An Integrated Project-Based Methods Course: Access Points and Challenges for Preservice Science and Mathematics Teachers

Citation
Print Friendly, PDF & Email

Rhodes, S., & Kier, M.W. (2018). An integrated project-based methods course: Access points and challenges for preservice science and mathematics teachers. Innovations in Science Teacher Education, 3(4). Retrieved from https://innovations.theaste.org/an-integrated-project-based-methods-course-access-points-and-challenges-for-preservice-science-and-mathematics-teachers/

by Sam Rhodes, William and Mary; & Meredith W. Kier, William and Mary

Abstract

Two instructors in a secondary preservice teacher preparation program address the need to better prepare future teachers for the increasing role project-based learning has taken on in K-12 education. We describe an integrated instructional planning course where a mathematics educator and a science educator collaborated to teach preservice teachers how to design integrated project-based lessons. We found that the preservice teachers valued the integrated approach but had difficulty translating their learning to practice in traditional, clinical-based field placements. We report on recommendations for future course iterations.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Allen, J. M., & Wright, S. E. (2014). Integrating theory and practice in the pre-service teacher education practicum. Teachers and Teaching, 20, 136-151.

Bambino, D. (2002). Critical friends. Educational Leadership, 59 (6), 25-27.

Barab, S. A. (1999). “Ecologizing” instruction through integrated units. Middle School Journal, 31(1), 21–28. https://doi.org/10.1080/00940771.1999.11494605

Baran, M. & Maskan, A. (2010). The effect of project-based learning on pre-service physics teachers electrostatic achievements. Cypriot Journal of Educational Sciences, 5, 243–257.

Bell, S. (2010). Project-based learning for the 21st century: Skills for the future. The Clearing House, 83, 39 – 43.

Berlin, D. F., & Lee, H. (2005). Integrating science and mathematics education: Historical analysis. School Science and Mathematics, 105, 15–24.

Berlin, D. F., & White, A. L. (1994). The berlin-white integrated science and mathematics model. School Science and Mathematics, 94, 2–4.

Blumenfeld, P., Soloway, E., Marx, R., Krajcik, J., Guzdial, M., & Palincsar, A. (1991). Motivating project-based learning: Sustaining the doing, supporting the learning. Educational Psychologist, 26, 369–398.

Boaler, J. (2001). Mathematical modelling and new theories of learning. Teaching Mathematics and Its Applications, 20(3), 121–128. https://doi.org/10.1093/teamat/20.3.121

Boaler, J. (2002a). Learning from teaching: Exploring the relationship between reform curriculum and equity. Journal for Research in Mathematics Education, 33, 239-258.

Boaler, J. (2002b). Experiencing school mathematics: Traditional and reform approaches to teaching and their impact on student learning. Studies in mathematical thinking and learning. New York, NY: Lawrence Earlbaum Associates.

Boaler, J. (2016). Mathematical mindsets: Unleashing students’ potential through creative math, inspiring messages and innovative teaching. San Francisco, VA: Jossey-Bass.

Boaler, J., & Staples, M. (2008). Creating mathematical futures through an equitable teaching approach: The case of railside school. Teachers College Record, 110, 608–645.

Boss, S. (2011). How to get projects off to a good start. Retrieved from https://www.edutopia.org/blog/summer-pd-starting-projects-suzie-boss

Braden, S. S. (2012). Differences in perceptions of learning and academic achievement of students and teachers in project-based learning and balanced mathematics classrooms. Tennessee State University.

Buck Institute for Education. (2018a). 6-12 collaboration rubric (non-CCSS). Retrieved from http://www.bie.org/object/document/6_12_collaboration_rubric_non_ccss

Buck Institute for Education. (2018b). Project design: Overview and student learning guide. Retrieved from http://www.bie.org/object/document/project_design_overview_and_student_learning_guide

Buck Institute for Education. (2018c). Project design rubric. Retrieved from http://www.bie.org/object/document/project_design_rubric

Buck Institute for Education. (2018d). What is project-based learning. Retrieved from http://www.bie.org/about/what_pbl

Buck Institute for Education. (2018e). Rubrics. Retrieved from http://www.bie.org/objects/cat/rubrics

Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, CO: BSCS.

Bybee, R. W. (2009). The BSCS 5E instructional model and 21st century skills. Colorado Springs, CO: BSCS.

Caprano, R. M., Capraro, M. M., Capraro, R. M., & Helfeldt, J. (2010). Do differing types of field experiences make a difference in teacher candidates’ perceived level of competence?. Teacher Education Quarterly, 37(1), 131-154.

Creswell, J. W., & Poth, C. N. (2018). Qualitative inquiry and research design: Choosing among five traditions (4th ed.). Washington D.C.: Sage Publications.

Dewey, J. (1938). Experience and education. Education (Vol. 50). New York, NY: Free Press. https://doi.org/10.1017/CBO9781107415324.004

Frank, M., & Barzilai, A. (2004). Integrating alternative assessment in a project-based learning course for pre-service science and technology teachers. Assessment & Evaluation in Higher Education, 29 (1), 41 – 61.

Frykholm, J., & Glasson, G. (2005). Connecting Science and Mathematics Instruction: Pedagogical Context Knowledge for Teachers. School Science and Mathematics, 105, 127–141. https://doi.org/10.1111/j.1949-8594.2005.tb18047.x

Han, S., Capraro, R., & Capraro, M. M. (2015). How science, technology, engineering, and mathematics (STEM) project-based learning (PBL) affects high, middle, and low achievers differently: The impact of student factors on achievement. International Journal of Science and Mathematics Education, 13, 1089 – 1113.

Hattie, J., Fisher, D., & Frey, N. (2017). Visible learning for mathematics: What works best to optimize student learning. Thousand Oaks, CA: Corwin.

Hough, D. L., & St. Clair, B. (1995). The Effects of Integrated Curricula on Young Adolescent Problem-Solving. Research in Middle Level Education Quarterly, 19(1), 1–25. https://doi.org/10.1080/10848959.1995.11670058

Huntley, M. A. (1998). Design and implementation of a framework for defining integrated mathematics and science education. School Science and Mathematics, 98, 320–327.

Koirala, H. P., & Bowman, J. K. (2003). Preparing middle level preservice teachers to integrate mathematics and science: Problems and possibilities. School Science & Mathematics, 103, 145–154. https://doi.org/10.1111/j.1949-8594.2003.tb18231.x

Krajcik, J., & Blumenfeld, P. (2006). Project-based learning. In the cambridge handbook of learning sciences. New York, NY: Cambridge University Press.

Larmer, J., Mergendoller, J., & Boss, S. (2015). Setting the standard for project based learning: A proven approach to rigorous classroom instruction. Alexandria, VA: ASCD.

Markham, T., Larmer, J., & Ravitz, J. (2003). Project based learning handbook: A guide to standards-focused project based learning for middle and high school teachers (2nd ed.). Novato, CA: Buck Institute for Education.

McDonald, J., & Czerniak, C. (1994). Developing interdisciplinary units: Strategies and examples. School Science & Mathematics, 94, 5–10.

McGehee, J. J. (2001). Developing interdisciplinary units: a strategy based on problem solving. School Science and Mathematics, 101, 380–389. https://doi.org/10.1111/j.1949-8594.2001.tb17972.x

Merlo, S. (2011). An exploration of project-based learning activities versus traditional teaching methods in a high school mathematics setting. Kean University.

Moursund, D. (1999). Project-based learning using information technology. Eugene, OR: International Society for Technology in Education.

National Council of Teachers of Mathematics (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: NCTM.

NCTM. (2014). Principles to Actions: Ensuring Mathematical Success for All. Reston, VA: NCTM.

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: The National Academies Press.

Partnership for 21st Century Learning. (2009). Framework for 21st century learning. Retrieved from http://www.p21.org/our-work/p21-framework

Pink, D. H. (2005). A whole new mind: Why right-brainers will rule the future. New York, NY: Riverhead Books.

Thomas, J. (2000). A review of research on project-based learning. Retrieved November 26,
2015, from http://www.bobpearlman.org/BestPractices/PBL_Research.pdf

Virginia Department of Education. (2009). Mathematics standards of learning for Virginia public schools. Richmond, VA.

Virginia Department of Education. (2016). Mathematics standards of learning for Virginia public schools. Richmond, VA.

Virginia Department of Education. (2017). Profile of a graduate. Retrieved from http://www.doe.virginia.gov/instruction/graduation/profile-grad/

Yancy, Y. G. (2012). The effects of project-based learning activities on intrinsic motivation and skill acquisition of rural middle school math students. Union University.

Yasar, O., Maliekal, J., Little, L., & Veronesi, P. (2014). An interdisciplinary approach to professional development for math, science, and technology teachers. Journal of Computers in Mathematics and Science Teaching, 33, 349-374.

Wilhelm, J., Sherrod, S., & Walters, K. (2008). Project-Based Learning Environments: Challenging Preservice Teachers to Act in the Moment. Journal of Educational Research, 101, 220 – 233.

Zeichner, K., & Bier, M. (2015). Opportunities and pitfalls in the turn toward clinical experience in US teacher education. In E. R. Hollins (Ed.), Rethinking clinical experiences in preservice teacher education: Meeting new challenges for accountability (pp. 20 – 46). New York: Routledge.

Rigorous Investigations of Relevant Issues: A Professional Development Program for Supporting Teacher Design of Socio-Scientific Issue Units

Citation
Print Friendly, PDF & Email

Peel, A., Sadler, T.D., Friedrichsen, P., Kinslow, A., Foulk, J. (2018). Rigorous investigations of relevant issues: A professional development program for supporting teacher design of socio-scientific issue units. Innovations in Science Teacher Education, 3(3). Retrieved from https://innovations.theaste.org/rigorous-investigations-of-relevant-issues-a-professional-development-program-for-supporting-teacher-design-of-socio-scientific-issue-units/

by Amanda Peel, University of Missouri; Troy D. Sadler, University of Missouri; Patricia Friedrichsen, University of Missouri; Andrew Kinslow, University of Missouri; & Jaimie Foulk, University of Missouri

Abstract

Socio-scientific issues (SSI) are complex problems with unclear solutions that have ties to science concepts and societal ideas. These complexities make SSI ideal contexts for meaningful science teaching and learning. Although the student benefits of SSI in the classroom have been established, there is a literature gap pertaining to teacher preparation and support for SSI teaching and learning, and the design of SSI units. In order for successful and meaningful SSI incorporation in science classrooms, teachers need professional development (PD) experiences that scaffold their understanding of the complexities associated with SSI teaching and learning. As such, our team designed and implemented a PD program with explicit examples and design tools to support teachers as they engaged in learning about SSI teaching and learning. Additionally, our PD program supported teachers as they designed their own SSI units for classroom implementation. We describe our PD process for supporting in-service secondary biology, chemistry, and environmental science teachers as they learned about SSI instruction and co-designed their SSI units.

Before our work with this group of teachers began, our research team designed and implemented SSI units, and these results informed development of the SSI-TL framework. The SSI-TL framework has been helpful as we continue to design and structure new SSI units, so we made it a central aspect of the PD to guide what SSI teaching should entail. This framework and other tools were used to support teachers as they designed their own SSI units. The PD was successful in that all groups designed SSI units, and many were able to implement in their classes. The teachers indicated the PD was effective from their perspective and they learned about issues and practices. Specific feedback around scaffolding tools we provided indicated the tools helped teachers navigate the design process.

Introduction

Socio-scientific issues (SSI) are complex problems with unclear solutions that have ties to science concepts and societal ideas (Sadler 2004). These complexities make SSI ideal contexts for meaningful science teaching and learning. The benefits of SSI instruction have been widely documented in science education literature and include gains in the understanding of science content (Klosterman and Sadler, 2010), scientific argumentation (Dawson and Venville, 2008; 2010), and epistemological beliefs about science (Eastwood, Sadler, Zeidler, Lewis, Amiri & Applebaum, 2012). Although the student benefits of SSI in the classroom have been established, there is a literature gap pertaining to teacher preparation and support for SSI teaching and learning, and the design of SSI units.

A few studies have characterized some challenges associated with SSI teaching in classroom contexts. When teachers included SSI in their classrooms, they used SSI as a way to get students interested in and motivated to learn a science topic, but they tended not to include ethical concerns or biases about the issue or the science, resulting in a lack of awareness of the interdependence between society and science (Ekborg, Ottander, Silfver, and Simon, 2012). Teachers also struggled to incorporate evidence and critical evaluation of evidence through media literacy and skepticism in their teaching about SSI and informed decision-making (Levinson, 2006). Even after a targeted intervention focusing on the social, moral, and ethical dimensions of issues, teachers struggled with effectively incorporating these dimensions in their classrooms (Gray and Bryce, 2006).

In order for successful and meaningful SSI incorporation in science classrooms, teachers need professional development (PD) experiences that scaffold their understanding of the complexities associated with SSI teaching and learning (Zeidler, 2014). Additionally, teachers need explicit examples of SSI teaching and learning to support their adoption of instructional techniques for incorporating new ideas in science classrooms, such as media literacy, informed decision-making, and highlighting social connections to an issue (Klosterman, Sadler, & Brown, 2012). As such, our team designed and implemented a PD program with explicit examples and design tools centered around our SSI Teaching and Learning framework. To support teacher learning about SSI teaching and learning, we engaged teachers in 1) SSI unit examples and experiences as learners; 2) explicit discussion and unpacking of the approach; and 3) designing in teams with active support from the research team. Our PD program supported teachers as they designed their own SSI units for classroom implementation with various tools developed by our team, including the SSI-TL framework, a framework enactment guide, the planning heuristic, an issue selection guide, and unit and lesson design templates. We describe our PD process for supporting in-service secondary biology, chemistry, and environmental science teachers as they learned about SSI instruction and co-designed their SSI units.

PD Audience & Goals

To ensure effective teacher participation in the PD program, we identified and invited 30 science teachers from diverse geographic locations throughout the state who met the following criteria:

  1. Currently teaching secondary biology, chemistry, or environmental science.
  2. Receptive to learning about socio-scientific issue instruction and curriculum design.
  3. Commitment to teacher learning and professional growth.

Eighteen teachers accepted our invitation to participate in the workshop. Participant teaching experience ranged from 1 to 32 years. Seven (39%) were early-career teachers with 1-5 years teaching experience. Five (28%) mid-career participants had taught for 6-10 years. The remaining six (33%) participants were veteran teachers with 10 or more years of teaching experience. Over half of the participants (55%) taught at schools within urban clusters as defined by the U.S. Census Bureau, with populations of 2,500-50,000 people. Just over one fourth (28%) of participants taught in urbanized schools within cities of 50,000 or more people, and 17% of the teachers worked in rural districts.

Socio-scientific Issue Teaching and Learning Framework

Our research group has developed a framework for SSI teaching and learning (SSI-TL) for the purpose of designing SSI based science units (Figure 1). An overarching goal of SSI-TL is to provide students with a context for developing scientific literacy through engaging in informed and productive negotiation of complex societal and scientific issues. The SSI-TL framework is composed of three sections, the first of which is Encounter the Focal Issue. In this section, students encounter the SSI and make connections to the science ideas and societal concerns. In the second section of the model, where a majority of classroom activities take place, students Develop science ideas and practices and engage in socio-scientific reasoning (SSR; Sadler, Barabe, & Scott, 2007; Romine, Sadler, & Kinslow, 2017) in the context of the SSI. Learning activities in this section focus on science content embedded within opportunities to engage in science and engineering practices. In terms of focal practices, our group emphasizes modeling, argumentation, and computational thinking because of the potential for these practices to promote sense-making. To facilitate socio-scientific reasoning, we emphasize opportunities for learners to consider the issue from multiple stakeholder perspectives and to consider consequences of potential decisions and actions from a range of vantage points (e.g., economic, political, ethical, etc.). The last section of the SSI-TL framework calls for student Synthesis of ideas and practices and reasoning about the SSI through engaging in a culminating activity.

Figure 1 (Click on image to enlarge). Socio-scientific issue teaching and learning (SSI-TL) framework.

The SSI-TL framework aligns with various essential learning outcomes, which include awareness and understanding of the focal issue, understanding of science ideas, competencies for science and engineering practices, and competencies for socio-scientific reasoning. As teachers utilize this model, they may choose to focus on various discretionary learning outcomes, such as competencies in media literacy, understanding of epistemology of science, competencies for engineering design, and interest in science and careers in STEM. We leveraged this SSI-TL framework during a series of PD sessions to support teachers as they designed SSI units for their classrooms.

The PD Process

An initial meeting of the teachers and our research group took place in December, 2015. At this brief meeting, the participating teachers and the research group members introduced themselves and discuss their interests and experiences regarding SSI teaching. We provided a brief overview of the PD program and our expectations for the participating teachers. The teachers were also given a brief overview of SSI teaching and learning to introduce them to examples of issues they would be choosing in their design teams.

A second full group meeting took place over two days in March, and a third meeting occurred over three days in June. These in-person meetings were used to engage teachers in SSI teaching and learning and to provide structured planning and design time with the help of the PD team. Initially, teachers were grouped by content and assigned a mentor from our research group to aid in SSI learning and the design process. Teachers then chose design partners from their content groups and worked in groups of two to three to design SSI units for their classrooms during and in between the formally organized meetings. To maintain communication between meetings, we used an online community to share content readings and exchange ideas. Teachers read two articles and responded to prompts by commenting on each post (Figure 2; Presley, Sickel, Muslu, Merle-Johnson, Witzig, Izci, and Sadler, 2013; Duncan, and Cavera, 2015). More reading resources can be accessed at http://ri2.missouri.edu/going-further/related-reading.

Figure 2 (Click on image to enlarge). Reading response prompts.

Experiencing SSI & Examples

To familiarize teachers with SSI learning, we engaged them as learners in a portion of a fully developed SSI unit. The unit explored the issue of the emergence of antibiotic resistant bacteria with a focus on natural selection as science content and the practice of scientific modeling. The unit was developed for high school biology classes and had been implemented in several classrooms (Friedrichsen, Sadler, Graham & Brown, 2016). The learning experience was led by one of our teacher partners who had used the unit prior to the workshop. She introduced the issue as she did in class by having participants watch a selection from a video about a young girl who contracts methicillin-resistant Staphylococcus aureus (MRSA). After being introduced to the issue, teachers engaged in a jigsaw activity in which each group was given a different source with information about MRSA to begin the discussion of credibility of different sources and the ways in which scientific information is used by different stakeholders interested in an issue. The groups read over their source and presented to the whole group. Sources included blog posts, a USA Today article, and Centers for Disease Control fact sheets. This activity was followed with a discussion of the different sources and their varying levels of credibility. After these learning activities, the teachers were given an overview of the full unit and shown student work samples, including student models of antibiotic resistance and natural selection, and synthesis projects which called for students to develop and advocate for a policy recommendation to stem the spread of antibiotic resistant bacteria. The full antibiotic resistance SSI unit (Superbugs) can be accessed at http://ri2.missouri.edu/ri2modules/Superbugs/intro.

During the June meeting, teachers were provided with an overview of an SSI unit related to water quality that had been developed and implemented in a high school environmental science class. This unit focused on a local water resource issue with conceptual links to ecological interactions, nutrient cycling, and water systems. The scientific practices emphasized in the unit were modeling and argumentation. One of our team members who was the lead designer and teacher implementer of this unit led a presentation of an overview and key aspects of the unit. The full water quality unit (the Karst Connection) can be accessed at http://ri2.missouri.edu/ri2modules/The%20Karst%20Connection/intro.

Including SSI in science classrooms can be challenging because science teachers are often unfamiliar with or uncomfortable addressing the social connections to the issue. To help scaffold this addition to science curricula, we engaged the teachers as learners in an activity highlighting social and historical trends from an SSI unit related to nutrition and taxation of unhealthful foods (a so called “fat tax”). In this activity, groups of teachers were assigned different historical events that had to do with nutrition and nutrition guidelines. Each group investigated their event and wrote the key ideas on a sheet of paper. These papers were placed along a timeline at the front of the room (Figure 3). Each group shared out to the full group about their event, and as each group presented, they drew connections between historical events and nutrition guidelines of the time. For example, one event was a butter shortage, which resulted in the nutrition guidelines urging people to exclude butter from their diet. This activity allowed teachers to see and experience an example of making social connections to an issue while exploring how the social and science concepts impacted each other over time. The full description of this learning exercise can be accessed at http://ri2.missouri.edu/ri2modules/Fat%20Tax/intro.

Figure 3 (Click on image to enlarge). Nutrition timeline activity.

Unpacking the SSI Approach

After experiencing SSI as learners in our March meetings, we introduced the teachers to the SSI-TL framework (Figure 1) with emphasis on the three main dimensions of the framework: Encounter the focal issue; Develop ideas, practices, and reasoning; and Synthesize. Using the antibiotic resistance unit as an example prior to introducing the framework allowed us to make connections between the framework and what they experienced as learners. Along with the framework, we introduced a framework enactment table, which depicts student and teacher roles and learning outcomes associated with each dimension of the framework. The enactment table allowed teachers to develop a more in-depth understanding of what each section of the framework entails. The framework enactment table can be accessed at http://ri2.missouri.edu/content/RI%C2%B2-Framework-Enactment.

Focus on NGSS Practices. At the time of the PD program, our state had recently adopted new science standards that are closely aligned with the Next Generation Science Standards (NGSS; NGSS Lead States, 2013). Like NGSS, the new state standards prioritize 3-dimentional (3D) science learning, which calls for integration of disciplinary core ideas (DCI), crosscutting concepts (CCC), and science and engineering practices. Due to the interwoven nature of the two, our team has chosen to combine CCCs and DCIs into a single construct of “science ideas”, as seen in the SSI-TL framework (Figure 1). There are eight science and engineering practices outlined in the NGSS, but our team has chosen to focus on a subset of practices: modeling, argumentation, and computational thinking. We chose these practices because they are high leverage practices, meaning that in order to engage in these practices at a deep level, the other practices, such as asking questions or constructing explanations, are being leveraged as well. For example, we posit that in order to create a detailed model, students engage in constructing explanations and analyzing and interpreting data. Our SSI-TL framework calls for 3D learning by engaging students in science ideas and high leverage science practices in the context of an SSI.

Because 3D science learning and practices were new to all of the teachers in the PD, our team offered breakout sessions focusing on a specific scientific practice: modeling, argumentation, or computational thinking. Teachers chose which of the three sessions to attend based on their interests and the practices they planned to feature in their own units. In each session, teachers were engaged in the practice as learners, and then were shown examples of student work pertaining to each practice. Examples were from prior unit implementations and depicted 3D learning through the incorporation of the science practice with science ideas. For example, in the computational thinking session, teachers were shown student generated algorithms of the process of translation, which incorporated computational thinking with the science ideas of protein synthesis. These practice-specific sessions allowed teachers to get an in-depth look at modeling, argumentation, and computational thinking in order to support the incorporation of high leverage practices into their SSI units.

Socio-scientific Reasoning & Culminating Activity. Socio-scientific reasoning (SSR) is a theoretical construct consisting of four competencies that are central to SSI negotiation and decision-making:

  1. Recognizing the inherent complexity of SSI.
  2. Examining issues from multiple perspectives.
  3. Appreciating that SSI are subject to ongoing inquiry.
  4. Exhibiting skepticism when presented potentially biased information (Sadler, Barab, and Scott, 2007).

SSR competencies are key to the SSI teaching and learning approach; therefore, we highlighted them in a demonstration and discussion during the PD. Teachers were introduced to the four SSR competencies, and they explored examples of activities designed to strengthen student SSR competencies. For example, engaging students in a jigsaw activity where they explore an issue from the perspectives of different stakeholders encourages students to engage in SSR because they deal with the complexity of the issue, bring up questions that remain unanswered, analyze information with skepticism about biases, and recognize the limitations of science pertaining to the issue. This session supported teachers in their understanding of SSR and provided them with multiple examples of how this construct can be used in the classroom within SSI contexts.

The culminating activity called for as a part of the Synthesis section of the SSI-TL framework was challenging for the teachers to conceptualize after the first PD session. To support teachers in their understanding of the culminating activity, we presented sample activities and student work from the units we previously developed and implemented. The goal of the culminating activity is to give students a final task where they can synthesize and reason through their ideas about the science behind the issue, the social connections to the issue, and the science practices employed in the unit. This session presented teachers with specific examples and ideas for culminating activities to be used in their SSI units. Teachers engaged in a jigsaw activity and each group examined a different culminating activity example and shared out to the whole group. Teachers discussed how they could alter activities for their classrooms and their units to support the inclusion of culminating projects in their SSI units. An example culminating activity can be accessed in “Lesson 6” at http://ri2.missouri.edu/ri2modules/The%20Vanishing%20Prairie/sequences.

In order to further support teachers as they designed their SSI units, we held a panel discussion where various members of our team (SSI unit designers and implementers) shared information about their units and experiences. In particular, panelists discussed the issue they chose and why they chose it, the science practices featured, and their culminating activities. After each panelist shared, the teachers asked questions about the units and experiences; they were particularly interested in hearing more details about ways in which SSR was incorporated in the units and the culminating activities. They also posed several questions about assessment generally and the scoring/grading of culminating activities more specifically. To further address these questions, we provided the teachers with samples of student work and a rubric that was used in one of our implementations for assessing the culminating activity. Through the various sessions and panel discussions, teachers were supported in their understanding of the overall SSI teaching and learning approach.

Teacher Work & Tools

As the teacher design teams worked through the PD program, the goal for each team was to develop a complete SSI unit ready for implementation in their classrooms. By the end of the June PD session, the expectation was for teams to have completed a unit outline and two lesson plans. The full units were due by the end of the summer. Teachers were responsible for choosing an issue, science ideas, and science practices for their units. In order to support teachers as they designed their unit overviews and lesson plans, we scaffolded their design process with various group techniques and planning tools as described in the following sections.

Group Work & Processes. Initially, teachers worked individually to brainstorm ideas for their units, including possible issues, science ideas, and relevant science practices. Teachers then presented their ideas within their content groups (i.e, biology, chemistry, and environmental science) in order to find shared interests. Based on these discussions, teachers formed design teams, which consisted of two or three teachers who worked together on the design of a unit for the upcoming school year. The composition of design teams ranged from groups with teachers from the same building to groups made up of teachers from different parts of the state.

Planning Heuristic. To scaffold the design process, our team introduced a Planning Heuristic: a table outlining a simplified process for beginning the design of an SSI unit. It describes design steps, products associated with each step, and examples of products from one of the units our team designed. For example, the first step of the heuristic is: explore possible issues, big ideas in science, and target practice(s). The products from this step are a large-scale issue, science themes and focal practices. Examples of these from one of our sample units are climate change as the issue, ecology as the science theme, and modeling as the focal practice. Teachers were encouraged to use the planning heuristic to aid them in their design process. The full Planning Heuristic can be accessed at http://ri2.missouri.edu/planning-heuristic.

Issue Selection Guide. Choosing an issue to center a unit around can be a daunting task. To support teachers in their issue selection, our team designed an Issue Selection Guide. Each design team worked through the guide resulting in narrowing their ideas about possible issues, and ultimately deciding on an issue. The guide poses several reflective questions about the issue to help teachers decide on the appropriateness of that issue. Prompting questions fall under three main questions: 1) Is the issue an SSI? 2) Is the issue a productive SSI for the intended audience? and 3) What instructional moves should be considered in presenting the issue? The Issue Selection Guide can be accessed at http://ri2.missouri.edu/issue-selection-guide.

Design Templates. To align teacher units with our example units for ease of planning and designing their units, we provided teachers with unit design templates. We provided teachers with a Unit Plan Template, which was used to outline the unit and the key ideas within the unit, such as science ideas, science practices, and the issue. We provided teachers with a Lesson Plan Template that presented a basic structure for each lesson, including time the lesson will take, goals for the lesson, lesson assessments, resources needed for the lesson, and an instructional sequence. These templates can be accessed at http://ri2.missouri.edu/templates.

Teacher Reactions & Feedback

The goal of producing SSI units was met because every design team was able to select an issue and complete design of a unit. Table 1 depicts the teams, the issue they selected, whether or not they completed their unit, and whether or not they implemented their unit in their classrooms the following year. Although implementing their units was not a requirement of the PD program, 12 out of 18 teachers implemented the units they designed in their respective classrooms. Six teachers did not implement their units for various reasons. The food additives, made of up a first and second year teacher, did not feel that their unit was far enough along in its development so they decided to wait until the following year to try it. A few of the other teachers experienced changes in their teaching assignments, which made implementation of their units difficult.

Table 1 (Click on image to enlarge)

Design Team Products and Unit Details

Issue Selection Challenges

Interviews were conducted with all of the teachers after the final PD session in June. During these interviews, teachers were asked a series of questions about what they learned and the extent to which the developed tools helped them. Teachers identified the Issue Selection Guide as one of the most useful tools because it helped them narrow down their ideas about issues and allowed them to determine if it was appropriate for their unit. Multiple teachers said that selecting an issue was the most challenging aspect of designing their units:

“[We] had a real issue finding an issue, and [it] was difficult… I had a lot of ideas” (T2, June Interview).

“I had no idea what could be a social and science issue… I used the topic selection paper, that chart thing that you guys made to help work up to picking an issue after – I had a whole bunch of ideas storming around, and it helped me narrow it down and select one that would work for this unit.” (T3, June Interview).

The Issue Selection Guide was useful to the teachers who were struggling with selecting an issue because it helped them narrow their issue ideas and choose an issue that would fit the instructional needs of their classes.

The Value of Examples

When asked what the most valuable part of the PD was, teachers identified the SSI unit examples and experiences as the most helpful:

“Seeing the variety of lesson topics and ideas, working through some of the lessons.”

“The sample SSI units were very helpful in seeing [SSI] in action.”

“The parts of model lessons where we participated in the student portion of the lesson” (Teacher Responses, Anonymous Post Survey, June 2016).

Teachers found the explicit examples of SSI-TL implementation to be the most helpful when learning about SSI and designing their units, indicating that the PD design supported teacher engagement in SSI teaching and learning.

Lesson Planning Challenges

In addition to selecting an issue, teachers identified writing lesson plans as a challenge in their design process:

“I never actually had to sit down, and write a lesson plan before… so going through and planning something start to finish, is not something that I have had to do… that was a challenge for me” (T1, June Interview).

“[The] process of putting it [unit plan] together is a challenge. Because most of the time I just sort of do it internally, I don’t really write it down” (T4, June Interview).

Most of the teachers were experienced teachers, so they didn’t need to write out every lesson because they felt comfortable with what they were teaching and how they were going to teach it. Because the SSI teaching and learning approach was new to the teachers, we were explicit in the structure of these units. The provided unit plan and lesson templates helped the teachers work through a planning and documentation process that was more formal than most of the participants were used to, and it resulted in materials that could be shared with other teachers.

Increases in Comfort with SSI and Science Practices

Teachers also responded to a Likert scale survey before and after the PD with questions about their comfort in teaching SSI, designing SSI units, and utilizing science practices. Ten survey items yielded statistically significant increases from before the PD to after the PD (Table 2). The first two items deal with teachers’ abilities to teach SSI in the classrooms. After the PD more teachers agreed they knew enough about SSIs in their area to design instruction using them, indicating teachers felt more comfortable with SSI design after the PD. More teachers also agreed they were able to negotiate the use of SSIs in their classrooms when talking to community members and parents with concerns, indicating an increase in comfort level with using SSI in their classrooms. The remaining items related to the teachers’ comfort level with scientific practices. Teachers increased in their comfort with the scientific practices of modeling, explanations, argumentation, and evaluating information.

Table 2 (Click on image to enlarge)
Survey Items with Statistically Significant Increases from Pre to Post PD

Conclusion

Teachers are important agents of change, and, given proper supports, they can successfully facilitate SSI learning experiences for their students. Before our work with this group of teachers began, our research team designed and implemented SSI units, and these results informed development of the SSI-TL framework. The SSI-TL framework has been helpful as we continue to design and structure new SSI units, so we made it a central aspect of the PD to guide what SSI teaching should entail. This framework and other tools were used to support teachers as they designed their own SSI units.

The PD employed a blended model of face-to-face meetings and communications with an online networking tool. During the PD we alternated among three sets of activities to support teachers: 1) SSI unit examples and experiences as learners; 2) explicit discussion and unpacking of the approach; and 3) design teams working together with active support from the research team. Throughout the PD we provided design supports with various tools developed by our team, including the SSI-TL framework, the framework enactment guide, the planning heuristic, the issue selection guide, and unit and lesson design templates. The PD was successful in that all groups designed SSI units, and many were able to implement in their classes. The teachers indicated the PD was effective from their perspective and they learned about issues and practices. Specific feedback around scaffolding tools we provided indicated the tools helped teachers navigate the design process.

As we consider ways of advancing this work, we are interested in exploring ways to work with school-based teacher professional learning communities (PLCs). Bringing together teachers from across widely varying school contexts and facilitating their work together was a challenge. We think that supporting communities of teachers familiar with the same local affordances and constraints may be a more effective way to bring about more lasting incorporation of SSI teaching into science classrooms. We are also interested in extending our investigations to learn more about the ways in which teachers implement their units. In the current project, we were able to elucidate some of the challenges teachers faced in designing SSI units (like selecting issues) and presented tools to help teachers navigate these challenges (e.g., the issue selection guide). We think that it would be a productive step for the SSI-TL agenda to do this same kind of work (understanding challenges and designing tools to address them) for implementation.

References

Dawson, V., & Venville, G. (2008, April). Argumentation and conceptual understanding: Grade 10 students learning about genetics. A paper presented at the annual international conference of the National Association for Research in Science Teaching (NARST), Baltimore, 30th March–2nd April.

Dawson, V. M., & Venville, G. (2010). Teaching strategies for developing students’ argumentation skills about socioscientific issues in high school genetics. Research in Science Education, 40(2), 133-148.

Duncan, R. G., & Cavera, V. L. (2015). DCIs, SEPs, and CCs, Oh My!: Understanding the Three Dimensions of the NGSS. The Science Teacher, 82(7), 67.

Eastwood, J. L., Sadler, T. D., Zeidler, D. L., Lewis, A., Amiri, L., & Applebaum, S. (2012). Contextualizing nature of science instruction in socioscientific issues. International Journal of Science Education, 34(15), 2289-2315.

Ekborg, M., Ottander, C., Silfver, E., & Simon, S. (2012). Teachers’ Experience of Working with Socio-scientific Issues: A Large Scale and in Depth Study. Research in Science Education, 43(2), 599-617. doi:10.1007/s11165-011-9279-5

Friedrichsen, P., Sadler, T. D., Graham, K., & Brown, P. (2016). Design of a socio-scientific issue curriculum unit: Antibiotic resistance, natural selection, and modeling. International Journal of Designs for Learning, 7(1), 1-18.

Gray, D. S., & Bryce, T. (2006). Socio‐scientific issues in science education: implications for the professional development of teachers. Cambridge Journal of Education, 36(2), 171-192. doi:10.1080/03057640600718489

Klosterman, M. L., & Sadler, T. D. (2010). Multi-Level Assessment of Scientific Content Knowledge Gains Associated with Socioscientific Issues-Based Instruction. International Journal of Science Education, 32(8), 1017-1043.

Klosterman, M. L., Sadler, T.D, & Brown, J. (2012). Science teachers’ use of mass media to address socio-scientific issues and sustainability. Research in Science Education, 42, 51-74. DOI: 10.1007/s11165-011-9256

Levinson, R. (2006). Teachers’ perceptions of the role of evidence in teaching controversial socio-scientific issues. Curriculum Journal, 17(3), 247-262. doi:10.1080/09585170600909712

NGSS Lead States (2013). Next generation science standards. For states, by states. Washington, DC: The National Academies Press.

Presley, M. L., Sickel, A. J., Muslu, N., Merle-Johnson, D., Witzig, S. B., Izci, K., & Sadler, T. D. (2013). A framework for socio-scientific issues based education. Science Educator, 22(1), 26.

Romine, W. L., Sadler, T. D., & Kinslow, A. T. (2017). Assessment of scientific literacy: Development and validation of the quantitative assessment of socio-scientific reasoning (QuASSR). Journal of Research in Science Teaching, 54, 274-295 DOI:10.1002/tea.21368

Sadler, T. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513-536. doi:10.1002/tea.20009

Sadler, T., Barab, S., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37(4), 371-391. doi:10.1007/s11165-006-9030-9

Zeidler, D. L. (2014). Socioscientific issues as a curriculum emphasis: Theory, research and practice. In N.G. Lederman & S.K. Abell (Eds.), Handbook of Research on Science Education, 2, 697-726.

 

 

Cobern and Loving’s Card Exchange Revisited: Using Literacy Strategies to Support and Enhance Teacher Candidates’ Understanding of NOS

Citation
Print Friendly, PDF & Email

Allaire, F.S. (2018). Cobern and Loving’s card exchange revisited: Using literacy strategies to support and enhance teacher candidates’ understanding of NOS. Innovations in Science Teacher Education, 3(3). Retrieved from https://innovations.theaste.org/cobern-and-lovings-card-exchange-revisited-using-literacy-strategies-to-support-and-enhance-teacher-candidates-understanding-of-nos/

by Franklin S. Allaire, University of Houston-Downtown

Abstract

The nature of science (NOS) has long been an essential part of science methods courses for elementary and secondary teachers. Consensus has grown among science educators and organizations that developing teacher candidate’s NOS knowledge should be one of the main objectives of science teaching and learning. Cobern and Loving’s (1998) Card Exchange is a method of introducing science teacher candidates to the NOS. Both elementary and secondary teacher candidates have enjoyed the activity and found it useful in addressing NOS - a topic they tend to avoid. However, the word usage and dense phrasing of NOS statements were an issue that caused the Card Exchange to less effective than intended. This article describes the integration of constructivist cross-curricular literacy strategies in the form of a NOS statement review based on Cobern and Loving’s Card Exchange statements. The use of literacy strategies transforms the Card Exchange into a more genuine, meaningful, student-centered activity to stimulate NOS discussions with teacher candidates.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

American Association for the Advancement of Science (AAAS). (1993). Benchmarks for Science Literacy: Project 2061. New York: Oxford University Press.

Ardasheva, Y., Norton-Meier, L., & Hand, B. (2015). Negotiation, embeddedness, and non-threatening learning environments as themes of science and language convergence for English language learners. Studies in Science Education, 51, 201-249.

Ardasheva, Y., & Tretter, T. (2017). Developing science-specific, technical vocabulary of high school newcomer English learners. International Journal of Bilingual Education and Bilingualism, 20, 252-271.

Clough, M. (2011). Teaching and Assessing the Nature of Science. The Science Teacher, 78(6), 56-60.

Cobern, W. W. (1991). Introducing Teachers to the Philosophy of Science: The Card Exchange. Journal of Science Teacher Education, 2(2), 45-47.

Collier, S., Burston, B., & Rhodes, A. (2016). Teaching STEM as a second language: Utilizing SLA to develop equitable learning for all students. Journal for Multicultural Education, 10, 257-273.

Harmon, J., Hedrick, W., & Wood, K. (2005). Research on Vocabulary Instruction in the Content Areas: Implications for Struggling Readers. Reading & Writing Quarterly, 21, 261-280.

Herman, B. C., Clough, M. P., & Olson, J. K. (2013). Teachers’ Nature of Science Implementation Practices 2–5 Years After Having Completed an Intensive Science Education Program. Science Education, 97, 271–309.

Jung, K., & Brown, J. (2016). Examining the Effectiveness of an Academic Language Planning Organizer as a Tool for Planning Science Academic Language Instruction and Supports. Journal of Science Teacher Education, 27, 847-872.

Miller, D., Scott, C., & McTigue, E. (2016). Writing in the Secondary-Level Disciplines: a Systematic Review of Context, Cognition, and Content. Educational Psychology Review, 1-38.

Moje, E. (2008). Foregrounding the disciplines in secondary literacy teaching and learning: A call for change. Journal of Adolescent & Adult Literacy, 52, 96-107.

Nagy, W. (1988). Teaching Vocabulary to Improve Reading Comprehension. Newark, DE: International Reading Association.

Nagy, W., & Townsend, D. (2012). Words as tools: Learning academic vocabulary as language acquisition. Reading Research Quarterly, 47(1), 91-108.

National Council for Accreditation of Teacher Education. (2008). Professional Standards for the Accreditation of Teacher Preparation Institutions. Retrieved from Washington, D.C.:

National Research Council. (2012). A Framework for K-12 Science Education: Practices, Crosscutting concepts, and Core Ideas. Retrieved from Washington, D.C.:

National Research Council. (2013). Next generation science standards: For states, by states.

National Science Foundation. (1996). Shaping the future: New expectations for undergraduate education in science, mathematics, engineering, and technology. Washington, D.C.: National Science Foundation.

National Science Teacher’s Association. (2012). NSTA Standards for Science Teacher Preparation. Retrieved from http://www.nsta.org/preservice/

NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

Reed, D. K., Petscher, Y., & Truckenmiller, A. J. (2016). The Contribution of General Reading Ability to Science Achievement. Reading Research Quarterly.

Shanahan, T., & Shanahan, C. (2012). What is disciplinary literacy and why does it matter? Topics in language disorders, 32(1), 7-18.

Taboada, A. (2012). Relationships of general vocabulary, science vocabulary, and student questioning with science comprehension in students with varying levels of English proficiency. Instructional Science, 40, 901-923.

Vacca, R., Vacca, J., & Mraz, M. (2016). Content area reading: Literacy and learning across the curriculum: Pearson.

Van Laere, E., Aesaert, K., & van Braak, J. (2014). The role of students’ home language in science achievement: A multilevel approach. International Journal of Science Education, 36, 2772-2794.

 

A Lesson to Unlock Preservice Science Teachers’ Expert Reading Strategies

Citation
Print Friendly, PDF & Email

Mawyer, K.K.N. & Johnson, H. J. (2017). A lesson to unlock preservice science teachers’ expert reading strategies. Innovations in Science Teacher Education, 2(3). Retrieved from https://innovations.theaste.org/a-lesson-to-unlock-preservice-science-teachers-expert-reading-strategies/

by Kirsten K.N. Mawyer, University of Hawai‘i at Mānoa; & Heather J. Johnson, Vanderbilt University

Abstract

New standards for K-12 science education task science teacher educators with providing preservice teachers strong preparation that will help them to embrace their role as teachers of science literacy (National Research Council, 2012). Even though there is a growing trend for teacher preparation programs to offer literacy courses that focus on reading in the content areas, often they do not provide aspiring science teachers the science-specific tools needed to teach reading in secondary science contexts. This article addresses the question, “How can we, as science teacher educators, prepare our teacher candidates to teach reading in the context of science?” We designed an initial literacy lesson to help preservice teachers enrolled in two science methods courses to unpack their content knowledge about literacy in science. Our hope was that by unlocking their personal strategies they would be better positioned for engaging in conversations about literacy. We found that using this initial literacy lesson provided our preservice teachers with a solid foundation for engaging in conversations about how to scaffold student reading. This lesson also provided preservice teachers an opportunity to collaboratively develop a common beginner’s repertoire of reading strategies that we subsequently used as a building block for designing activities and lessons that engage middle and high school students in big science ideas and understanding real-world phenomena through reading a variety of kinds of science texts.

Introduction

According to literacy researchers, different disciplines demonstrate both social and cognitive practices that embody distinct ways group members use reading and writing within their discipline (Buehl, 2011; Goldman & Bisanz, 2002; Heller & Greenleaf, 2007). The Framework for K-12 Science Education (NRC, 2012), Next Generation Science Standards (NGSS Lead States, 2013) and Common Core State Standards (Council of Chief State School Officers, 2010) all specify that literacy—the ability to read in the context of science—is an essential scientific practice. These recent national reform documents emphasize that by the time students graduate from high school they should be able to analyze, evaluate, and synthesize information from scientific texts (Council of Chief State School Officers, 2010; NGSS Lead States, 2013; National Research Council, 2012). Thus, it comes as no surprise that science teachers must incorporate literacy into their curriculum and instruction. In the wake of these reforms, the expectation that students will have more opportunities to engage with scientific texts is now firmly in place. However, this vision of ‘literacy for all students’ (Carnegie Council on Advancing Adolescent Literacy, 2010) can only be achieved to the extent secondary science teachers are able or inclined to meet this goal (Cohen & Ball, 1990).

In response to this call for literacy, experienced secondary science teachers we talked to expressed that they feel they “have a responsibility to work on literacy” but do not know how to go about teaching and incorporating reading in their instruction. Unfortunately, the majority of otherwise competent or even expert teachers do not have the knowledge or training to teach literacy skills required to engage students with science texts (Norris & Phillips, 2003; National Research Council, 2012). Secondary science teachers are largely unprepared because their teacher preparation programs included little or no coursework focused on literacy. Even though there is a growing trend for teacher preparation programs to offer literacy courses that focus on reading in the content areas, often they still do not provide aspiring science teachers the science-specific tools needed to teach reading in secondary science contexts. One inservice teacher we spoke with commented that while she had taken a literacy course in graduate school it “really didn’t help me at all because it was too general and disconnected from the kind of reading you have to do in science.” Her sense that strategies introduced in her graduate school preservice coursework were too generic is not surprising given that science texts require content specific approaches and an understanding about how to read and engage with various disciplinary-specific genres (Carnegie Council on Advancing Adolescent Literacy, 2010; Lee & Spratley, 2010). This raises the question, “How can we, as science teacher educators, prepare our teacher candidates to teach reading in the context of science?”

Instead of depending on general content area courses designed for preservice teachers regardless of discipline or specialty, science teacher educators need to design lessons for secondary science methods courses that target how to teach reading as an integral and integrated component of 6th-12th grade science curricula. Fortunately, preservice science teachers are not walking into science methods classes as blank slates. They enter with extensive science content expertise and are generally proficient or advanced readers of scientific texts. The challenge for science teacher educators is that even though preservice secondary teachers know how to read and make meaning of texts within their discipline, it is difficult for individuals to leverage well-developed personal strategies for reading a variety of science texts in their planning and instruction to support struggling readers (Carnegie Council on Advancing Adolescent Literacy, 2010; Norris & Phillips, 2003). If reading is to play a more prominent role in secondary science, preservice teachers need help in making tacit knowledge about how to read common genres of science texts, such as popular science texts, textbooks, and primary scientific literature, explicit so they can use this knowledge as a foundation for learning how to teach middle school and high school students to read and make sense of science texts.

Context & Framing

The context for this study was a one semester secondary science methods course we taught at our respective institutions to a mix of undergraduate, post-baccalaureate, and masters students. We co-designed and taught a sequence of seminar sessions on how to use literacy activities, specifically reading different genres of science texts, to meaningfully help students learn science. This paper describes the first session in the sequence. We framed the design of the lesson using Ball & Bass’s (2000) notion of decompression. This is the perspective that as individuals learn to teach they need to unpack, and make visible the connections between the integral whole of their content knowledge so that it is accessible to develop pedagogical content knowledge (Shulman, 1986) In this particular case the knowledge and skills necessary to use literacy strategies to teach reading in the context of science (Figure 1). Why is unpacking preservice teachers content knowledge about science reading strategies important? Unless one’s content expertise is the study of reading, the act of reading can seem or intuitively be thought “a simple process” in which “text can seem transparent” (Norris & Phillips, 2003, p. 226). Helping preservice teachers identify their existing “expert” knowledge of how to read science texts—and preparing them to design lessons that productively incorporate literacy activities into their science instruction—is foundational for developing strategies to teach middle school and high school students how to read science texts.

Figure 1 (Click on image to enlarge). As preservice secondary science teachers decompress their content knowledge about literacy and their personal reading strategies they develop PCK for teaching reading in science.

 

 

Lesson Design

In order to unpack preservice teachers’ genre specific strategies, we designed a structured introductory literacy activity that would:

● Help preservice teachers identify existing personal reading strategies for reading science texts
● Compare personal reading strategies with other preservice teachers
● Identify general and science genre specific reading strategies
● Engage preservice teachers in a dialogue about text features of different genres of science texts
● Brainstorm ideas about when and why teachers would want to use different genres of science texts in instruction
● Provide a foundation for designing lesson plans that include literacy activities that support ambitious science teaching practices—eliciting student ideas, supporting ongoing changes in student thinking, and pressing for evidence-based explanations (Windschitl, Thompson, Braaten, & Stroupe, 2012).

Specifically, we asked our preservice teachers to read three common genres of science texts—a newspaper article (popular science text), a science textbook (science text for education), and a scientific journal article (primary scientific literature)—that a science teacher might have their students read in class (Goldman & Bisanz, 2002). Relatively short texts about the same content—global climate change—were purposefully selected. Each student was given a packet of the readings that they were welcome to write on. We instructed preservice teachers to read each article with the goal of making sense of the text. They were given 10 minutes to read each text. How they spent this time, including what order they read the different texts, was left up to them.

After reading all of the texts, we made the preservice teachers aware of our purpose. We did not seek to assess them on their understanding of the content within each text. Instead, we wanted to make visible the strategies they used to read each type of text. Before we debriefed as a group, we asked each preservice teacher to respond in writing to the following questions for each genre of text:

● What did you do as you read the text?
● How did you make sense of the text?
● How did you interact with the text?
● Why did you approach the text in this way?

Asking preservice teachers to notice strategies encouraged them to make visible the latent expert knowledge they use to analyze the texts (Sherin, Jacobs, & Philipp, 2011). After students individually responded to the prompts on how they read each of the three texts, we split them into small groups of 3-4 to identify and record the reading strategies used to make sense of each text type. This activity was followed by a whole class discussion about reading order, reading strategies, and patterns in reading approaches across the three genres of science text: a newspaper article, a science textbook, and a journal article. Our preservice teachers’ discussion and written reflections revealed that they did indeed have both general and subject specific approaches to reading different kinds of science texts.

Reading the Newspaper Article

Popular texts, such as newspapers, magazines, online sites, trade books, and longer nonfiction science texts, take complex scientific information and phenomena and simplify it for the public—generally for the purpose of raising awareness and increasing understanding of important issues that are relevant to and impact citizens’ everyday lives (Goldman & Bisanz, 2002). The newspaper article our preservice teachers read introduced international efforts to draft a world climate policy to limit global warming to 2oC by drastically cutting down on fossil fuel emissions to head off the negative impacts, such as rising sea-levels, of global warming (Gillis, 2014).

The discussion kicked off with one preservice teacher noting that the “writing was very straightforward” so it was not necessary to take notes as compared to engagement with the textbook or journal article. Another echoed this sentiment commenting that she read it like a story with a “main thread…which I grasped and everything else revolved around”. Several made remarks that were consistent with the objective of this text genre such as, “I wasn’t really ever exposed to the 2o C global climate change goals before so I felt I had to keep ready to gain more insight as to what it is and why it is important” and “science is controversial—one group may agree and another group may disagree”.

It was clear from the discussion that preservice teachers had a deep, established, and readily accessible understanding of the structure and purpose of a scientific newspaper article and that these pre-existing orientations to this genre shaped how they read the text (Figure 2). Strategies our preservice teachers used to read the newspaper article included:

● Using the title to identify who/what/when
● Using the first sentence to identify the tone
● Identifying the writer’s position and identifying bias
● Identifying stakeholders and different opinions with respect to the issue
● Evaluating the credibility of the source
● Identifying evidence, notably by locating quotations from scientists
● Skimming for the main idea and ignoring the “fluff”

Figure 2 (Click on image to enlarge). Preservice teachers’ strategies for reading newspaper articles.

Reading the Textbook

Science textbooks, the mainstay of secondary science, are expository which means they are written to inform, describe, explain or define patterns, and to help students construct meanings about science information (Goldman & Bisanz, 2002). Even though the objective of textbooks is to scaffold student learning, students often find them difficult reading because of content density, complex text structures, domain specific vocabulary, multimodal representations, lack of relevance to students’ lives and prior knowledge (Lee & Spratley, 2010). The textbook reading on global climate change detailed specific consequences of global warming including warmer temperatures, more severe weather events, melting ice and snow, rising sea levels, and human health (Edelson et al., 2005).

As preservice teachers reflected on and discussed how they read the science textbook we observed a high degree of commonality across the approaches utilized. Most notably, conversation centered on text features that organize information in the text. For example, one preservice teacher shared that he “figured that a textbook would give the big ideas in the title and probably within the first couple of lines of the section so this helped me to get to the point faster, it helped me understand with less reading”. Similarly another said “I first flipped through the text [and] read all of the headings and subheadings” upon which other students elaborated that “the headings and subheadings are great clues as to what the text is talking about” and that headings and subheadings helped to “identify the main idea of each section”.

As with the newspaper article, the discussion of the textbook reading revealed that our preservice teachers have well developed strategies for reading science textbooks. Their strategies included:

● Reading the title to identify the focus of the entire reading
● Reading headings and subheadings to determine the main idea of each section
● Asking how the section relates to the title
● Asking how each section is connected to the sections before and after
● Reading for the main idea
● Reading first/last sentences of each paragraph
● Making a distinction between main idea(s) and evidence
● Skimming for unfamiliar science words, bolded vocabulary and associated definitions

Reading the Journal Article

Goldman and Bisanz (2002) point to the research report, such as a journal article, as the primary text genre used by scientists. Research reports are of particular interest because they are vehicles through which scientists present a scientific argument for consumption, evaluation, and response by their peers. Publication, circulation, evaluation, and response serves as a mechanism for providing information about research, making claims, and generating new scientific knowledge. According to Phillips & Norris (2009) journal articles present arguments about the need for conducting research, enduring or emerging methodology, analysis and provisions against alternative explanations—all in the service of supporting interpretation of authors’ findings. Generally, these types of texts are infrequently used in the science classroom. The journal article we asked our preservice teachers to read presented an index for when temperature will increase beyond historic levels yielding worldwide shifts in climate (Mora et al., 2013).

Preservice teachers agreed that of the three texts the journal article was hands down the most difficult to read and understand. Even though they struggled with this article they had no trouble articulating how they read this text. As with the other two text types, preservice teachers used specific text features of journal articles to scaffold their reading. One shared that she “usually start[s] with the abstract of a journal article because it tends to give some sort of summary of the whole article.” Another built on this by saying that the “abstract is a good summary of key points.” In addition to the abstract, preservice teachers focused on reading the “intro and conclusion because they highlight scientist’s argument and claims,” as well as on “tables and figures because they provide evidence visually.” There was also widespread agreement with one preservice teacher that if the goal is to understand the article, it was fine to “skim the methods [because]…taking the time to read the methods portion would not provide me with the important information to understand the context.”

The discussion of the journal article reading uncovered that our preservice teachers have well developed strategies for reading scientific texts. Their strategies included:

● Reading abstract, introduction and conclusion for summary of argument and primary findings
● Reading discussion for explanation of findings
● Looking at graphs, tables and figures for evidence supporting claim
● Skipping or skimming methods
● Asking do I understand what this article is about
● Reflecting on whether I can tell someone what this article is about

Reading Across the Science Texts

We noticed that in addition to the genre specific strategies outlined above, preservice teachers talked about how—as they read with the goal of making sense of the texts—almost all indicated that they annotated the text in some fashion. When we collected and analyzed preservice teachers’ annotated texts, we observed that they had underlined, highlighted, and jotted down questions or comments directly on the text. When they reflected on their textual reading practices, they indicated that they marked-up the text because they planned to re-read the texts and that annotating and highlighting specific features (headings, main ideas, or writing questions), would facilitate their future re-skimming of the texts and allow them to focus on only re-reading the most relevant sections or re-engaging with the most salient information in the article (Mawyer & Johnson, 2017). It seems that preservice teachers engaged in a meta-dialogue with the text that would allow for the most effective and efficient interaction with the text to maximize understanding.

Preservice Teachers’ Ideas for Scaffolding Literacy

After students discussed the various texts and worked together to identify patterns and commonalities in how they read the three texts, we asked them to talk about implications of their personal strategies for reading different types of science texts for their own teaching. One of the preservice teachers commented that going into the activity she did not really think that she had any specific strategies for reading science texts and “felt uncomfortable and overwhelmed about the prospect of teaching literacy” and that the activity helped her to see that she “had more experience with literacy” than she originally thought. We noticed that in both of our classes the literacy activity our preservice secondary teachers engaged in and their subsequent small group discussions allowed them to think deeply about how to concretely support literacy. They were able to work together to develop ideas about how they could build on the reading strategies they identified in our class to design their own lessons and curriculum in order to integrate literacy activities into their teaching practice. Specifically we observed students leveraging their personal strategies into supports that could be helpful to students before, during, and after they directly interact with the text (Table 1).

Table 1 (Click on image to enlarge)
Preservice Teachers’ Ideas for Scaffolding Literacy for Different Types of Science Texts

Formal lesson plans and classroom observations revealed that after this literacy lesson our preservice teachers began incorporating these three genres of science texts into their science instruction and put the strategies and supports they identified into practice. For example, one student adapted a journal article to make it easier for her students to read. She structured reading by giving her students the following instructions:

“You will mark the text, highlight words you do not know or feel that are important, write in the side columns thoughts/responses/ideas, and form a thesis summary. To form a thesis means to make a conclusive statement (claim) on what you read. You will support this claim by providing 3-5 key details.”

The observation that our preservice teachers started using science texts after this literacy session, suggested they had more confidence in engaging their own students with literacy activities in the science classroom.

Implications for Science Teacher Educators

The Framework specifies that preservice science teacher education needs to be aligned with the scientific practices. Furthermore, it tasks science teacher educators with providing preservice teachers strong preparation that will help them to embrace their role as teachers of science literacy (National Research Council, 2012). In response to this call we designed this initial literacy lesson to help preservice teachers enrolled in our science methods courses to unpack their content knowledge about literacy in science with the hope that by unlocking their personal strategies they would be better positioned for engaging in conversations about literacy. In the words of one preservice teacher this activity helped him realize that his reading strategies were “so intuitive that they were tacit” and that previously he never “consciously thought about the text and how I approach reading”.

Challenges in implementation

As noted earlier one challenge that arose during this lesson was that our preservice teachers struggled with reading the journal article. Often journal articles are quite lengthy so we purposefully selected the shortest article we could find about global climate change in the hope that they would be able to read it in its entirety in the allotted 10 minutes. As the lesson unfolded we realized that this particular article was exceptionally dense conceptually and included a large number of visual representations.

Suggestions for future implementation

As we tweak this lesson for future use we plan to select another article that is more typical of scientific journal articles. That said, the very rich conversation that we had around the difficulties surrounding reading this particular article led to productive lines of inquiry in subsequent literacy sessions. In particular, we used it as a jumping off point for talking about adapting primary literature (Philips & Norris, 2009) to make scientific journal articles accessible to middle and high school students. We also realized that we needed to include explicit instruction around scaffolding reading visual representations such as tables, graphs, and diagrams. Another modification that we are considering is assigning the three readings and written responses to the four prompts as homework. This would allow preservice teachers to read each text at their own pace and take away the artificial constraint of a time limit.

Conclusion

This lesson highlights that preservice teachers’ actual familiarity with reading strategies and content specific literacy expertise is different from their initial self-perception that they know very little about literacy. The combination of genre specific and general reading strategies our preservice teachers used demonstrated that they use visual and symbolic cues in the text in combination with prior knowledge to construct new meaning from the text by utilizing comprehension strategies as they read. The fact that preservice teachers have these highly developed metacognitive strategies to pinpoint important ideas, make inferences, ask questions, utilize text structure, and monitor comprehension while reading highlights a high level expertise (Gomez & Gomez, 2006; Pearson, Roehler, Dole & Duffy, 1992; Yore, 1991, 2004; Yore & Shymansky, 1991).

We found that using this initial literacy lesson provided our preservice teachers with a solid foundation for engaging in conversations about how to scaffold student reading. This lesson provided preservice teachers an opportunity to collaboratively develop a common beginner’s repertoire of reading strategies that we subsequently used as a building block for designing activities and lessons that engage middle and high school students in big science ideas and understanding real-world phenomena through reading a variety of kinds of science texts. Also, compared to previous years, we noticed that how these preservice teachers were able to design and scaffold reading with their students was objectively more sophisticated and would allow students to engage with the science in more meaningful ways.

References

Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to teach: Knowing and using mathematics. Multiple perspectives on the teaching and learning of mathematics, 83-104.

Ball, D. L., Thames, M. H. & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59 (5), 389-407.

Buehl, D. (2011). Developing readers in the academic disciplines. International Reading Assoc..

Carnegie Council on Advancing Adolescent Literacy. (2010). Time to act: An agenda for advancing adolescent literacy for college and career success.

Cohen, D. K., & Ball, D. L. (1990). Relations between policy and practice: A commentary. Educational Evaluation and Policy Analysis, 12(3), 249–256.

Council of Chief State School Officers (2010). The Common Core State Standards for Literacy in Science and Technical subjects

Edelson, D. C. (Ed.). (2005). Predicted Effects. Investigations in environmental science: A case-based approach to the study of environmental systems. (pp. 440-443).

Gillis, J. (2014). 3.6 Degrees of Uncertainty. The New York Times. Retrieved from http://nyti.ms/1zXo0Gd

Goldman, S.R. & Bisanz, G. L. (2002). Toward a functional analysis of scientific genres: Implications for understanding and learning processes. In (Eds.) Jose Otero, Jose Leon, and Arthur Graesser The Psychology of science text comprehension. Lawrence Erlbaum Associates: New Jersey. pp.19-50.

Gomez, L., & Gomez, K. (2006). Reading for learning: Literacy supports for 21st century work. Phi Delta Kappan.

Heller, R., & Greenleaf, C. L. (2007). Literacy instruction in the content areas: Getting to the core of middle and high school improvement. Alliance for Excellent Education.

Lee, C & Spratley, A. (2010). Reading in the disciplines: The challenges of adolescent literacy.

Mawyer, K. K. N. & Johnson, H. J. (2017, May 1). Decompressing Preservice Science Teachers’ Reading Strategies. Paper presented at the 2017 annual meeting of the American Educational Research Association. Retrieved from the AERA Online Paper Repository.

Mora, C., Frazier, A. G., Longman, R. J., Dacks, R. S., Walton, M. M., Tong, E. J., & Giambelluca, T. W. (2013). The projected timing of climate departure from recent variability. Nature, 502(7470), 183-187.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.

National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common Core State Standards for English language arts and literacy in history/social studies, science, and technical subjects. Washington, DC: Authors.

NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

Norris, S. P. & Phillips, L. M. (2003) How literacy in its fundamental sense is central to scientific literacy. Science Education. 87:224-240.

Pearson, P. D., Roehler, L. R., Dole, J. A., & Duffy, G. G. (1992). What Research Has to Say about Reading Instruction. Developing expertise in reading comprehension, 154-169

Phillips, L. M., & Norris, S. P. (2009). Bridging the gap between the language of science and the language of school science through the use of adapted primary literature. Research in Science Education, 39(3), 313-319.

Sherin, M. G., Jacobs, V. R., & Philipp, R. A. (2011). Mathematics teacher noticing: Seeing through teachers’ eyes. Routledge: New York, NY.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational researcher, 15(2), 4-14.

Windschitl, M., Thompson, J., Braaten, M., & Stroupe, D. (2012). Proposing a core set of instructional practices and tools for teachers of science. Science education, 96(5), 878-903.

Yore, L. D. (1991). Secondary science teachers’ attitudes toward and beliefs about science reading and science textbooks. Journal of Research in Science Teaching, 28(1), 55-72.

Yore, L. D. (2004). Why do future scientists need to study the language arts. Crossing borders in literacy and science instruction: Perspectives on theory and practice, 71-94.

Yore, L. D., & Shymansky, J. A. (1991). Reading in science: Developing an operational conception to guide instruction. Journal of Science Teacher Education, 2(2), 29-36.

 

A College – Science Center Partnership for Science Teacher Preparation

Citation
Print Friendly, PDF & Email

Steinberg, R. & Saxman, L. (2017). A college-science center partnership for science teacher preparation. Innovations in Science Teacher Education, 2(3). Retrieved from https://innovations.theaste.org/a-college-science-center-partnership-for-science-teacher-preparation/

by Richard Steinberg, City College of New York; & Laura Saxman, CUNY Graduate Center

Abstract

This partnership between a college and a science center addresses the need to improve the recruitment and preparation of science teachers in an urban setting. We describe the integrated teacher preparation model where undergraduate science majors simultaneously participate in the City College of New York science teacher preparation program and serve as interns on the museum floor at the New York Hall of Science. We report on how graduates of our program are prepared to teach science and how they performed in the classroom. We found that the program was successful at recruiting students from the communities in which they intend to teach and successful at preparing them to teach inquiry-based science.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

American Association for the Advancement of Science. (1990). Project 2061: Science for all Americans. New York: Oxford University Press.

Anderson, D., Lawson, B., & Mayer‐Smith, J. (2006). Investigating the impact of a practicum experience in an aquarium on pre‐service teachers. Teaching Education, 17, 341-353.

Arons, A. B. (1976). Cultivating the capacity for formal reasoning: Objectives and procedures in an introductory physical science course. American Journal of Physics, 44, 834.

Berry, B., Montgomery, D., & Snyder, J. (2008). Urban teacher residency models and institutes of higher education: Implications for teacher preparation. Center for Teaching Quality. Retrieved from http://www.teachingquality.org/sites/default/files/UTR_IHE.pdf

Bevan, B., & Dillon, J. (2010). Broadening views of learning: Developing educators for the 21st century through an international research partnership at the exploratorium and King’s College London. The New Educator, 6, 167-180.

Bybee, R. W. (1997). Achieving scientific literacy: From purposes to practices. Portsmouth, NH: Heinemann.

Educational Testing Service. (2005). The Praxis study companion: Principles of learning and teaching: Grades 7-12. Retrieved from http://www.ets.org/s/praxis/pdf/0624.pdf

Ericsson, K. A. (2008). Deliberate practice and acquisition of expert performance: a general overview. Academic emergency medicine: official journal of the Society for Academic Emergency Medicine, 15, 988-994.

Grossman, P., & McDonald, M. (2008). Back to the future: Directions for research in teaching and teacher education. American Educational Research Journal, 45, 184-205.

Harlow, D. (2012). The wonder and excitement of teaching science: What pre-service teachers learn from facilitating family science nights. Journal of Science Teacher Education, 23, 199-220.

Lee, O., Buxton, C., Lewis, S., & LeRoy, K. (2006). Science inquiry and student diversity: Enhanced abilities and continuing difficulties after an instructional intervention. Journal of Research in Science Teaching, 43, 607-636.

Martin, M. O., Mullis, I. V. S., Gonzalez, E. J., & Chrostowski, S. J. (2004). TIMSS 2003 international science report: Findings from IEA’s trends in international mathematics and science study at the eighth and fourth grades. Chestnut Hill, MA: Boston College.

Miele, E., Shanley, D., & Steiner, R. V. (2010). Online Teacher Education: A Formal-Informal Partnership Between Brooklyn College and the American Museum of Natural History. The New Educator, 6, 247-264.

National Council for Accreditation of Teacher Education. (2010). Transforming teacher education through clinical practice: A national strategy to prepare effective teachers. Retrieved from http://www.ncate.org/LinkClick.aspx?fileticket=zzeiB1OoqPk%3D&tabid=715

National Research Council. (2000a). Educating teachers of science, mathematics, and technology: New practices for a new millennium. Washington, DC: National Academic Press.

National Research Council. (2000b). How people learn: brain, mind, experience and school. Washington, DC: National Academic Press.

National Research Council. (2009). Learning science in informal environments: People, places and pursuits. Washington, DC: National Academic Press.

National Research Council. (2010a). Rising above the gathering storm, revisited: Rapidly approaching category 5. Washington, DC: National Academic Press.

National Research Council. (2010b). Preparing teachers: Building evidence for sound policy. Washington, DC: National Academic Press.

National Research Council. (2011). Expanding underrepresented minority participation. Washington, DC: National Academic Press.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core Ideas. Washington, DC: The National Academic Press.

Newmann, F. M., Secada, W. G., & Wehlage, G. G. (1995). A guide to authentic instruction and assessment: Vision, standards and scoring. Madison, WI: Wisconsin Center for Education Research.

Papay, J., West, M., Fullerton, J., & Kane, T. (2011). Does practice-based teacher preparation increase student achievement? Early evidence from the

Boston Teacher Residency (Working Paper 17646). Retrieved from: http://www.nber.org/papers/w17646.pdf?new_window=1

Picciano, A. G., & Steiner, R. V. (2008). Bringing the Real World of Science to Children: A Partnership of the American Museum of Natural History and the City University of New York. Journal of Asynchronous Learning Networks, 12, 69-84.

Riedinger, K., Marbach-Ad, G., McGinnis, J. R., & Hestness, E. (2011). Transforming elementary science teacher education by bridging formal and informal science education in an innovative science methods course. Journal of Science Education and Technology, 20, 51-64.

Steinberg, R. N. (2011). An inquiry into science education, where the rubber meets the road. Rotterdam, Netherlands: Sense Publishing.

Stewart, F. & Sliter, R. (2005). Cracking the Praxis. New York, NY: Princeton Review Publishing.

 

You Learning Cycled Us! Teaching the Learning Cycle Through the Learning Cycle

Citation
Print Friendly, PDF & Email

Hick, S.R. (2017). You learning cycled us! Teaching the learning cycle through the learning cycle. Innovations in Science Teacher Education, 2(2). Retrieved from https://innovations.theaste.org/you-learning-cycled-us-teaching-the-learning-cycle-through-the-learning-cycle/

by Sarah R. Hick, Hamline University

Abstract

Frustrated by how much difficulty my preservice secondary science teachers were having understanding the essence of the learning cycle and crafting learning cycle lessons, I changed both the language of the learning cycle and the way I taught it.  Using ConceptDiscovery,” Concept Clarification, and Concept Application (DCA) as the names of the stages, I began to teach the learning cycle through a learning cycle.  In my series of lessons to help them build understanding of the DCA learning cycle, I first have students analyze vignettes of learning cycle lessons in order to “discover” the critical elements of each stage.  To “clarify” the concept of the DCA cycle, I spend several class sessions leading model lessons and engaging my pre-service teachers in discussions about each stage.  To help them “apply” their understanding to teaching, I scaffold them through writing their own learning cycle lesson with help from a categorization scheme I developed for types of discovery learning experiences.  Finally, in a short additional learning cycle, I have my pre-service students compare and contrast this model with others learning cycle models as a way to become knowledgeable about the history of the learning cycle and competent in the dominant discourse around it.

Introduction

When I started teaching high school biology, I figured out early on that my students were motivated by puzzles.  I made it my challenge, then, to devise lessons in which the learning experiences were structured as puzzles for my students to solve.  My early attempts included the extremely popular—though cognitively questionable—“Word-Scramble Treasure Hunts.”  In teams, students answered fill-in-the-blank questions from the text, then rearranged the circled letters of each answer to reveal the location of their next set of questions.  The treasure hunts—and the bag of donut holes for the winning team—were a huge hit with lecture-weary students.  For me, though, the logistics of the seven separate treasure hunt paths on seven different colors of paper for five different periods was overwhelming.  Plus, I had to be honest: it was simply a worksheet cut into strips.  Surely, I could do better.

Over my next few years teaching, the clues of my puzzles shifted from being words to being data.  I developed a habit of beginning instruction on a new topic by providing students with a puzzle in the form of an experimental question or a set of data—numbers, graphs, images, observations—that they collected or that I provided to them.  Their challenge was to analyze the data and draw a conclusion.  The conclusion they drew was—by my design—the concept that I wanted them to learn that day.

When I began taking courses in my doctoral program, I learned that what I was doing with my students was, in the main, a form of constructivist and inquiry teaching.  More specifically, this approach (and the learning experiences that followed) closely paralleled what was known in the field as a learning cycle.  Briefly, a basic learning cycle involves students 1) beginning their learning about a concept usually through a hands-on investigation of a phenomenon or materials; 2) getting a clearer understanding of the concept through a variety of instructional approaches including additional labs, readings, lecture, videos, demonstrations, and others; and 3) applying the learning in a new context (e.g., Bybee, 1997; Bybee, Taylor, Gardner, Van Scotter, Powell, Westbrook, & Landes, 2006; Bybee, Powell, & Trowbridge, 2007; Karplus & Thier, 1967; Lawson, Abraham, & Renner, 1989).

As I looked to move from my career as a high school science teacher to the one ahead as a science teacher educator, I was thrilled to learn that what I had been doing had a name, theory, research (e.g., Bybee et al., 2006; National Research Council 2006), and even curriculum behind it.  Because my own teaching had become so much more powerful for my high school students—and so much more enjoyable for me—I was driven to teach the learning cycle to the new science teacher candidates so that they could use it to support learning and thinking in their own classrooms.  I was pleased that I would have more legitimacy behind my aspirations for my pre-service teachers’ instructional designs than simply, “Hey, this really worked for me and my students!”  The published and researched versions of the learning cycle were so well developed, so well articulated, and so integrated into the world of science education, that I felt that helping new teachers learn to plan using that model would be fairly easy—certainly easier than the fumbling around that I had done for a few years.

Naming Rights—or Naming Wrongs?

I was caught entirely by surprise, then, when the preservice science teachers whom I mentored and supervised in my doctoral program struggled so much to learn and adopt the learning cycle in their planning.  What seemed to be such a straightforward concept to me perplexed and befuddled them.  For all the time they spent learning and writing using the Engage, Explore, Explain, Elaborate, Evaluate (5E) model (e.g., Bybee 1997, 2002, 2006; Bybee et al. 2007)—two four-credit secondary science methods courses over two terms—they struggled enormously to write lesson plans using the model.

A troublesome aspect of the 5E model seemed—ironically—to be the clever, alliterative 5E naming system itself: the preservice secondary science teachers struggled to remember what each of the Es of the 5E model stood for.  Worse, tripping up over what the Es stood for made them lose track completely of the overarching idea of the progression of thinking and learning that make up the pedagogical foundation of the learning cycle.   The typical response to being asked about the 5E Learning Cycle was a variation on a theme: “The five Es?  Um, I think explore, and expand, . . . explain, and . . . and . . . oh yeah, evaluate, and . . . shoot.  How many is that?”  The few students who could come up with all five names could not name them in order.  It seemed that while “5E” was catchy, the real meat of the learning cycle was not.  The students were—I really cannot resist this—missing the forest for the Es.

When I graduated from my doctoral program and began teaching science methods courses myself, I tried both the 5E model because of its power, presence, and ubiquity in science education and the three-part Exploration, Term/Concept Introduction, Concept Application model (Karplus, 1979; Karplus & Butts, 1977; Karplus & Thier, 1967; Lawson et al., 1989) because of its simplicity, permanence, and historical importance.  But the Explore/Exploration name in both models was too loose for my students.  What did it mean to “explore”?  “Exploration” could be a lot of interesting but aimless wandering.  My students could come up with all sorts of cool hands-on “explorations”—opportunities for students to put their hands on materials and play around with them—but to what end?  That was the problem with “exploring;” there was no promise or expectation that one would actually find anything.

The implication set by the words “exploration” and “explore” was setting the bar too low for both teacher and students.  With the publication of both A Framework for K-12 Science Education (NRC, 2012) and the Next Generation Science Standards (NGSS) (NGSS Lead States, 2013), the importance of using planning schema that emphasize scientific and engineering practices—especially, in this step, making hypotheses, planning and carrying out investigations, analyzing and interpreting data, constructing explanations, and engaging in argument from evidence (NRC, 2012)—cannot be underestimated. Bybee et al. (2006) articulated about the Explore stage that, as “a result of their mental and physical involvement in the activity, the students establish relationships, observe patterns, identify variables” (p. 9). The language of “exploration,” however, allows the novice teacher-planner to underestimate the possibility for real conceptual learning and for engagement in scientific practices.

Re-Branding the Stages

Based on the difficulties with the stage names that I saw my preservice science students experiencing, I devised a new naming system to use as I introduced the learning cycle to them. I stuck with the original core three stages—or, put another way, I lopped off the first and last of the 5Es that had been added to the older models (Bybee et al., 2006).  My reasoning for the lopping was not that engagement and assessment (“evaluation” in the 5E) were in some way insignificant; to the contrary, I lopped them out of the learning cycle because they are critical components that should frame—and be seamlessly woven throughout—all lesson plans, not just those using a learning cycle approach.  Our licensure program uses a lesson plan template that requires our preservice teachers to articulate their assessment plans (prior knowledge, formative, and future summative) as well as their plans to motivationally, physically, and cognitively engage their students in the learning.  Because of that requirement, and because of the months that we have already spent in class building skills in engaging students and designing assessments, including the “Engage” and “Evaluate” portions of the learning cycle were unnecessary—and, in fact, a bit awkward—in instruction about the learning cycle as a distinct approach to teaching and learning.

For the first stage, I decided on the name Concept Discovery.  In this stage, students are provided with a phenomenon, a structured or guided inquiry lab opportunity (Bell, Smetana, & Binns, 2005), or a set of data to examine.  Often, they are provided an investigable question for which they propose a hypothesis, then design and carry out a test of that hypothesis.  Using inductive reasoning, they examine the data and draw a conclusion—often the noticing of a pattern, relationship, or cause and effect—which they then justify with evidence and share out with peers.  As they work, the teacher supports learning by watching, listening, asking probing questions, and providing scaffolding as needed.

I am intentional about using the word “Concept” in the name: I want it to be exceptionally clear to the teacher-planners that students are discovering a particular concept in this stage; they are not simply being tossed into a murky sea of data or materials with the hope that they may discover something.  The quotation marks are also intentional. The “Discovery” going on is akin to Columbus “discovering” America: students are not really discovering anything new to the world, they are discovering something new to themselvesToo, the discovery is contrived: they are participating in a learning experience specifically engineered to allow them—through the processes of interpreting data and making and defending claims (and, quite often, brainstorming variables, making predictions, designing tests, and engaging in scientific debate)—to come to the intended meaning.

The second step I named Concept Clarification.  The focus in this step is the teacher making sure that, regardless of—but built through discussion of—individual or group findings, the whole class comes to a common understanding of the main idea arising from the discovery experience.  The teacher makes sure that appropriate terms are introduced and defined, preferably with definitions crafted as a class based on their experiences of the concept during the Concept Discovery stage.  The teacher also uses discussion, notes, video clips, images, modeling, readings, additional laboratory experiences, and other instructional strategies to help students refine the understanding they built in the Concept Discovery stage.

The third step I left intact as Concept Application, the step in which students apply their new learning—often in conjunction with their understanding of previous concepts—in order to solve a new problem.

The naming and structure of the Concept Discovery, Concept Clarification, Concept Application (DCA) learning cycle is intended to help my preservice secondary science teachers plan single lessons or multi-day instructional sequences that allow their students to discover one concept, achieve clarity on that same concept, and then apply it to a new situation before moving on to learn the next concept.

Practicing What I Teach

The naming systems were, of course, not the only thing—and likely not the major thing—holding back mastery of the learning cycle.  I realized as I began to teach science methods courses myself that the very thing that had made learning science so difficult for me in high school—traditional instruction that started with terms, notes, and readings—was keeping the preservice science teachers from learning the learning cycle.  If leading with new terminology and following with notes and examples did not work for teaching meiosis or the rock cycle, why would it work for teaching the learning cycle?  I realized that if I wanted my own preservice teachers to learn to teach using the learning cycle, I would need to help them learn it through a learning cycle.  Over the past decade, then, I have worked to develop and refine a way of helping preservice teachers master the learning cycle in a way that honors the pedagogy of the approach itself.

I begin my lessons on the learning cycle with an assessment of prior knowledge that also serves to pique my preservice students’ interest.  I ask my students to write out or diagram what they regard to be a good general structure for the teaching of their content, be it life science, chemistry, or physics.  I have my students share their representations with their content-area partners to see if they find any similarities.  With little variation, they include lecture and lab—always in that order—as central to science teaching.  I then let them know that we will be learning a lesson structure called the “learning cycle” over the next several class periods.  In my efforts to model good instructional technique, I post the following objectives on the board:

  • Name and describe the stages of a learning cycle;
  • Create an instructional sequence using the learning cycle.

Concept Discovery

To begin the Concept Discovery stage for my students to learn the DCA learning cycle, I pass out vignettes of four lessons, one each for class sessions in Language Arts, World Language, Mathematics, and Health (see Appendix A for these vignettes).  I use examples from non-science classes because I want my students to focus on the type of thinking and tasks happening, not on the content or if they think there is a “better” way to teach that content.  Each vignette is divided into three short paragraphs, each paragraph describing what the teacher and students are doing in that stage of the learning cycle.  Importantly, I do not label the names of the stages at this point as that would undermine my preservice students’ opportunity to “discover” the heart of each stage.

I ask my students to read through the vignettes—the “data,” though I do not call it that—first without making any notes.  Then, I ask them to read through them looking at just the first stage in all four, then just the second stage, then just the third stage.  I then ask them to make notes about what the students and the teachers are doing in each stage and try to come up with a name for each stage.  Once they have completed that individual work, I put my students into groups of three to four to share out their ideas.  I spend my time roaming the room, informally checking in on their ideas as they talk and write.

Concept Clarification

Once my student groups are ready to share out, I put a chart on the board with “Stage 1,” “Stage 2,” and “Stage 3” down the left side and “Teacher does” and “Students does” on the top.  I ask them to tell me which stage they feel most confident about and want to start with (it is always the third stage).  I get them to fill in the boxes in the chart for that row and suggest a name (it is almost always “application,” lending support to the appropriateness of this name).  We then move on to the other rows and do the same.  Once we have the table filled in and I have circled the things they contributed that are central to the learning cycle and not simply to good teaching (for example, “students looking for patterns” is central to the first stage of the learning cycle but “students working as individuals and then small groups” is not), I unveil my “real” names for the stages and we craft short definitions of each from what we have recorded on the board (Figure 1).

Figure 1 (Click on image to enlarge). Sample chart on board.

I then have students read a handout I wrote that summarizes each stage of the DCA learning cycle (see Appendix B).  For the next several class sessions, I model learning cycle lessons in science for them, with them as my mock middle and high school students.  The examples I use (see Appendix C for summaries of the example lessons) involve an array of concepts (both declarative and procedural) from life science, chemistry, and physics; contain Concept Discovery experiences that use a wide variety of data types, data-gathering techniques, and data analysis approaches; and vary tremendously in the length and complexity of both Concept Clarification and Concept Application activities.  My goal in using such a broad range of experiences is to help my methods students see a) that learning cycles can be used in all areas science, and b) that while the type of student cognitive work in each stage is consistent across different topics, there is great diversity in the types of learning tasks, instructional strategies, and assessment practices that a learning cycle can employ.

After each model lesson that I lead, I ask students to first write individually and then discuss with their partner where each stage began and ended in that lesson.  Though I have shown for the reader how the three parts of each lesson are broken up, I do not reveal those transitions to my students while I am leading the lessons.  I want them to have to puzzle through the boundaries of the stages as part of their cognitive work in learning the stages.

After informally keeping track of student ideas as they work, I lead a discussion of their perceptions and my intentions about the boundaries of the stages. I also help them see the fuzziness of those boundaries in transition: Is group share-out part of Concept Discovery or Concept Clarification?  Is practice part of Concept Clarification or Concept Application?  I remind my students that relative order of learning experiences is what is paramount, not how we divide up the sometimes fuzzy borders.

After the wrap-up discussion of the last lesson, I ask them to reflect on how I had helped them learn about the learning cycle: What did I have you do first? Then what did I have you do?  Very quickly, someone cries out, “You learning cycled us!”  I ask them why they think I “learning cycled” them instead of having them learn it in a different way.  Someone is always quick to suggest—correctly—that I must think that using a learning cycle is the best way to help people learn something new.

Concept Application

I then ask my preservice teachers what stage we haven’t done yet (Concept Application) and what an effective application for the concept of the learning cycle might be.  They gulp when they realize that, of course, I’ll be asking them to create a learning cycle lesson.  I start their work on learning to write learning cycle lessons by assigning students concepts in their discipline and asking them to brainstorm things they might include in a DCA learning cycle lesson that would help students learn that concept.  While I observe and scaffold with prompts as needed, students combine into groups to create and share a DCA lesson on their assigned topic.

Students then are asked to plan one learning cycle lesson on their own as part of a larger summative assessment for the course—a unit plan that they research and build over the term.  I ask them first to submit to me—for points—the objective(s) for the lesson as well as a rough description (a few sentences) of their plan for each stage of the learning cycle.  If the idea is viable, I allow them to move forward with their planning.  If the idea is confusing or not viable, I ask them to resubmit it as many times as necessary.  If they are unable to make a workable plan, I point them in a workable direction for the lesson with the understanding that they will not get credit for the draft.  I then have the students lead the Concept Discovery portion of their lesson, and other stages if time allows, either in their clinical placement or with their peers in our class.  They gather feedback from the students, reflect on what they learned from their experience teaching, and use that information to write the final draft of their lesson (see example student lesson plans in Appendices E and F).  The learning cycle aspect of the lesson plan is then evaluated using a brief scoring guide that evaluates the degree to which each stage achieves its goal:

  1. Concept Discovery section is appropriately designed so that students can “discover” a new-to-them concept (60%).
  2. Concept Clarification section sticks to the exact same concept, not just same topic or benchmark, and fully clarifies it with examples, notes, definitions, and whatever else would be helpful and relevant for that concept (20%).
  3. Concept Application asks students to use exactly the same concept in a new way, alone or in conjunction with previously learned concepts (20%).

I weight the Concept Discovery section three times as much as each of the other two stages because it is the lynchpin of the learning cycle.  Excellent Concept Clarification and Concept Application plans are evidence of excellent learning cycle planning skills only if the Concept Discovery phase is workable.  Without a workable Concept Discovery stage, I do not have evidence that my students can plan a learning cycle lesson.

Next Steps

Once my students have had the opportunity to complete their application of the learning cycle concept by writing a learning cycle lesson plan, I move to the next need: translating their understanding of the DCA learning cycle to the models used in the field of science education.  It is critically important to me that my preservice students are able to engage in the discourse around the learning cycle in their professional networks, in their planning, and in their professional development.  In the end, the DCA learning cycle is not meant to be an end in itself—I have no interest in seeing any of the other models ousted—it is only meant to serve as a clearer means to teach the underlying framework or philosophy of “the” learning cycle, whichever final model one chooses.

For this brief learning cycle, I set the objectives as, “Explain the evolutionary roots and development of ‘the’ learning cycle” and “Defend a lesson plan using published learning cycle theory.”  For Concept Discovery, I ask my students to examine the 5E model and Keeley’s (2008) SAIL model, then craft text or a diagram that articulates the areas of alignment and divergence that they see (Figure 2, Figure 3, Figure 4).  After students share those models with each other, for Concept Clarification, I diagram the areas of alignment on the board along with a branched evolutionary timeline showing the learning cycles by Karplus (Karplus, 1979; Karplus & Butts, 1977; Karplus & Thier, 1967), Lawson (Lawson et al., 1989; Lawson, 1995), Bybee (1997), and Keeley (2008) as a background for why the alignments are present.  For application, my students need to rewrite the rationale for the pedagogy of their lesson plan using one of the published models of the learning cycle as the theoretical base in place of the DCA cycle.

Figure 2 (Click on image to enlarge). Student Comparison 1.

Figure 3 (Click on image to enlarge). Student Comparison 2.

Figure 4 (Click on image to enlarge). Student Comparison 3.

Additional Support for Creating Concept “Discovery” Activities

I recognized a few years into my career as a science teacher educator that my preservice teachers struggled the most with creating discovery portions of the learning cycle.  After a couple years of beating my head against a wall and wailing at the reading of some of my students’ derailed, tangled, or simply traditional confirmation labs (Bell et al., 2005) they were calling “discovery,” I realized that they needed more help in conceptualizing and building true, inductive, Concept Discovery experiences for their own secondary students.  They also needed help moving beyond simply thinking about labs as ways of learning, especially for content that did not lend itself to laboratory investigations

As I analyzed my own learning cycle lessons trying to figure out how I was crafting them, I realized that there were some unwritten templates that I was employing.  I first identified three main categories into which the Concept Discovery activities fit: drawing conclusions from data; inferring rules, definitions, or relationships from examples; and ordering or sorting based on observable characteristics. As I used those categories over the years and added examples, I found that all three categories—not just the first—really involved students in “drawing conclusions from data.” Additionally, I realized that I was subdividing the examples in the first category in ways that were more helpful than the larger category itself.  I then arrived at six main—and, at times, overlapping—categories into which Concept Discovery learning experiences fall:

  • investigating a hypothesis in a laboratory investigation;
  • finding patterns in extant data sets;
  • experiencing the phenomenon (live or through simulation);
  • mimicking the way the relationship or phenomenon was discovered by scientists;
  • ordering or sorting based on observable characteristics; and
  • inferring rules, definitions, or relationships from examples.

Each approach involves students in using the science practices of “analyzing and interpreting data” and “constructing explanations” as well as one or more additional science practices (NRC, 2012).  I provide my science methods students with a handout on these categories of Concept Discovery experiences (Appendix D) and ask them to identify which type each of my example learning cycle lessons employed.  Providing my preservice science teachers with this categorization of Concept Discovery has helped them to expand their imagining of Concept Discovery experiences from just laboratory investigations to a myriad of data-driven inductive cognitive experiences.  That freeing of their imagination has been especially helpful to students in chemistry and biology who frequently find themselves needing to address standards that do not seem to lend themselves to laboratory investigations.

Taking Stock, Moving Forward

Student Perspectives

My methods students and I have a tremendous amount of fun with the learning cycle in my courses.  The amount of laughter and engaged conversation during the learning cycle experiences lets me know that they are enjoying themselves; the quality of their related assignments, lessons plans, and microteaching lets me know that learning and growth is happening.  Responses to open-ended questions in on-line course evaluations, too, show that students really value the learning cycle experiences in shaping them as teachers.  One student’s entry into the “best part of the course” section nicely captures the range of sentiments that students share:

I really enjoyed and got a lot out of all of the mini inquiry/discovery lessons we got to experience. They were fun, but they also gave me many concrete and easy­to­remember examples of how to get students involved in discovering concepts. Very good meta­teaching. I also enjoyed planning for and teaching the mini lessons. It was good, low­pressure practice.

The bulk of the comments each term focuses on the role of “modeling” of effective instruction.   When students write about modeling, they are at times referring to the fact that I practice “what I preach” in the instruction of our class: I teach the learning cycle through a learning cycle.  At other times, they are referring to my leading of demonstration science lessons with them as stand-ins for secondary students.  Comment after comment makes clear that whether the student has never seen constructivism in action, learns best by doing, wants to see more practical examples of best practices or inquiry in science, or just appreciates the alignment of my expectations of their teaching and my teaching, they find the modeling to be powerful.  One student, for example, wrote,

I liked seeing the activities from the point of view from the students. Moreover, I like the way you role played the teacher trying not to break character. This gave me more insight on how the flow of the classroom should be directed and how to use open questions.

Students also express relief in finally being able to put some meat on their skeleton ideas of what “constructivism,” “inquiry,” and “student-centered” really mean.  One student wrote, “I liked having the opportunity to see lots of discovery and inquiry activities, instead of just hearing that I’m supposed to use inquiry.”  Another shared,

Before this class I had lots of vague ideas about the importance of student centered learning…I have been able to focus my ideas and see examples and practices to turn these ideas into great instruction. I feel much more confident as I proceed into teaching.

The comments also confirm for me that part of why these learning experiences are effective is that they are, after all, constructivist.  Occasionally, a student recognizes the constructivist possibilities that the approach affords, like my student who wrote, “I learn sciecne [sic] best by hands on and that is exactly what this course was and by doing activites [sic], it was easy for me to see where students may stumble.”  Fortunately, the constructivism can be just as powerful for students who are traditional in both their own learning preference and their teaching philosophy.  One student wrote that the modeling and micro-teaching “pushed me toward a more student centered teaching and away from my own way of learning.”

Given that I see my two main professional challenges in science methods instruction as 1) changing the belief structures of my traditional learners towards a constructivist paradigm for teaching, and 2) supporting the motivated constructivists to develop constructivist practices, the comments from my students let me know that the learning cycle experiences are helping me make progress towards those goals.

The View from Here

After almost a decade teaching the DCA learning cycle in a learning cycle format and six years providing examples of the types of discovery experiences teachers can design, I have gotten to a place of more comfort with what my preservice science teachers are able to do.  Sure, I still have a few students who cannot create a coherent discovery experience as part of a meaningful learning cycle, but they are now the exception rather than the rule.  They are students whose content knowledge, focus, beliefs, or academic skills are simply not aligned with those needed for the immense cognitive task of creating Concept Discovery experience.  But my other students, most of my students—including many with in-coming traditional beliefs about teaching and learning—are able to successfully craft excellent learning cycle experiences and are able to articulate the theory supporting that lesson model.  They are thus, I believe, well-positioned to enter the field of science teaching ready to build their planning, instructional, and assessment skills in ways that align with what we know in science education about effective teaching.  My next big task?  To help them do just that in their first few years in the classroom.

References

Bell, R., Smetana, L., & Binns, I. (2005).  Simplifying inquiry instruction. The Science Teacher 70(7), 30-33. Retrieved from http://static.nsta.org/files/tst0510_30.pdf

Bybee, R.W. (1997). Achieving scientific literacy: From purposes to practices. Portsmouth, NH: Heinemann.

Bybee, R. W. (2002). Scientific inquiry, student learning, and the science curriculum. In R. W. Bybee (Ed.), Learning Science and the Science of Learning (pp. 25-35). Arlington, Virginia: NSTA press.

Bybee, R. W. (2006). Scientific inquiry and science teaching. In L. B. Flick & N. G. Lederman. (Eds.), Scientific Inquiry and Nature of Science: Implications for Teaching, Learning, and Teacher Education (pp. 1-14). Dordrecht, Netherlands: Springer.

Bybee, R., Powell, J., and Trowbridge, L. (2007).  Teaching secondary school science: Strategies for developing scientific literacy.  Boston: Prentice Hall.

Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness.  Unpublished white paper. Colorado Springs, CO: BSCS. Retrieved from http://sharepoint.snoqualmie.k12.wa.us/mshs/ramseyerd/Science%20Inquiry%201%2020112012/What%20is%20Inquiry%20Sciecne%20(long%20version).pdf

Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science: Research into children’s ideas. London: Routledge.

Karplus, R. (1979). Teaching for the development of reasoning. In A. Lawson (Ed.), 1980 AETS Yearbook: The Psychology of Teaching for Thinking and Creativity. Columbus, OH: ERIC/SMEAC.

Karplus, R, & Butts, D. (1977).  Science teaching and the development of reasoning.  Journal of Research in Science Teaching, 14, 169-175. doi: 10.1002/tea.3660140212.

Karplus, R., & Thier, H. (1967). A New look at elementary school science, new trends in curriculum and instruction series. Chicago: Rand McNally.

Keeley, P. (2008).  Science formative assessment: 75 Practical strategies for linking assessment, instruction, and learning. Thousand Oaks, CA: Corwin Press.

Keeley, P. (2015).  Science formative assessment: 50 more strategies for linking assessment, instruction, and learning. Thousand Oaks, CA: Corwin Press.

Lawson, A., Abraham, M., & Renner, J. (1989). A theory of instruction: Using the learning cycle to teach science concepts and thinking skills. NARST Monograph, Number One, National Association of Research in Science Teaching. Retrieved from http://files.eric.ed.gov/fulltext/ED324204.pdf

National Research Council (NRC). (1996). National science education standards. Washington, DC: National Academy Press.

National Research Council (NRC). (2006). America’s lab report: Investigations in high school science. Committee on High School Science Laboratories: Role and Vision, S. R. Singer, M. L. Hilton, and H. A. Schweingruber, Editors. Board on Science Education, Center for Education. Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.

National Research Council (NRC). (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.

NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.

SCALE. (2015). edTPA secondary science assessment handbook. Stanford, CA: Stanford Board of Trustees.