-and-challenges-for-preservice-science-and-mathematics-teachers/

by Sam Rhodes, William and Mary; & Meredith W. Kier, William and Mary

Abstract

Two instructors in a secondary preservice teacher preparation program address the need to better prepare future teachers for the increasing role project-based learning has taken on in K-12 education. We describe an integrated instructional planning course where a mathematics educator and a science educator collaborated to teach preservice teachers how to design integrated project-based lessons. We found that the preservice teachers valued the integrated approach but had difficulty translating their learning to practice in traditional, clinical-based field placements. We report on recommendations for future course iterations.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Allen, J. M., & Wright, S. E. (2014). Integrating theory and practice in the pre-service teacher education practicum. Teachers and Teaching, 20, 136-151.

Bambino, D. (2002). Critical friends. Educational Leadership, 59 (6), 25-27.

Barab, S. A. (1999). “Ecologizing” instruction through integrated units. Middle School Journal, 31(1), 21–28. https://doi.org/10.1080/00940771.1999.11494605

Baran, M. & Maskan, A. (2010). The effect of project-based learning on pre-service physics teachers electrostatic achievements. Cypriot Journal of Educational Sciences, 5, 243–257.

Bell, S. (2010). Project-based learning for the 21st century: Skills for the future. The Clearing House, 83, 39 – 43.

Berlin, D. F., & Lee, H. (2005). Integrating science and mathematics education: Historical analysis. School Science and Mathematics, 105, 15–24.

Berlin, D. F., & White, A. L. (1994). The berlin-white integrated science and mathematics model. School Science and Mathematics, 94, 2–4.

Blumenfeld, P., Soloway, E., Marx, R., Krajcik, J., Guzdial, M., & Palincsar, A. (1991). Motivating project-based learning: Sustaining the doing, supporting the learning. Educational Psychologist, 26, 369–398.

Boaler, J. (2001). Mathematical modelling and new theories of learning. Teaching Mathematics and Its Applications, 20(3), 121–128. https://doi.org/10.1093/teamat/20.3.121

Boaler, J. (2002a). Learning from teaching: Exploring the relationship between reform curriculum and equity. Journal for Research in Mathematics Education, 33, 239-258.

Boaler, J. (2002b). Experiencing school mathematics: Traditional and reform approaches to teaching and their impact on student learning. Studies in mathematical thinking and learning. New York, NY: Lawrence Earlbaum Associates.

Boaler, J. (2016). Mathematical mindsets: Unleashing students’ potential through creative math, inspiring messages and innovative teaching. San Francisco, VA: Jossey-Bass.

Boaler, J., & Staples, M. (2008). Creating mathematical futures through an equitable teaching approach: The case of railside school. Teachers College Record, 110, 608–645.

Boss, S. (2011). How to get projects off to a good start. Retrieved from https://www.edutopia.org/blog/summer-pd-starting-projects-suzie-boss

Braden, S. S. (2012). Differences in perceptions of learning and academic achievement of students and teachers in project-based learning and balanced mathematics classrooms. Tennessee State University.

Buck Institute for Education. (2018a). 6-12 collaboration rubric (non-CCSS). Retrieved from http://www.bie.org/object/document/6_12_collaboration_rubric_non_ccss

Buck Institute for Education. (2018b). Project design: Overview and student learning guide. Retrieved from http://www.bie.org/object/document/project_design_overview_and_student_learning_guide

Buck Institute for Education. (2018c). Project design rubric. Retrieved from http://www.bie.org/object/document/project_design_rubric

Buck Institute for Education. (2018d). What is project-based learning. Retrieved from http://www.bie.org/about/what_pbl

Buck Institute for Education. (2018e). Rubrics. Retrieved from http://www.bie.org/objects/cat/rubrics

Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, CO: BSCS.

Bybee, R. W. (2009). The BSCS 5E instructional model and 21st century skills. Colorado Springs, CO: BSCS.

Caprano, R. M., Capraro, M. M., Capraro, R. M., & Helfeldt, J. (2010). Do differing types of field experiences make a difference in teacher candidates’ perceived level of competence?. Teacher Education Quarterly, 37(1), 131-154.

Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry and research design: Choosing among five traditions (4th ed.). Washington D.C.: Sage Publications.

Dewey, J. (1938). Experience and education. Education (Vol. 50). New York, NY: Free Press. https://doi.org/10.1017/CBO9781107415324.004

Frank, M., & Barzilai, A. (2004). Integrating alternative assessment in a project-based learning course for pre-service science and technology teachers. Assessment & Evaluation in Higher Education, 29 (1), 41 – 61.

Frykholm, J., & Glasson, G. (2005). Connecting Science and Mathematics Instruction: Pedagogical Context Knowledge for Teachers. School Science and Mathematics, 105, 127–141. https://doi.org/10.1111/j.1949-8594.2005.tb18047.x

Han, S., Capraro, R., & Capraro, M. M. (2015). How science, technology, engineering, and mathematics (STEM) project-based learning (PBL) affects high, middle, and low achievers differently: The impact of student factors on achievement. International Journal of Science and Mathematics Education, 13, 1089 – 1113.

Hattie, J., Fisher, D., & Frey, N. (2017). Visible learning for mathematics: What works best to optimize student learning. Thousand Oaks, CA: Corwin.

Hough, D. L., & St. Clair, B. (1995). The Effects of Integrated Curricula on Young Adolescent Problem-Solving. Research in Middle Level Education Quarterly, 19(1), 1–25. https://doi.org/10.1080/10848959.1995.11670058

Huntley, M. A. (1998). Design and implementation of a framework for defining integrated mathematics and science education. School Science and Mathematics, 98, 320–327.

Koirala, H. P., & Bowman, J. K. (2003). Preparing middle level preservice teachers to integrate mathematics and science: Problems and possibilities. School Science & Mathematics, 103, 145–154. https://doi.org/10.1111/j.1949-8594.2003.tb18231.x

Krajcik, J., & Blumenfeld, P. (2006). Project-based learning. In the cambridge handbook of learning sciences. New York, NY: Cambridge University Press.

Larmer, J., Mergendoller, J., & Boss, S. (2015). Setting the standard for project based learning: A proven approach to rigorous classroom instruction. Alexandria, VA: ASCD.

Markham, T., Larmer, J., & Ravitz, J. (2003). Project based learning handbook: A guide to standards-focused project based learning for middle and high school teachers (2nd ed.). Novato, CA: Buck Institute for Education.

McDonald, J., & Czerniak, C. (1994). Developing interdisciplinary units: Strategies and examples. School Science & Mathematics, 94, 5–10.

McGehee, J. J. (2001). Developing interdisciplinary units: a strategy based on problem solving. School Science and Mathematics, 101, 380–389. https://doi.org/10.1111/j.1949-8594.2001.tb17972.x

Merlo, S. (2011). An exploration of project-based learning activities versus traditional teaching methods in a high school mathematics setting. Kean University.

Moursund, D. (1999). Project-based learning using information technology. Eugene, OR: International Society for Technology in Education.

National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: NCTM.

NCTM. (2014). Principles to Actions: Ensuring Mathematical Success for All. Reston, VA: NCTM.

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: The National Academies Press.

Partnership for 21st Century Learning. (2009). Framework for 21st century learning. Retrieved from http://www.p21.org/our-work/p21-framework

Pink, D. H. (2005). A whole new mind: Why right-brainers will rule the future. New York, NY: Riverhead Books.

Thomas, J. (2000). A review of research on project-based learning. Retrieved November 26,
2015, from http://www.bobpearlman.org/BestPractices/PBL_Research.pdf

Virginia Department of Education. (2009). Mathematics standards of learning for Virginia public schools. Richmond, VA.

Virginia Department of Education. (2016). Mathematics standards of learning for Virginia public schools. Richmond, VA.

Virginia Department of Education. (2017). Profile of a graduate. Retrieved from http://www.doe.virginia.gov/instruction/graduation/profile-grad/

Yancy, Y. G. (2012). The effects of project-based learning activities on intrinsic motivation and skill acquisition of rural middle school math students. Union University.

Yasar, O., Maliekal, J., Little, L., & Veronesi, P. (2014). An interdisciplinary approach to professional development for math, science, and technology teachers. Journal of Computers in Mathematics and Science Teaching, 33, 349-374.

Wilhelm, J., Sherrod, S., & Walters, K. (2008). Project-Based Learning Environments: Challenging Preservice Teachers to Act in the Moment. Journal of Educational Research, 101, 220 – 233.

Zeichner, K., & Bier, M. (2015). Opportunities and pitfalls in the turn toward clinical experience in US teacher education. In E. R. Hollins (Ed.), Rethinking clinical experiences in preservice teacher education: Meeting new challenges for accountability (pp. 20 – 46). New York: Routledge.