The Framework for Analyzing Video in Science Teacher Education and Examples of its Broad Applicability

Print Friendly, PDF & Email

Arias, A., Criswell, B., Ellis, J.A., Escalada, L., Forsythe, M., Johnson, H., Mahar, D., Palmeri, A., Parker, M., & Riccio, J. (2020). The framework for analyzing video in science teacher education and examples of its broad applicability. Innovations in Science Teacher Education, 5(4). Retrieved from

by Anna Arias, Kennesaw State University; Brett Criswell, West Chester University; Josh A. Ellis, Florida International University; Lawrence Escalada, University of Northern Iowa; Michelle Forsythe, Texas State University; Heather Johnson, Vanderbilt University; Donna Mahar, SUNY Empire State College; Amy Palmeri, Vanderbilt University; Margaret Parker, Illinois State University; & Jessica Riccio, Columbia University


There appears to be consensus that the use of video in science teacher education can support the pedagogical development of science teacher candidates. However, in a comprehensive review, Gaudin and Chaliès (2015) identified critical questions about video use that remain unanswered and need to be explored through research in teacher education. A critical question they ask is, “How can teaching teachers to identify and interpret relevant classroom events on video clips improve their capacity to perform the same activities in the classroom?” (p. 57). This paper shares the efforts of a collaborative of science teacher educators from nine teacher preparation programs working to answer this question. In particular, we provide an overview of a theoretically-constructed video analysis framework and demonstrate how that framework has guided the design of pedagogical tools and video-based learning experiences both within and across a variety of contexts. These contexts include both undergraduate and graduate science teacher preparation programs, as well as elementary and secondary science methods and content courses. Readers will be provided a window into the planning and enactment of video analyses in these different contexts, as well as insights from the assessment and research efforts that are exploring the impact of the integration of video analysis in each context.

Identification of the Challenge Within Science Teacher Education

There appears to be consensus that the use of video in science teacher education (either of a teacher’s own practice or of the practice of others) can support the pedagogical development of science teachers (Abell & Cennamo, 2003; Barth-Cohen, Little & Abrahamson, 2018; Kearney, Pressick-Kilborn & Aubusson, 2015; Martin & Siry, 2012). Despite this consensus, and despite the significant amount of research that has been devoted to the use of video in science teacher education from both a theoretical and empirical standpoint, significant questions remain unanswered. For instance, in a comprehensive review of the use of video in teacher education across contexts, Gaudin and Chaliès (2015) identify critical questions that still need to be systematically explored through future research. One of these questions has been the core concern of the science teacher educators collaborating on this article: “How can teaching teachers to identify and interpret relevant classroom events on video clips improve their capacity to perform the same activities in the classroom?” (p. 57).

Our collaborative’s efforts to answer this question in a manner that is simultaneously holistic and practical have been the driving force behind the development of the Framework for Analyzing Video in Science Teacher Education [FAVSTE]. In its essence, FAVSTE focuses on what can be considered a key skillset that science teacher candidates must develop: the capacity to analyze and articulate pedagogical practice. This skillset integrates at least two critical abilities that have been identified within the science teacher education literature: noticing (Barnhart & van Es, 2015; Benedict-Chambers, 2016) and reflecting (Abell & Bryan, 1997; Hawkins & Park Rogers, 2016). A tremendous challenge faced by science teacher educators is how to progressively build such a skillset in teacher candidates across experiences within their teacher preparation programs (Martin & Siry, 2012). Specifically, as our group developed FAVSTE, we were interested in how such a framework might support a continuum of use in teacher candidate coursework and field experiences. Additionally, there was a desire to create a tool that was flexible enough to use across various teacher demographics (e.g. elementary through secondary science methods students; undergraduates and graduates in teacher preparation programs) and that, while developed for science teacher training, could potentially be implemented within other subject areas as well. In this paper, we demonstrate how FAVSTE, as well as other pedagogical tools developed and/or utilized by the collaborative, supports science teacher educators’ work with preservice and early-career teachers across a variety of contexts.

ATLAS and the Video Analysis Framework Group

In 2016, a geographically-distributed group of science teacher educators from across the U.S. was brought together through a project spearheaded by the National Board for Professional Teaching Standards (NBPTS). The overarching goal of this collaborative was to identify best practices for using the NBPTS Accomplished Teaching, Learning And Schools™ (ATLAS) video library to support the preparation of science teachers. ATLAS ( provides a collection of authentic video cases that feature National Board Certified Teachers. ATLAS is available as a subscription service, and the cost for this service is based on the size of the subscribing organization and the length of the subscription. Each case within ATLAS includes an uninterrupted video clip from real classroom teaching, instructional materials that supported that teaching, and a commentary written by the teacher about their instructional context, planning process, analysis of the video, and reflection on the instruction. At present, ATLAS includes over 1300 video cases, including 334 cases around science instruction (91 at the elementary level and 243 at the secondary level). The collaborative formed through the NBPTS project sought to identify or develop a viable framework for guiding the use of the ATLAS video library in science teacher education and professional development.

An initial review of the literature highlighted multiple frameworks associated with the use of video analysis for teacher preparation and professional development. For instance, Chan and Harris (2005) developed a framework that outlined the cognitive activities used by teachers as they engaged in video ethnography. Van Es and Sherin’s (2002) framework provided ideas for scaffolding pre- and in-service teachers in “learning to notice” — a skill they argue is central to being able to analyze video. Van Es, Tunney, Goldsmith, and Seago (2014) and Gelfuso (2016) both devised frameworks that focused on the facilitation of video tasks, with the former emphasizing video analysis and its use with in-service teachers and the latter concentrating on video reflection and its use with pre-service teachers. Finally, Kang and van Es (2018) created a framework for addressing design principles for the use of video, including such elements as articulating broad learning goals, selecting a clip, and designing a task.

All of the above frameworks have value in relation to different aspects of using video in teacher preparation and/or professional development and are supported by research. Our collaborative believed, however, that none of these frameworks presented a holistic representation of the most critical elements that science teacher educators need to consider in order to achieve a set of specific outcomes with the use of video. These outcomes include supporting teacher candidates in developing (1) knowledge for teaching (i.e. PCK), (2) professional vision / noticing of teaching practices, (3) reflective and responsive teaching, and (4) capacity to engage in professional conversations around practice. Designing such a framework became a driving force for our collaborative.

Framework for Analyzing Video in Science Teacher Education (FAVSTE)

Our development of FAVSTE drew on existing literature on video analysis (e.g., van Es and Sherin, 2002; Jacobs, Lamb, & Philipp, 2010) as well as a consideration of our collective experiences and expertise as teacher educators. Figure 1 represents our current instantiation of the framework; for the purposes of this paper, we will highlight key aspects of it. FAVSTE has three major segments that can be identified by moving from the top to the bottom of Figure 1. The top segment has two boxes (“Factors That Influence What Teachers Attend To” and “Factors That Teacher Educators Influence Through Instructional Design”) and represents the preparation components of conducting a video analysis / reflection task with candidates. These are the factors that science teacher educators must consider as they lay the foundation for and frame the experience. These factors support the “Aspects of Noticing in Action” — captured in the middle box in Figure 1 — which denote the core set of skills to be developed in teacher candidates. These “Aspects” represent things that, in some explicit manner, need to be scaffolded and facilitated by the science teacher educator during the enactment of the task to promote effective video analysis / reflection. It is not reasonable that all FAVSTE aspects would be given attention in the same video analysis task, so the science teacher educator has to consider which one(s) will be emphasized. We have tried to describe these “Aspects” in terms of very tentative progressions from Novice to Emergent to Expert “Noticer” so that the science teacher educator can look for evidence of candidates’ progress in their capacity to analyze and articulate practice. Finally, the bottom box delineates the desired “Outcomes” if FAVSTE is used holistically and methodically across numerous video-based learning experiences – preferably across an entire teacher preparation program – so that the factors (top two boxes) and the skills (middle box) that enable these outcomes can be meaningfully developed.

(It is critical that the reader understand that the sequence represented by the vertical segments and the linear structure indicated by the arrows connecting the boxes in those different segments are not intended to convey that the relationships between the factors, skills and outcomes is one-directional or that the entire process of planning, enacting, and assessing video analysis / reflection tasks can only proceed from top to bottom. Even in our hypothetical example in the next section, we start by describing intended ‘Outcomes’, go up to the ‘Factors’ boxes to select which ones to emphasis, then move into the ‘Aspects’ (skills) box to think about how to support those during the task. The representation (Figure 1) and the description of it were just presented in this way to simplify our discussion of FAVSTE.)

Figure 1
FAVSTE Video Analysis Framework

Using FAVSTE: A Hypothetical Example

In order to help the reader better understand the framework, we offer the following hypothetical example of how FAVSTE might be used, picking a limited number of elements from the figure to feature. Consider a science teacher educator who, aligned with the professional noticing approach (Gibson & Ross, 2016; Jacobs, Lamb, & Philipp, 2010), is interested in helping her teacher candidates gain a stronger sense of how to interpret student ideas in order to decide what kinds of questions to ask in conversations around scientific phenomena. The hypothetical context for this scenario is a secondary science methods course populated by candidates from different disciplinary backgrounds; we imagine this science teacher educator determining that photosynthesis would be a good content focus from which to draw examples. She locates two ATLAS videos that provide examples of teaching related to this content: Case 2533 — Clarifying Misconceptions About Photosynthesis and Respiration and Case 2540 — Thinking Critically about Photosynthesis and the Transfer of Energy in a System. Then, using FAVSTE as a reference, the science teacher educator considers how to structure the task in which these videos will be used. She decides that, given her desired outcome of improving how candidates interpret student thinking, the Frame of Reference (For) / Lens is an important factor as candidates will need to think about the events in the video through the lens of the secondary students. She makes a note to explicitly include and activate this lens when she introduces the video analysis task. The science teacher educator has selected two cases from ATLAS as this will allow candidates to compare and analyze across cases — i.e. to engage in an Abductive Reasoning approach. In order to better support this form of reasoning, the science teacher educator contemplates Interactivity, and she decides it would be best to split her teacher candidates into two groups and have each group analyze a single case, then present the results of their analysis to the other group to allow comparisons to be made. In order to support candidates in participating more productively making decisions about questions, the science teacher educator chooses to focus on the Perspective aspect of noticing and in her introduction tells candidates to pay attention to not just what the teacher does or what the students say, but to how the interactions between the teacher and the student impinge on student learning. Finally, to push the candidates to articulate their insights from the analysis effectively in their presentations, she scaffolds them to adopt an Interpretive Stance in which they support their assertions about teacher actions and student thinking with observational evidence from the videos.

Using FAVSTE: Real Examples from the ATLAS Science Teacher Collaborative

The previous sections have presented a brief overview of FAVSTE and its application. Here, we want to provide examples of the diverse ways in which the framework has guided our own use of video in science teacher preparation. Table 1 summarizes the broad set of contexts to which we have applied FAVSTE. Included in the table are the names and email addresses of the authors describing each context in case readers want to contact them for additional information. After the table, we present five detailed, real world examples of FAVSTE use to illustrate the potential of this framework for structuring experiences with elementary and secondary science teacher candidates and to show how we have coupled it with other pedagogical tools. The specific cases from Table 1 highlighted in the five examples have the context marked in bold.

Table 1 (Click on image to enlarge)
Examples of the Breadth of Use across Science Teacher Educator Collaborative

Context 1: Elementary Science Methods Course

One of the contexts in which FAVSTE was implemented was multiple sections of an undergraduate elementary science methods course at a large Hispanic-serving public university in the southwest. This course primarily serves teacher candidates seeking their EC-6 generalist certification and ESL endorsement. However, a few K-12 SPED candidates and a few EC-6 generalist candidates with a bilingual endorsement also typically co-enroll. The course is a “floater” class in all three of these programs: for some teacher candidates, this course is the first education course that they complete, while for others, it is the last course that they take before student teaching. The course covers common reform-oriented approaches to inquiry-based elementary science teaching and learning, with an emphasis on the 5E instructional model (Bybee, 2014). Most of the teacher candidates self-report that their prior experiences as science students emphasized direct-instruction models of teaching and led to negative perceptions of their capabilities both as students of science and as teachers of science.

The Task Used to Support Key Learning Outcomes

For this methods course, one major challenge is helping teacher candidates develop a new vision for what elementary science can look and sound like. Most of these candidates have not had previous experiences in classrooms that actively position elementary students as the authors of scientific knowledge. In addition, most also eventually teach in school districts that use the 5E cycle to structure elementary lessons. Consequently, we structure our video analysis sessions around video clips that exemplify transformational teaching practices across the 5E cycle: using anchoring events to engage students’ funds of knowledge, structuring student-led explorations and data collection, supporting small-group construction of evidence-based explanations, and guiding whole-class discussion and revision of explanations.

These video analysis sessions follow a general instructional sequence that we have refined over years of working with different populations of teacher candidates. The five activities within this sequence are described in Figure 2, and each of these activities offers candidates a different entry point into making sense of science teaching and learning. However, we have found that the full 5-step instructional sequence is not essential for every video analysis session. Instead, we use this instructional sequence flexibly to respond to the specific needs of the teacher candidates. For example, when there are significant gaps in the candidate’s science content knowledge, we take time to engage them as “students” in a similar science activity to help address their own preconceptions before we move on to analyzing video. However, when candidates come in with significant prior knowledge about the science content in the video, we often skip this step.

Figure 2
Instructional Sequence for Elementary Methods Course

Use of FAVSTE in Designing the Task

FAVSTE provides a tool for focusing our video analysis sessions with the elementary teacher candidates. We have chosen to emphasize four specific aspects of Noticing in Action in this task: events, perspective, grain size, and chronos. This decision has helped us communicate to our teacher candidates how video analysis sessions support them in identifying and making sense of instructionally pivotal moments from a holistic perspective that is connected to educational themes such as equity and students’ trajectories of learning. In addition, we have used the section of FAVSTE detailing the “Factors that Influence what Teachers Attend To” to better anticipate the experiences and perspectives that our teacher candidates might bring into a video analysis session and adapt our instruction as needed. This section has also helped us reflect on moments when candidates seemed to regress in their noticing trajectory. In many cases, we could connect these moments to broader systems at work, such as how the environmental pressures in their language arts practicum or the local context of other courses they were taking primed candidates to attend to specific aspects of the video clip that we as science instructors considered to be less critical.

Evidence of Impact

In this context, we use FAVSTE “behind the scenes” to guide pedagogical decisions about video analysis sessions and do not directly provide it to teacher candidates. As will be seen repeatedly throughout the following examples, one powerful application of FAVSTE is as a communicative tool to support teacher educators in making intentional choices about the design of instruction. For us, the “trickle-down” impact of FAVSTE has been consistently observed in candidates’ self-reflection assignments and course evaluations, where they report on the positive impacts of the video analysis sessions. For example, one candidate reflected:

I also learned that a teacher can learn a lot by listening to student’s ideas and their prior knowledge. When watching case #1845… the teacher presented an opening question and the students discussed with one another of what they knew and what they agreed or disagreed about from their peers. This was a great way for the teacher to see what students know and to tailor the rest of the lesson to developing the aspects of a standard that is missing.

Context 2:  Secondary Science Methods Course with Intensive Field Experiences

This example took place in an undergraduate secondary science teaching program at a Midwest liberal arts university with a university-wide teacher education program. The secondary science teaching program serves majors in various science departments as well as those in science education by faculty in both Colleges of Education and Humanities, Arts and Sciences. The program integrates professional education courses and methods courses with intensive classroom field experiences prior to student teaching. This includes a 2-3 semester sequence with a general science methods course and an upper-level physical and/or life science methods course depending on the major. A module approach to video analysis has been used with teacher candidates in the upper-level methods course for the physical sciences.

The Task Used to Support Key Learning Outcomes

In the methods for teaching physical science course, students complete a number of modules in which they analyze teaching videos from ATLAS and their own teaching videos from their classroom field experiences to provide evidence for effective science teaching practices in alignment with the 5E Learning Cycle (Bybee, 2014) and the Next Generation Science Standards (NGSS). A set of five modules were developed that incorporated FAVSTE and the pedagogical approach of the course and applied these to instructional strategies introduced within the context of video analysis. These modules were spread out across the semester with the first four modules focused on teaching videos of secondary science teachers from the ATLAS resources and the last module focused on candidates’ own teaching videos from their classroom field experiences. A summary of the module approach implemented is provided in Table 2.

Table 2

Summary of Module Approach to Video Analysis

Use of FAVSTE in Designing the Task

The first module served as an introduction and exploration to the ATLAS resources and video analysis, with an emphasis on looking for evidence within a video case of teaching in alignment with the NGSS. Candidates first explored the various video cases, frameworks, and collections available. They then examined the commentary, background, and instructional materials for an ATLAS video case that focused on building the ability to observe periodic trends in a high school chemistry course. The candidates were asked questions that supported them in being able to attend, interpret, and decide in relation to critical events within the video. In this context, a critical incident is a moment during teaching that either significantly impacted the way that classroom events unfolded or revealed insights about the skills of the teacher. After individually completing this first module, the candidates discussed their ideas in small groups and shared their results from these discussions in class. The second module utilized a similar template but with a different focus (see Table 2). The third and fourth modules focused on effective questioning and used a slightly different format. In the third modules, candidates developed individual, group, and class lists of criteria for effective questioning strategies from the video cases they analyzed.  In the fourth, candidates used the effective questioning list to identify the effective questioning strategies employed in a video case. For the fifth (and final) module, students transitioned from the ATLAS videos to their own teaching video.

Evidence of Impact

Although the candidates had been engaged in intensive field experiences since the beginning of their teacher education program, the analysis of the ATLAS videos provided them with opportunities to observe effective science teaching practices that they have yet to witness in their field experience classrooms. Candidates commented that the teaching videos modeled how the science teacher could facilitate discussions involving both teacher-student and peer-peer interactions. The focus on FAVSTE in analyzing the teaching videos in a modular format provides students with a number of opportunities to help develop proficiency in professional noticing to gain insights on the effective science practices being modeled.

The transition for candidates from analyzing the ATLAS videos to analyzing their own classroom teaching videos using the FAVSTE framework is essential for students to go beyond just evaluating their teaching based on what they have done well and what they need to work on.  Future activities could support candidates’ capacity to incorporate the attending, interpreting, and deciding aspects of the FAVSTE into their reflections on their own teaching outside the use of these modules.

Incorporating video analysis in a module format provides an example of how video analysis can be embedded in a course with alignment to the pedagogical approach of the course. The module format can be applied to any instructional strategy that is being introduced and reinforced in a methods course — and the FAVSTE can help to structure the module design.

Context 3: Secondary Science Student Teaching Seminar

This example took place in a MAT in Secondary STEM Education program at a large Midwest university. The program is designed to last three semesters, with a general STEM methods course in the summer semester, a discipline-specific methods course in the fall semester and a STEM student teaching seminar in the spring. The author for this example (Author 2) had taught the candidates in both the fall and spring methods courses, using FAVSTE to design and implement the video analysis tasks used in each (~6 per course) and the Professional Noticing Template (See Supplemental Material A) to scaffold the skills addressed by the tasks. Author 2 also was the instructor for the spring student teaching seminar, where one of the key outcomes was for candidates to transfer the professional noticing skills they had developed when analyzing others’ videos in the methods courses to reflections on videos of their own teaching in the student teaching seminar.

The Task Used to Support Key Learning Outcomes

In the spring student teaching seminar, candidates regularly video recorded themselves when teaching and selected two videos (one in each half of the student teaching semester) for more formal reflection. The assignment description clarified that the video should be of a learning experience in which students were exploring a scientific phenomenon and that the candidates had the opportunity to facilitate conversation around making sense of a phenomenon. The candidates were to identify a critical incident (Tripp, 2011) in the video, then complete a formal reflection on that event using the Critical Incident Reflection (CIR) form (see Supplemental Material B). Although the CIR form had been used for several years prior to its use in this course, it was modified to better align with the Professional Noticing Template; those modifications were guided by FAVSTE.

Use of FAVSTE in Designing the Task

The Critical Incident Reflection (CIR) form was developed by a group of education researchers at Georgia State University (Calandra, Brantley-Dias, Lee & Fox, 2009). While it can be a powerful scaffold for deeper reflection (Jay & Johnson, 2002), the connections between the reflecting that it supported and the noticing supported by the Professional Noticing Template were not necessarily obvious to the teacher candidates. Thus, the CIR form was revised to make the connections more apparent; FAVSTE was consulted in developing these revisions. For instance, the Position section was re-written to highlight the need to surface candidate’s beliefs that “might be influencing this interpretation [of the critical incident].” This revision was designed to highlight the Stance and Beliefs elements of the ‘Aspects of Noticing’ component of FAVSTE, as well as their inter-relationship.

Evidence of Impact

The candidates in the student teaching seminar struggled initially in transferring their noticing skills to reflecting on their own and each other’s videos. It seems apparent that this was largely a function of the emotional connection to their own practice and the concern with being critical of their peers (Bopardikar, Borowiec, Castle, Doubler, Win, & Crissman, 2019). By the time the second set of CIR discussions took place during the seminar, candidates had overcome these issues and their conversations – and reflections – were more meaningful. As an example of where the candidates were at this point, a statement from Michael during the discussion of his CIR is provided; it came after one of his peers pointed out a flaw in a student’s thinking to which he had not attended in the moment of teaching:

Uh, and I noticed, watching it back, it’s like, man, right after I start talking again … nobody’s quite as engaged as they were before that. And I think it’s probably somewhat due to the fact that there’s a lot being said there, and I don’t really try to digest any of it. [Laughs] I just kind of push forward with my own kind of driving, uh, driving ideas of where I want the conversation to go, rather than letting it play out with what they’ve said and evaluating what’s being brought up.

Michael recognized that he had not attended to a student idea that could have been a useful starting point for a more engaging class discussion. Just as importantly, in the written CIR form submitted after the seminar conversation took place, Michael translated that into beliefs that could better guide his response to and interpretation of students’ ideas in the future:

Science, at its core, deals with answering questions and making sense of the world around us. For students, the notion that science can be questioned, evaluated, and improved is usually something that must be encouraged and developed over a period of time. The competing ideas (as well as the numerous conceptions present in student statements) presented during this incident was something I did not notice in the moment during the lesson. I was simply trying to “keep the ship afloat” as the class conversation progressed. Because of this mindset, I overlooked a real opportunity for a meaningful moment for the entire class to evaluate important ideas from their classmates.

Noticing is a critical part of the professional practice of being a science teacher. A teacher’s beliefs about teaching and learning can either undermine or support the application of skills such as noticing. Michael’s reflection shows that he made that connection and could restructure his beliefs about attending to student ideas as needed.

Context 4: Secondary Science MAT Program

In this example, FAVSTE provided a framework for faculty and external school partners to reconceptualize candidate preparation and graduation expectations in a MAT program for career changers. During the first year of this three-year program leading to 7-12 certification, teacher candidates take courses on adolescent development and subject-area pedagogy. The first year includes 50 observation hours as well as a cross-curricular methods class where teacher candidates present short lessons to faculty and their class colleagues. Years two and three require the candidate to be a classroom teacher of record with college faculty providing onsite mentoring four times each semester; once each semester the candidates video record a lesson they are teaching to be evaluated by faculty proficient in the candidates’ content area.

The Task Used to Support Key Learning Outcomes

Initially, the ATLAS videos were incorporated into the first-year science methods course. The videos served as a model of what to look (i.e. attending) for when completing the 50 classroom observation hours. Without a student teaching component prior to having their own classroom, models of best practice in the content area are critical to candidates’ understanding of how pedagogy informs practice. When the initial cohort of ATLAS users moved to their second year in the MAT program, ATLAS videos became part of the second content methods class. Here the focus became more analytical as candidates became teachers of record responsible for analyzing videos of their own classroom teaching. The ATLAS videos also play a role in the MAT capstone course. The culminating assignment requires candidates to compare teachers in two ATLAS videos to each other as well as to the candidate’s own practice. The reflection must be evidence-based, analytical, connected to issues of pedagogy and practice beyond what is observed in the videos, and be grounded in professional, state, and MAT program standards.

Use of FAVSTE in Designing the Task

Becoming familiar with FAVSTE allowed MAT faculty to use the noticing trajectory to frame candidate expectations for video use across the program. The first-year methods class now focuses on the novice trajectory, the second year focuses on the emergent trajectory, and the capstone experience incorporates the expert trajectory traits with specific emphasis on evidenced-based analysis and relations to broader educational issues.

Evidence of Impact

FAVSTE provides faculty and students, both within the science courses and across disciplines, vocabulary and benchmarks for clear and consistent analysis of candidate progress.  Noticing connotes awareness and awareness becomes more astute with the knowledge and perspective candidates gain as they move through the program. FAVSTE allows analysis of candidates’ pedagogical awareness and praxis within a developmental trajectory. Although currently used in content methods classes and the capstone course, faculty are discussing how FAVSTE can inform clinical courses. By clarifying language and expectations, FAVSTE is a useful tool in meeting program outcomes across secondary certification areas.

Context 5: Secondary Science Student Teaching in a MA and EDD Program

This example took place concurrently in a Masters’ Program which leads to state licensure in Secondary Science Education and a Doctoral Program which leads to preparation in Science Teacher Education at a large east coast university. The program is designed to cover the middle school to high school continuum across two semesters, with disciplinary science coursework and corresponding methods course and fieldwork focusing on middle school in the fall and a parallel coursework focus on high school in the spring along with an intensive student teaching seminar. The Program Director co-taught and mentored the doctoral students in all of the MA courses in this sequence. The doctoral students functioned as master teachers, mentors, and University Supervisors in the student teaching seminar. We approach our work with the assumptions that teacher education is on-going and continuous throughout a teacher’s career.  We see our collaborative team effort among supervisors, faculty, student teachers, and doctoral candidates as one of the first steps in providing positive professional development which is necessary for developing efficacy, identity, and agency in the process of learning to teach (Feiman-Nemser, 2001; Luft, Roehrig, & Patterson, 2003).  Our examination of our roles in the professional learning continuum empowers us to address the lack of cohesion among the stages between and including preservice through inservice teacher learning (Knight et al., 2015; Luft et. al., 2003; Luft, 2007; Luft & Hewson, 2014).

The Task Used to Support Key Learning Outcomes

In the spring student teaching seminar, candidates utilized the video tool Vialogues in tandem with the ATLAS library, as a medium to annotate and reflect on practice as well as prepare for the high stakes edTPA (2013) assessment. In groups facilitated by the doctoral supervisor mentors and the lead faculty member, the student teachers created five video Vialogues, each with a different theme: content knowledge, planning, learning environment, instruction, and professional dispositions. The goal was to find 5 minutes of footage of their own teaching that candidates felt showed some evidence of that theme. Supervisor mentors watched their group’s video and provided annotated feedback in the video tool. After review, the supervisor mentors would collaborate with the faculty lead to discuss themes in the teacher candidates’ work. The faculty lead would then search ATLAS to identify specific cases in that fit as an exemplar to share with the candidates on the areas that needed further development, i.e. collaboration, inquiry, cooperative learning, board work, to name a few examples.

Use of FAVSTE in Designing the Task

One of the critical components of FAVSTE in the design of this activity was to provide teacher candidates a collaborative way to notice and reflect concurrently on one’s own and peers’ work. As we wanted the noticing to be “in the moment”, we felt the Vialogue tool was a necessary adjuvant component to ATLAS to facilitate the process of reflecting. We also wanted to cultivate an online community of practice that could potentially outlive the candidacy period and serve as a platform during induction for continual communication and support with the colleagues and mentors with whom they first developed these skills and trust.

Evidence of Impact

The candidates in the student teaching seminar worked in four groups to document noticing and reflecting on their own and each other’s video in five Vialogues with the themes of content knowledge, planning, learning environment, instruction, and professional development. Table 3 details the incidence of noticing, defined as number comments annotated in the video tool, across each group and theme. It is interesting to see that the area that the student teachers found most comfortable to notice and reflect upon was instruction (mean 16.25) and content knowledge (mean 16.25), followed by learning environment (mean 16.00) and then planning (mean 14.5). Upon reflection, we noted that during the formative stages of this learning activity, the concurrent access to the ATLAS master videos helped the student teachers to see themselves in a way that we were never able to fully explain to them using traditional pedagogy. We found this multi-modal approach useful and look forward to implementing it with our second cohort of student teachers this spring.

Table 3
Incidence of Noticing across each Group and Theme


As the collaborative considers our individual and collective use of FAVSTE, we have found the following: (1) FAVSTE could be applied effectively across a variety of settings, demographics, courses, and goals; (2) when used as an instructional design tool, FAVSTE provided a meaningful scaffold for teacher candidate learning; (3) the use of FAVSTE spurred innovative and varied teacher educational practices; and (4) our use of FAVSTE allowed us to test and refine conjectures regarding teacher candidates’ learning trajectories.

First, as evident in the cases presented, members of the science collaborative conduct their work in a variety of settings (e.g. large state universities and small private universities across the U. S.), work in a variety of different programs (e.g. undergraduate and graduate level programs at the elementary and secondary levels), and are housed in various colleges and departments within the university (e.g. Department of Physics, Department of Teaching and Learning, etc.). Our examples provide evidence of the flexibility of FAVSTE in the continuum of teacher professional learning and the many different contexts of teacher education. The broad utility of FAVSTE across these varied contexts suggest that it is a tool that would be useful for other teacher educators interested in using video analysis to support teacher education.

Second, by bringing together both existing literature on video analysis research (e.g., van Es and Sherin, 2002, Abell & Cennamo, 2003) and the experiences and knowledge of a team of science teacher educators with diverse perspectives and expertise, the design of FAVSTE was grounded in both research and practice. The principled use of FAVSTE allows the teacher educator to focus teacher candidates’ attention to particular elements of teaching (as exemplified by and filtered through different aspects of noticing delineated in the framework), thus breaking down the complexity of teaching into smaller, more manageable pieces that are accessible to the teacher candidate. This targeted focus supports teacher candidates’ ability to develop ways of seeing and talking about teaching practices, thus guiding their learning and development along a structured trajectory. We argue that over time this foundation has the potential to help the teacher candidate build more comprehensive knowledge and skill in relation to specific elements of practice that also simultaneously considers and coordinates the various elements of the framework into a seamless whole.

Third, given the range of instructional purposes and pedagogical structures characterizing FAVSTE use in the cases presented, the framework has been shown to be a versatile tool for structuring and scaffolding teacher candidate learning through video analysis. In addition, FAVSTE use spurred the design and implementation of innovative pedagogical structures (e.g. modules) and strategies (e.g. the explicit building over time) for supporting a teacher candidate’s ability to apply what they are learning through video analysis to their own practice (e.g. as they move from analyzing someone else’s video to analyzing their own). Through consideration of FAVSTE, the teacher educator designed meaningful tasks for teacher learning as suggested by the voices of the teacher candidates in Context 1 and Context 3. We attribute the articulation of the varied facets of noticing (e.g. perspective, stance, grain size, etc.) as being critical to spurring this innovation. As we ascertained and named the various aspects of noticing in action, we were positioned as teacher educators to break down this complex skill into constituent parts that could be more easily learned and applied by the novice. The use of FAVSTE and associated innovations spread through teacher educator programs as seen in Context 2 as well as across the institutions of our group, allowing us to build on each other’s innovations. Our intention is that other teacher educators may also be able to use and build on this work.

Finally, as teacher educators, we make intentional choices regarding which elements of the framework and/or practice to focus on. These choices are shaped by our varied contexts of use and more specifically as our consideration of details of the structure and sequence of our individual programs and where our particular courses are situated in these sequences. Our decisions therefore are implicitly, if not explicitly informed by our own conjectures regarding trajectories of teacher candidate learning (Hundley et al., 2018). As we continue to use FAVSTE as a framework, we could begin exploring which, if any, of the elements of the framework are foundational and might need to be developed by the teacher candidate prior to other elements of the framework that might require more sophisticated, nuanced, and/or contingent thinking and analysis on the part of the teacher candidate. Thus, not only was the design of FAVSTE grounded in research and practice, but the principled use of FAVSTE by teacher educators has the potential to contribute to the generation and refinement of theory and practice related to teacher candidate learning and development.

Supplemental Files



Abell, S.K. & Cennamo, K.S. (2003). Videocases in elementary science teacher preparation. In J. Brophy (Ed.), Using Video in Teacher Preparation (pp. 103-130). Bingley, UK: Emerald Group Publishing Limited.

Abell, S. K., & Bryan, L. A. (1997). Reconceptualizing the elementary science methods course using a reflection orientation. Journal of Science Teacher Education, 8, 153-166.

Barnhart, T., & van Es, E. (2015). Studying teacher noticing: Examining the relationship among pre-service science teachers’ ability to attend, analyze and respond to student thinking. Teaching and Teacher Education, 45, 83-93.

Barth-Cohen, L. A., Little, A. J., & Abrahamson, D. (2018). Building reflective practices in a pre-service math and science teacher education course that focuses on qualitative video analysis. Journal of Science Teacher Education, 29, 83-101.

Benedict-Chambers, A. (2016). Using tools to promote novice teacher noticing of science teaching practices in post-rehearsal discussions. Teaching and Teacher Education, 59, 28-44.

Bybee, R. W. (2014). The BSCS 5E instructional model: Personal reflections and contemporary implications. Science and Children, 51(8), 10–13.

Calandra, B., Brantley-Dias, L., Lee, J. K., & Fox, D. L. (2009). Using video editing to cultivate novice teachers’ practice. Journal of research on technology in education, 42(1), 73-94.

Chan, P.Y.K. & Harris, R.C. (2005). Video ethnography and teachers’ cognitive activities. In J. Brophy & S. Pinnegar (Eds.), Learning from research on teaching: Perspective, methodology and representation. Advances in research on teaching, volume 11 (pp. 337-375). Amsterdam: Elsevier JA1.

Feiman-Nemser, S. (2001). From preparation to practice: Designing a continuum to strengthen and sustain teaching. Teachers College Record, 103, 1013-1055.

Gaudin, C., & Chaliès, S. (2015). Video viewing in teacher education and professional development: A literature review. Educational Research Review, 16, 41-67.

Gelfuso, A. (2016). A framework for facilitating video-mediated reflection: Supporting preservice teachers as they create ‘warranted assertabilities’ about literacy teaching and learning. Teaching and Teacher Education, 58, 68-79.

Gibson, S. A., & Ross, P. (2016). Teachers’ professional noticing. Theory Into Practice, 55, 180-188.

Hawkins, S., & Park Rogers, M. (2016). Tools for reflection: Video-based reflection within a preservice community of practice. Journal of Science Teacher Education, 27, 415-437.

Hundley, M., Palmeri, A., Hostetler, A., Johnson, H., Dunleavy, T.K., & Self, E.A. (2018). Developmental trajectories, disciplinary practices, and sites of practice in novice teacher learning: A thing to be learned. In D. Polly, M. Putman, T.M. Petty, & A.J. Good (Eds.), Innovative Practices in Teacher Preparation and Graduate-Level Teacher Education Programs. (pp. 153-180). Hershey, PA: IGI Global.

Jacobs, V. R., Lamb, L. L., & Philipp, R. A. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169-202.

Jay, J. K., & Johnson, K. L. (2002). Capturing complexity: A typology of reflective practice for teacher education. Teaching and Teacher Education, 18(1), 73-85.

Kang, H., & van Es, E. A. (2018). Articulating design principles for productive use of video in preservice education. Journal of Teacher Education, 0022487118778549.

Kearney, M., Pressick-Kilborn, K., & Aubusson, P. (2015). Students’ use of digital video in contemporary science teacher education. In G. Hoban, W. Nielson & A. Shephard (Eds.), Student-generated digital media in science education: Learning, explaining and communicating content, (pp. 136-148).

Knight, S.L., Lloyd, G.M., Arbaugh, F., Gamson, D., McDonald, S., Nolan Jr., J., Whitney, A.E. (2015). Reconceptualizing teacher quality to inform preservice and inservice professional development. Journal of Teacher Education, 66, 105-108.

Luft, J. (2007). Minding the gap: Needed research on beginning/newly qualified science teachers. Journal of Research in Science Teaching44, 532-537.

Luft, J.A., Roehrig, G.H., & Patterson, N.C. (2003). Contrasting landscape: A comparison of the impact of different induction programs on beginning secondary science teachers’ practices, beliefs, and experiences. Journal of Research in Science Teaching, 40, 77-97.

Luft, J.A., & Hewson, P.W. (2014). Research on teacher professional development programs in science. In S.K. Abell & N.G. Lederman (Eds.), Handbook of Research on Science Education (pp. 889- 909). Mahwah, NJ: Lawrence Erlbaum Associates.

Martin, S. N., & Siry, C. (2012). Using video in science teacher education: An analysis of the utilization of video-based media by teacher educators and researchers. In B.J. Fraser, K. Tobin, C.J. McRobbie (Eds.), Second international handbook of science education (pp. 417-433). Dordrecht, the Netherlands: Springer.

Stanford Center for Assessment, Learning, and Equity. (2013). edTPA Field Test: Summary Report. Stanford, CA: Stanford University. Retrieved from

Tripp, T. R., & Rich, P. J. (2012). The influence of video analysis on the process of teacher change. Teaching and Teacher Education, 28, 728-739.

van Es, E. A., Tunney, J., Goldsmith, L. T., & Seago, N. (2014). A framework for the facilitation of teachers’ analysis of video. Journal of Teacher Education, 65, 340-356.

van Es, E. A., & Sherin, M. G. (2002). Learning to notice: Scaffolding new teachers’ interpretations of classroom interaction. Journal of Technology and Teacher Education10, 571-596.

A 20-year Journey in Elementary and Early Childhood Science and Engineering Education: A Cycle of Reflection, Refinement, and Redesign

Print Friendly, PDF & Email

Sandifer, C., Lottero-Perdue, P., & Miranda, R.J. (2020). A 20-year journey in elementary and early childhood science and engineering education: A cycle of reflection, refinement, and redesign. Innovations in Science Teacher Education, 5(4). Retrieved from

by Cody Sandifer, Towson University; Pamela S. Lottero-Perdue, Towson University; & Rommel J. Miranda, Towson University


Over the past two decades, science and engineering education faculty at Towson University have implemented a number of course innovations in our elementary and early childhood education content, internship, and methods courses. The purposes of this paper are to: (1) describe these innovations so that faculty looking to make similar changes might discover activities or instructional approaches to adapt for use at their own institutions and (2) provide a comprehensive list of lessons learned so that others can share in our successes and avoid our mistakes. The innovations in our content courses can be categorized as changes to our inquiry approach, the addition of new out-of-class activities and projects, and the introduction of engineering design challenges. The innovations in our internship and methods courses consist of a broad array of improvements, including supporting consistency across course sections, having current interns generate advice documents for future interns, switching focus to the NGSS science and engineering practices (and modifying them, if necessary, for early childhood), and creating new field placement lessons.


Over the past two decades, science and engineering education faculty at Towson University have implemented a number of course innovations in our elementary and early childhood education content, internship, and methods courses. Some of these changes were the result of external factors – such as the switch in national standards to the Next Generation Science Standards (NGSS Lead States, 2013) – while others were enacted to address internal challenges.

The innovations in our content courses can be categorized as changes to our inquiry approach, the addition of new out-of-class activities and projects, and the introduction of engineering design challenges. The innovations in our internship and methods courses consist of a broad array of improvements, including supporting consistency across course sections, having current interns generate advice documents for future interns, switching focus to the NGSS science and engineering practices (and modifying them, if necessary, for early childhood), and creating new field placement lessons. These modifications are described in detail in this comprehensive overview of our science education courses from 2001 to the present day.

The purposes of this paper are to: (1) describe our course revisions so that faculty looking to make similar changes might discover activities or instructional approaches to adapt for use at their own institutions and (2) provide a comprehensive list of lessons learned so that others can share in our successes and avoid our mistakes.

Institutional and Historical Context

Institution, department, and program structure

Towson University (TU) began as a teachers college, and the tradition of developing highly qualified teachers continues as our institution graduates the largest number of education majors among all universities in our state. Currently 1,274 undergraduate and 1,286 graduate students are enrolled in TU teacher education programs. Over 1,100 of those undergraduate students are working toward an elementary education (ELED) degree, early childhood education (ECED) degree, or dual degree involving one of those specialties. ELED certification is for grades 1-6, and ECED certification is for birth through grade 3.

TU is one of the few universities nationwide to have a significant number of education faculty housed in its science content departments. For example, our home department – the Department of Physics, Astronomy & Geosciences (PAGS) – includes six tenured and tenure-track education faculty members, all of whom teach science and engineering education courses for early childhood and/or elementary programs. These positions are not joint appointments with education departments, but positions solely within our content department. These education faculty have the same qualifications as science education faculty in any college of education, including a doctoral degree in science education, curriculum & instruction, or a closely related field.

Each year, the PAGS department offers approximately 50 sections of elementary and early childhood science/engineering content, methods, and teaching internship courses. Typically, 48% of sections are taught by tenured or tenure-track faculty, 10% are taught by other full-time faculty (lecturers and coordinating staff), and 42% are taught by part-time faculty.

Science coursework in the elementary and early childhood programs

Table 1 shows the required science content, internship, and methods courses for elementary, early childhood, and dual education majors at TU.

Table 1 (Click on image to enlarge)
Required Science Content, Internship, and Methods Courses at Towson University

ELED and ECED majors are competitive (“screened”) majors, so interested students initially enroll as pre-ELED and pre-ECED majors. Physical Science I and Biology: The Science of Life are taken during the pre-major period. Later in their academic careers, junior-level ELED majors complete a “mathematics and science” semester, which is a semester solely dedicated to the content and methods of mathematics and science instruction. The science courses taken during this semester are Earth-Space Science, Life Sciences, and Teaching Science in Elementary School (a teaching internship). Instructors of the ELED internship and content courses collaborate during the mathematics-science semester in cases where the elementary interns teach science content that is concurrently being learned in the life science or Earth-Space courses. The only science course taken by ECED majors after the pre-major courses is a junior-level methods course: Teaching Science in Early Childhood. The ELED and ECED junior-level courses are taught in a cohort format, meaning that the same group of students takes all of their courses together.

Table 2 shows how many sections of each science education course are offered by PAGS. The life sciences courses are offered by another department, so they are not discussed here.

Table 2 (Click on image to enlarge)
Number of Sections per Semester for Each Science Education Course

Physical Science I (4 credits, 6 hours of weekly class time). Students investigate topics in physics and chemistry. In this active learning course, students increase their understanding of science concepts via hands-on and computer-based investigations, connections to prior knowledge and everyday experience, and small-group and whole-class discussions.

Earth-Space Science (3 credits, 4 hours of weekly class time). This is similar to Physical Science I in pedagogical style and structure, except that it focuses on light, geology, astronomy, and climatology, and includes a component in which students engage in engineering challenges that are connected to each of the science content units.

Teaching Science in Elementary School (3 credits, 4 hours of weekly class time). This is an internship course with embedded teaching methods that meets once per week at an elementary school site. Typically, each section of the course is placed in a different school. The course helps preservice elementary teachers (“interns”) learn and practice methods of standards-based science teaching and engage in self-reflection and improvement. Course activities include the weekly teaching of a 45-to-60-minute science and/or engineering lesson, coaching from the classroom mentor teacher, lesson planning under the supervision of the course instructor, and methods/content discussions and activities. The planning sessions and methods/content activities are typically conducted in a central meeting space (e.g., an unused classroom) provided by the school.

Teaching Science in Early Childhood (2 credits, 2 hours of weekly class time). This methods course for preservice early childhood teachers meets once per week. There is a limited internship component, in that the interns teach three different science and/or engineering lessons (e.g., Lottero-Perdue, Bolotin, Benyameen, & Metzger, 2015; Lottero-Perdue et al., 2016; Lottero-Perdue, Sandifer, & Grabia, 2017) in local pre-school, kindergarten or first grade classrooms.

Historical background: Guiding principles of instruction

From 1970 to 2000, the pedagogies in TU’s science content, internship, and methods courses were largely based on a three-part learning cycle borrowed from the Science Curriculum Improvement Study (Karplus, 1964): exploration, concept development, and concept application. At that time, the course philosophy was such that lessons were only lightly guided by the instructor as students engaged in an open-ended exploration of science equipment and ideas. Classroom activities were typically adaptations of lessons from the well-known science curricula developed in the 1960s, such as Elementary Science Study (Elementary School Science Project, 1966) and the Conceptually Oriented Program in Elementary Science (Center for Educational Research, 1967).

Course Innovations Over the Past 20 Years

One purpose of this paper is to focus on course-level improvements occurring after year 2000 that help our preservice teachers better understand science and engineering content and teaching methods. Thus we describe here the major instructional innovations that have been implemented in four of the core ELED/ECED science education courses offered by the PAGS department:

  • Physical Science I: We switched to a more structured/guided form of scientific inquiry and introduced at-home experiments, field trips, and video projects.
  • Earth-Space Science: We incorporated science-integrated engineering design challenges (i.e., challenges that reinforce and apply science content knowledge).
  • Teaching Science in Elementary School: We ensured consistency across all course sections, introduced peer advice documents (see below), and switched focus to the NGSS
  • Teaching Science in Early Childhood: We added a field placement component, switched from an inquiry focus to an emphasis on NGSS practices, and distilled and reworked those practices into a smaller subset appropriate for early childhood.

Physical Science I 

Switching to a more guided/structured form of scientific inquiry. In its early years (1970s to early 2000s), in its low-guidance open inquiry format, this course had been a common source of complaints from students, part-time faculty, and education department chairs. In overhauling the course from 2003 to the present day, hundreds of hours have been spent writing and rewriting a new course text and accompanying teacher’s manual (Sandifer, 2019). Overall, the text was transformed from a loose set of investigative guidelines into an active learning workbook representing a structured/guided inquiry format (Banchi & Bell, 2008), which has been successful in improving student learning and reducing course complaints.

Appendix A shows “before” and “after” versions of a specific activity on area and volume, demonstrating how densely packed statements, questions, and guidelines were transformed into a more structured activity that provided more blank space on the page for student notes and results.

Comparing student grades prior to the curriculum change (1998-2003) to grades immediately afterwards (2003-2005), over one-quarter of the students (28.2%) regularly received a D or F in the physical science course before the curricular change and fewer than one-tenth of students (6.8%) received a D or F in the course after the change. Some of the class instructors from 1998-2000 also taught during 2002-2004, so the differences in grade distributions cannot be solely attributed to differences in instructors, grades, or expectations.

The revised curriculum is still in use by some Physical Science I instructors. Other instructors use Next Generation Physical Science and Everyday Thinking (Goldberg et al., 2018), which is similar in its structured approach.

At-home experiments. Nationwide, science education faculty have a strong commitment to helping students connect science content and investigations to their everyday lives. At our institution, we’ve modified our courses over time to meet this goal in a variety of different ways.

In Physical Science I, one real-life connection has been the addition of at-home experiments. In these experiments, the class is presented with a focus question (aka inquiry question or essential question) that individual students must investigate on their own over an extended timeframe: from one to two weeks to a full month. An at-home experiment involves classroom pre-discussions (including relevant safety issues), obtaining the necessary equipment (from our STEM Education Resource Center, if needed), conducting the experimental procedures, a brief write-up of procedures and results, a sharing of data with group members and the entire class, and a final whole-class consensus on the valid scientific conclusions that can be drawn from the students’ collective data.

Early iterations of the at-home experiments were not as successful as we hoped, so the at-home portion of the course text has been augmented with increased pre-experiment support. For instance, in our at-home experiment on the factors affecting evaporation, we initially left it up to the students to determine how to operationally define and measure evaporation rate, which meant that different students ended up with very different measurement procedures—which made it difficult to draw valid conclusions during the consensus discussion. In the latest version, a comprehensive in-class discussion occurs prior to experimentation so that students can agree on acceptable procedures (among other issues) before the experiments begin.

Appendix B is an excerpt from the course text that illustrates the pre- and post-experiment discussions and final expected write-up.

Field trips. To help make Physical Science I more realistic and relevant, some course instructors take students on field trips to local science centers, nature centers, or local attractions (e.g. bowling alley, laser tag facility, indoor skydiving facility, railroad museum). Over the years, different group assignments (three to four students per group) have been associated with these trips:

  • Critiquing the field trip site by making a PowerPoint photo journal that describes 10 attributes of the site and 10 challenges or downsides of the site.
  • Writing a two-page paper about how they would plan/conduct a trip for early childhood or elementary students to the site, including recommendations for parent chaperones.
  • Creating a brief video that makes connections between the course content and the local science center/museum or attraction. For example, one course instructor takes students to a local bowling alley and asks students to create a six-minute infomercial video which explains how course content (e.g. motion, interactions, and forces) can be related to bowling.

To ensure field trips run smoothly, faculty members have students complete liability waiver forms for both the university and field trip site (if needed) prior to the trip; the forms are brought along since they contain emergency contact information. If students drive to the site on their own, it is helpful for faculty members to provide students with the meeting location and parking information.

Earth-Space Science

Although we continuously improve all aspects of the Earth-Space Science course and its associated course text (Sandifer & Lottero-Perdue, 2018), the most significant change over the last decade has been the incorporation of “science-integrated” engineering design challenges, which are engineering challenges that reinforce or apply science content knowledge. This effort began in 2008 when the second author, having received training at the Engineering is Elementary (EiE) Teacher Educator Institute, incorporated a geotechnical engineering unit into her instruction: A Stick in the Mud: Designing a Landscape (EiE, 2011a).

Unlike the National Science Education Standards (NSES, 1996), the Next Generation Science Standards (NGSS) (NGSS Lead States, 2013) explicitly include engineering as a part of science education for kindergarten through grade 12. With the release of the NGSS, it became clear that engineering learning experiences for early childhood and elementary majors at our institution (a) shouldn’t be limited to a single instance and (b) should be available to all students, no matter who their instructor might be. To accomplish these goals, we incorporated a science-integrated engineering design challenge into each unit: using mirrors to cause a laser beam to hit a target in the light unit; building and using a quadrant to track the height of the Moon (Lottero-Perdue & Sandifer, in press) in the astronomy unit; and identifying the best build site for a TarPul transportation system (a modified EiE geotechnical activity, used with permission) in the geology unit. Additionally, we created a short unit to be taught during the first week of class to introduce students to engineering and an end-of-semester project in which students create a video presentation (see Appendix C) to describe their design.

Teaching Science in Elementary School

As much as we value our science teaching internship, this course has faced significant problems over the years. From 2001-2005, instructor and intern complaints about the course had been steadily increasing, prompting us to tackle different challenges to provide a better experience for all parties involved. Follow-up investigations revealed that different sections of the course were no longer uniform in terms of the number of lessons taught, the number of interns per classroom, feedback on the interns’ science teaching, and the degree to which each section focused on the national standards. We were awarded a Physics Teacher Education Coalition grant to address these significant issues (Sandifer, Lising, Tirocchi, & Renwick, 2019). The project team, including a full-time elementary teacher-in-residence, engaged in a number of activities to improve the course. The grant-related modifications and subsequent changes led to the creation of a unique course unlike most other science teaching internships. The grant ended in 2007, but all course innovations have been sustained to the present day.

Course logistics. The Teaching Science in Elementary School course is not a methods course, but a teaching internship in which our junior-level ELED students (“interns”) learn to teach by teaching. The course meets once per week for 3 hours and 50 minutes. The first two to three weeks of class take place on the university campus; after that, class meets at the elementary school site. When the interns enter the course, they possess general knowledge about planning, teaching, and assessment in the context of literacy and reading – but nothing related to science and engineering instruction in particular.

During the on-campus sessions, the instructor has the interns engage in methods activities pertaining to specific instructional topics (e.g., the NGSS scientific practices), observe videos of real-life science instruction, experience NGSS-aligned science lessons (usually related to the science content that the interns will be teaching), and participate in pedagogical discussions about all of the above.

When the interns’ elementary school teaching begins, the class becomes a blend of preparation, teaching, reflection and methods. Table 3 shows a sample schedule for a class meeting.

Table 3 (Click on image to enlarge)
Sample Daily Schedule for Teaching Science in Elementary School

One key innovation is that we place multiple interns in the same classroom at the same time, with each intern (or pair of interns) teaching science to his or her own small group of four to six students (Sandifer, Hermann, Cimino, & Selway, 2015). For some teaching sessions, interns in the same classroom teach the same lesson in parallel to their own groups; for other teaching sessions, the interns plan a stations-based lesson in which students rotate from station to station (i.e., from intern to intern) to participate in different activities related to the same general topic (e.g., forces). To foster collaboration and the creation of high-quality lessons, all interns sharing a classroom plan their science lessons together with the help of the course instructor.

The benefits of a multiple-interns-per-classroom teaching structure include:

  • For each course section, it is only necessary to recruit three to five classrooms at a single elementary school.
  • Since all interns are placed at the same school, it is possible to mentor every intern every day and observe each intern regularly.
  • Interns who are new to teaching are less intimidated when instructing a small group of students, as opposed to an entire class.
  • By the end of the course, most interns have learned that collaborative lesson planning is a useful process that results in better lessons than what any one intern could produce individually. Ideally, the interns continue to plan lessons collaboratively during student teaching and after graduation.
  • In a small-group setting, the interns get to know their students’ thoughts, strengths, and personalities in a deep and meaningful way, and are able to focus squarely on the pedagogical issues that are relevant to inquiry-based science teaching (idea development, questioning, etc.).

The burdens placed on the host schools and mentor teachers are minimal. Each school provides a single meeting space, and the mentor teachers are responsible only for briefly observing 1-2 interns per school visit. The primary benefits to the teachers and students are: (a) the mentor teachers are paid $35 per supervised intern (from our college budget) and (b) the elementary students receive high-quality science instruction that they might not otherwise receive because science is sometimes omitted in local K-5 classrooms in favor of additional mathematics or literacy instruction.

The science curriculum. The course instructor provides lesson outlines to the class for all teaching sessions. These are modified versions of lessons from the school district’s science curriculum, and are provided 1 to 2 weeks in advance of the interns’ actual instruction. Parts of each lesson outline (“lesson template”) are filled in by the instructor and parts are left blank. (See Appendix D for an example.) During planning, the interns work together to fill in the missing portions of the lesson outline; missing sections might include key science concepts, focus questions, lesson engagement, or specific lesson activities. As the semester progresses, the fraction of each lesson plan that must be filled in by the interns is gradually increased.

The science lessons provided by the school district are modified by the course instructor to fit into the allotted teaching time, to ensure a smooth conceptual flow from one lesson to the next, and to more fully align with the NGSS scientific practices. In this manner, we aim to close the theory-to-practice gap by ensuring that the teaching methods taught in the internship are actually implemented in schools. Similarly, we emphasize throughout the course that standards-driven lesson modification is expected and encouraged after graduation, as long as the key science concepts are preserved.

On-site methods instruction. Once the class shifts to teaching at the school site, discussions about effective instruction continue whenever instructional issues arise; these discussions are typically in person, though they are occasionally over email. As appropriate, ongoing methods discussions take a variety of different forms: one-one-one discussions between the course instructor and the involved intern, small-group discussions between the instructor and the intern group assigned to a particular classroom, and whole-class discussions regarding common instructional issues. The discussion topics might include active learning, the scientific and engineering practices, the 5E lesson format, pedagogical content knowledge, safety, or class management.

Typically, interns are officially observed four times per semester: twice by the course instructor and twice by their mentor teacher. The interns receive a written report after each observation. As their schedule allows, each mentor teacher will also meet with their intern group to provide feedback, share words of wisdom, and take questions from the interns about specific students, science instruction, or teaching in general.

Faculty from other institutions are sometimes surprised to learn that our institution does not have a science methods course for ELED majors, per se, but it is a 50-year-old feature of our elementary program that we appreciate and value. The immersive structure of our internship allows instructors to organically and spontaneously address issues “in the moment” as they arise via reflections, post-teaching debriefings, and observations from mentor teachers and university instructors. The internship in this manner resembles an apprenticeship model of learning within a community of practice (Lave and Wegner, 1991) in which the interns learn by doing and through scaffolding by the university instructor, mentor teacher, and curriculum.

Maintaining a consistent focus on inquiry- and standards-based science and engineering instruction. When concerns about our internship course first arose, it became obvious that there was insufficient attention given to the mentoring of full- and part-time instructors in the different course sections. Prior to our improvement efforts, the only support provided to new instructors was a course syllabus, which unsurprisingly led to dramatic differences in course implementation. Once the deeper organization and oversight issues of the internship course were unearthed, faculty became motivated to rein in the course by reestablishing course goals, teaching certain course sections themselves, and providing instructor and mentor teacher workshops.

Three years of data collected from teaching observations, end-of-semester surveys, and course assignments revealed that, as a result of our course improvements: the interns spent more time teaching and less time observing; the interns’ science lessons focused more frequently on scientific investigations and the communication of ideas rather than scientific demonstrations and lectures; and the interns’ attitudes and beliefs about science and science teaching shifted in a more positive direction (Sandifer, Lising, & Renwick, 2007; Sandifer, Lising, & Tirocchi, 2006).

The sustainability aspect that has proven to be most effective in maintaining our successes and innovations has been the hiring of a full-time Elementary Science Internship Coordinator. This staff member’s job duties include teaching one section of Teaching Science in Elementary School per semester, conducting the instructor and mentor teacher workshops, ensuring that mentor teachers are paid for their course participation, observing new instructors, serving as liaison with our College of Education, negotiating with schools about the science units to be taught, helping instructors obtain access to the district science curricula, and other key components of course management.

The instructor workshops consist of two 90-minute sessions that cover all aspects of the course (assignments, course logistics, the philosophical underpinnings of the course, interfacing with schools, the campus- and school-based course meetings, and so forth), whereas the mentor teacher workshops are single-session, 90-minute overviews that cover general course goals, connections between the interns’ science lessons and the national standards, and the responsibilities of the course instructor and mentor teachers. Teaching Science in Elementary School is a mid-program internship that is significantly different from student teaching, so the responsibility for the course activities rests primarily on the shoulder of the university instructor rather than the mentor teachers. As such, the only requirement for being a mentor teacher is having at least three years of teaching experience.

Introduction of peer advice documents. As a means of making the internship course more meaningful and authentic, a novel assignment was introduced into the course. The assignment requires each semester’s interns to write an end-of-semester advice document directed at the following semester’s interns. The purpose of the document is to provide direct but friendly guidance about the internship’s teaching activities and the course in general. This is the brief “advice document” question that each intern answers independently as part of the final exam:

What general advice would you give next semester’s interns about effective elementary-level science teaching? (I will compile all of your advice into a handbook and distribute it to next semester’s interns.)  [500 words minimum]

 The interns take the assignment seriously, often writing far more than the suggested 500 words – in part because they received a similar advice document at the start of the semester and appreciated its honesty and usefulness.

A detailed analysis of four years of advice documents (Sandifer, 2010) found that the interns’ advice statements tend to fall into four categories: emotional support and encouragement, teaching tips, expectations and tips related to the research context, and philosophical and motivational advice about professional growth. Only two percent of advice documents contain what might be construed as “bad” advice. Ultimately, the advice document has been deemed a success, both as a summative reflection for current interns and help and support for future interns.

Recently, we have implemented a change that the advice documents are not only reflected upon at the beginning of the semester – they are also revisited in mid-semester. During the first few weeks, the interns are just starting their journey and the lessons that they take away from the advice documents are extremely broad: that everything will be all right, that the course instructor is an important source of support, and that they will survive and grow as a science instructor. As the semester progresses, the interns are eager for more detailed bits of wisdom, such as strategies for encouraging discussion and managing equipment. Thus re-exposing the interns to the advice document halfway through the semester has proven to be an invaluable source of inspiration and insight for our preservice teachers.

Including science-integrated engineering design. Since the 1970s, the units taught by the interns to local elementary students had always been pure science units (e.g. geology, astronomy, and the physics of motion). This changed in 2012, when some sections taught integrated science and engineering. Currently, in each course section, the decision to use a pure science or blended science/engineering unit is based upon the school system’s curriculum and the interests of the host teachers and university instructor.

A recent science/engineering unit integrated rocks and minerals science with the materials engineering from the EiE unit A Sticky Situation: Designing Walls (EiE, 2011b; Lottero-Perdue, 2017). Other blended units taught by interns include pollination and agricultural engineering (EiE, 2011c), light and optical engineering (EiE 2011d), and environmental engineering challenge related to weathering and erosion (Lottero-Perdue, Haines, Baranowski, & Kenny, in press). Altogether, over 155 interns total have taught a science-engineering unit in the internship since 2012.

Switching focus to the NGSS scientific practices. As mentioned previously, the advent of the NGSS caused us to move our language away from “inquiry” toward scientific and engineering practices. To help our students grasp this new approach, we devised a document (see Appendix E) that summarizes: 1) the three-dimensional structure of the NGSS and 2) how scientists and elementary children engage in each of the science and engineering practices.

Throughout the semester, individual practices are addressed as they arise in particular lessons. In any given semester, there are approximately 10 teaching visits and thus 10 lessons, leaving ample room to address most or all of the practices. For each lesson, the internship instructor selects a relevant practice to highlight, and then the interns describe in their lesson plans the ways in which the lesson addresses different aspects of the chosen practice. For example, for a lesson in which the elementary students make sense of an experiment and explain the results, the interns may have to describe in their lesson plans how students will be Engaging in Argument from Evidence (Practice 7). A lesson in which elementary students create and test a design to solve a problem would likely involve the interns describing how their students will engage in Designing Solutions (Engineering Practice 6).

Teaching Science in Early Childhood

Throughout its history, the two biggest challenges with the ECED methods course have been that 1) we have so little time to teach it (only two hours per week) and 2) this single course is the entirety of science and engineering methods education for these future teachers, partly because ECED majors are unlikely to teach science or engineering during student teaching.

Adding a field placement. One of the earliest changes was to add a field placement to the course. We wanted to make the teaching methods more authentic, enabling the interns to see how the larger ideas are relevant to real children’s science learning. We began by having the interns teach at an on-campus childcare center, but as the program grew and we desired to focus on a slightly older student population we switched to kindergarten and first grade classrooms.

Our placement involves three teaching visits. As with our elementary science internship course, we typically have four or five interns per classroom, with each intern teaching a small group of children. The field placements are sufficiently important that we dedicate over one-fifth (6 hours) of the 30 semester hours to the placements.

Including and modifying the NGSS practices. Older versions of the ECED course emphasized the principles of inquiry (see Appendix F) that we created and refined over the years, which were aligned with the National Science Education Standards in effect at the time (National Research Council, 1996, 2000). With the release of the NGSS, we shifted from our inquiry principles to the NGSS practices.

Our early attempts to address the practices taught us that it is not feasible to address all eight scientific/engineering practices with equal depth and attention in a meaningful way, particularly given the time constraints of the course. So we chose to emphasize a subset of practices that serve as the basis of most high quality hands-on investigations for early childhood: Making Reasoned Predictions, Carrying Out Investigations, Analyzing and Interpreting Data, and Engaging in Argument from Evidence.

Technically, reasoned predictions fall under “Engaging in Argument from Evidence” in the NGSS, but we split off predictions into a separate practice to more strongly encourage our interns to prompt students for predictions and reasons. Experience has shown that, when implementing science lessons at the field placements, interns frequently forget to ask for predictions at all – and when they do they often forget to request that students share their reasons.

With regard to the engineering practices, we emphasize the need for children to be able to articulate the problem, constraints, and criteria in their own words. For kindergartners and younger students, we refer to the latter two constructs together as the “rules” for a challenge (Lottero-Perdue et al., 2016). We also emphasize the importance of children designing solutions in a systematic, iterative way through the use of a design cycle. In this way, we are addressing the Defining Problems and Designing Solutions within the NGSS practices (NGSS Lead States, 2013). A critical piece was the creation and inclusion of a simplified engineering design process for early childhood: Ask, Imagine, Try, and Try Again (Lottero-Perdue et al., 2016), which is a modification the EiE design process (Ask, Imagine, Plan, Create, Improve) used in our ELED courses. The ECED engineering design process is introduced via a tower design challenge (Lottero-Perdue et al., 2015). We also include two science-integrated design challenges that illustrate how engineering challenges can reinforce and apply science content learning (Lottero-Perdue et al., 2016; Lottero-Perdue, Sandifer, & Grabia, 2017).

Student-centered science instruction. When we switched the course focus from our home-grown inquiry principles to the NGSS practices, certain methods topics got lost in the transition. To reintroduce these important topics, we identified two key “rules” of student-centered instruction: 1) let students figure “it” out first (where “it” is the answer to the focus question, their claims and supporting evidence, etc.); and 2) give students time to discuss and reflect. Prior experience taught us that the term “student-centered” is vague and that our interns consider any hands-on activity to be necessarily student centered. While we value hands-on instruction, the two rules stretch our students beyond the idea that hands-on = student-centered into a more robust understanding of student-centeredness and effective science instruction.

Analysis and reflection tools. To help interns refine their understanding of teaching methods and high-quality science instruction, we developed tools for interns to critically analyze the extent to which our classroom lessons, lessons found on the internet, and potential field placement lessons are in alignment with our practices and rules for student-centered instruction. The tools include alignment matrices and sliding scales (e.g., to place an X on a line between “students are told first” and “students figure out first”). Students have time to discuss their matrix and scale analyses in small groups, with the whole class, and with the instructor throughout multiple class sessions. They also complete a lesson analysis homework assignment and describe alignment to practices and/or rules within their lesson plans.

Challenges and Lessons Learned

As course innovations are shared and adapted across institutions, it is not only important to share descriptions of the innovations themselves, but also to provide implementation advice, describe potential challenges, and outline any lessons learned. Sharing this information is the purpose of this section.

Switching to the NGSS scientific practices: Addressing common confusions and improving lesson implementation

As a result of restructuring our methods and internship courses to be better aligned with the NGSS science practices, we discovered preservice teachers struggle to develop technically accurate, yet robust understandings of certain practices – none of which are as straightforward as they first appear. Based on our experience, 30-60 hours of class instruction isn’t sufficient to help interns develop anything approaching an expert understanding of the eight scientific practices unless they become the sole focus of the course.

The following are examples of practice-related questions that our interns continue to struggle with, even after participating in comprehensive methods activities (Sandifer & Lottero-Perdue, 2014).

  • I went outside and drew the Moon on different nights. Do my drawings count as models?
  • What counts as an investigation, exactly? Only scientific experiments? What about classroom demonstrations and researching data online?
  • Is there a difference between data and evidence? Do classroom observations, past experiences, prior knowledge, and common sense all count as data and/or evidence?
  • What is the difference between analyzing data and interpreting data?
  • Is any spoken or written answer an explanation? If so, why? If not, why not? What exactly counts as an explanation?

A successful tactic in dealing with confusion about the scientific practices is to not only make explicit what the practices are, but what they are not. Negative counterexamples typically result in “light bulb” moments for the preservice teachers. Consequently, we have incorporated numerous counterexamples into our course texts (e.g., “these are examples of this practice… and these are not examples of this practice, for these reasons… “) to help the interns better understand the practices’ trickier aspects.

Being explicit about what something is not is a powerful method of helping people develop deeper understandings of the more confusing aspects of science and engineering instruction. Similarly, in helping interns avoid lesson implementation that is in conflict with the NGSS practices, it helps to provide explicit guidance on what interns should not be doing in the classroom – not just on what they should be doing. For instance, we discuss in detail “things to avoid” in teaching a 5E science lesson (see Appendix G).

Mentoring new science education faculty to teach our courses

General strategies. Learning to teach a new content, methods, or internship course can be overwhelming, and the mentoring of new tenure-track faculty, lecturers, and part-time faculty is critical for ensuring a positive course experience. Although the development and implementation of a mentoring plan is a time- and effort-intensive process, it reaps great rewards in terms of instructor retention and the satisfaction of all stakeholders: students, parents, instructors, department chairs, and other administrators.

For our content courses, we have an initial meeting with new instructors in which we go over the course syllabus in detail and address various topics, including:

  • Noise control. Calling on students by name; group rotation.
  • Tests. Expected exam content and style; rearranging tables; make-up tests.
  • Logistics. Making copies; teaching supplies; faculty office space; support meetings; parking; online records and class communication; teaching observations; projecting video.

Once the semester has begun, the course coordinator meets weekly or biweekly with the new instructor to review upcoming course activities, making sure that the new instructor is aware of the purpose of each activity, the relevant scientific concepts, where to find the experimental equipment, common student difficulties, and connections between the current activities and upcoming activities.

The mentoring of newly hired internship and methods instructors is even more dramatic than content course mentoring, as pedagogy courses have a large number of moving parts and potential pitfalls. There are so many topics that our “single meeting” orientation has now been split into two meetings: one meeting before the start of the semester and another meeting a few weeks into the semester, which is after the instructor has started experiencing challenges and problems and is seeking specific help.

In mentoring, we have learned the valuable lesson that the most effective approaches are proactive rather than reactive. Having new instructors contact experienced instructors on an as-needed basis can be useful, but it doesn’t always lead to uniformly positive outcomes. This is because new instructors are reluctant to interrupt their busy colleagues, their requests tend to be last-minute, and they typically don’t know enough about the course to know which vital questions to ask.

Learning to teach engineering education. Science educators new to engineering instruction often express the opinion that the disciplines of science and engineering are extremely similar, and that transitioning from teaching science methods to engineering methods will be a painless exercise. Perhaps unsurprisingly, many engineering educators would disagree, arguing that doing and teaching engineering is uniquely different than doing and teaching science (Cunningham & Kelly, 2017; Lottero-Perdue, 2017a). We have discovered it doesn’t take weeks or months, but years of mentoring to help university colleagues understand (a) how science and engineering education are fundamentally distinct and (b) how to effectively implement and design engineering education activities.

As a first step, we provide the chapter Engineering Design into Science Classrooms (Lottero-Perdue, 2017a) as a resource and offer mentoring and peer support to those who have questions about implementation of design challenges. Examples of key mentoring topics are: the idea that there is no one right answer (or one right design) in engineering; failure is a normal part of engineering design, and how students and the teacher respond to failure is important (Lottero-Perdue & Parry, 2019); and the use of design challenges that not only teach the engineering design process, but also reinforce the application and development of scientific knowledge.


There is more we could share about the changes in our content, internship, and methods courses over the years. These changes continue even today, such as our current attempts to determine effective methods of teaching online and hybrid courses, identifying ways that interns might interact with simulated student avatars and classroom environments to improve their teaching skills, and more frequently engaging our students in generating and answering questions via project- and problem-based learning.

This 20-year retrospective is a reminder that every course is in a constant state of iterative change. Worldwide, science education faculty continually revise their course activities, assignments and assessments, and when these revisions are grounded in a context of caution and reflection – with constant questioning about what is working and what is not – the experiences that we provide our students can be improved. Course activities and structural changes imported from an outside institution need to be adapted to fit one’s own local context, but our hope is that sharing a comprehensive history of innovations and lessons learned will assist faculty who share in our joyful and satisfying quest for course perfection – or something close to it.


Banchi, H., & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26-29.

Center for Educational Research. (1967). Conceptually Oriented Program in Elementary Science.  New York, NY: New York Center for Field Research and School Services, New York University.

Cunningham, C. M., & Kelly, G. J. (2017). Epistemic practices of engineering for education. Science Education, 101(3), 486-505. doi:10.1002/sce.21271

Elementary School Science Project. (1966). Elementary Science Study. Berkeley, CA: University of California, Berkeley.

Engineering is Elementary (EiE). (2011b). A stick in the mud: Evaluating a landscape. Boston, MA: Museum of Science.

Engineering is Elementary (EiE). (2011b). A sticky situation: Designing walls. Boston, MA: Museum of Science.

Engineering is Elementary (EiE). (2011c). The best of bugs: Designing hand pollinators. Boston, MA: Museum of Science.

Engineering is Elementary (EiE). (2011d). Lighten up: Designing lighting systems. Boston, MA: Museum of Science.

Engineering is Elementary (EiE). (2019). The engineering design process: A five-step process Retrieved January 28, 2019 from

Goldberg, F., Robinson, S., Price, E., Harlow, D., Andrew, J., & McKean, M. (2018).  Next Generation Physical Science and Everyday Thinking.  Greenwich, CT: Activate Learning

Karplus, R. (1964). Science Curriculum Improvement Study. Journal of Research in Science Teaching, 2(4), 293-303.

Lave, J. & Wegner, E. (1991). Situated learning: Legitimate peripheral practice. New York: Cambridge University Press.

Lottero-Perdue, P.S. (2017a). Engineering design into science classrooms. In Settlage, J., Southerland, S., Smetana, L., & Lottero-Perdue, P.S. Teaching Science to Every Child: Using Culture as a Starting Point. (Third Edition). (pp. 207-266). New York, NY: Routledge.

Lottero-Perdue, P.S. (2017b). Pre-service elementary teachers learning to teach science-integrated engineering design PBL. In Saye, J. & Brush, T. (Eds.), Developing and supporting PBL practice: Research in K-12 and teacher education settings. (pp. 105-131). West Lafayette, IN: Purdue University Press.

Lottero-Perdue, P.S., Bolotin, S., Benyameen, R., Brock, E., and Metzger, E. (September 2015). The EDP-5E: A rethinking of the 5E replaces exploration with engineering design. Science and Children 53(1), 60-66.

Lottero-Perdue, P.S., Bowditch, M. Kagan, M. Robinson-Cheek, L., Webb, T., Meller, M. & Nosek, T. (November, 2016) An engineering design process for early childhood: Trying (again) to engineer an egg package. Science and Children, 54(3), 70-76.

Lottero-Perdue P.S., Haines, S., Baranowski, A. & Kenny, P. (2020). Designing a model shoreline: Creating habitat for terrapins and reducing erosion into the bay. Science and Children, 57 (7), 40-45.

Lottero-Perdue, P.S. & Parry, E. (2019, March). Scaffolding for failure: Upper elementary students navigate engineering design failure. Science and Children, 56(7), 86-89.

Lottero-Perdue, P. & Sandifer, C. (in press). Using engineering to explore the Moon’s height in the sky with future teachers. Science & Children.

Lottero-Perdue, P.S., Sandifer, C. & Grabia, K. (2017, December) “Oh No! Henrietta got out! Kindergarteners investigate forces and use engineering to corral an unpredictable robot.” Science and Children, 55(4), 46-53.

Michaels, S., Shouse, A.W., & Schweingruber, H. A. (2008). Ready, Set, Science. Washington, D.C.: National Academies Press.

National Governors Association Center for Best Practices and Council of Chief State School Officers (NGAC and CCSSO). 2010. Common core state standards. Washington, DC: NGAC and CCSSO.

National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.

National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academy Press.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, D.C.: The National Academies Press.

NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.

Sandifer, C. (2010, January).  Interns helping interns: Advice documents as meaningful authentic assessments. Talk presented at the meeting of the Association for Science Teacher Education, Sacramento, CA.

Sandifer, C. (2018). Activities in physical science. Unpublished course text.

Sandifer, C., Hermann, R. S., Cimino, K., & Selway, J. (2015). Early teaching experiences at Towson University: Challenges, lessons, and innovations. In C. Sandifer & E. Brewe (Eds.), Recruiting and Educating Future Physics Teachers: Case Studies and Effective Practices (pp. 129-145). College Park, MD: American Physical Society.

Sandifer, C., Lising, L., & Renwick, E.  (2007). Towson’s PhysTEC course improvement project, Years 1 and 2: Results and lessons learned. 2007 Conference Proceedings of the Association for Science Teacher Education.

Sandifer, C., Lising, L., & Tirocchi, L.  (2006). Our PhysTEC project:  Collaborating with a classroom teacher to improve an elementary science practicum.  2006 Conference Proceedings of the Association for Science Teacher Education.

Sandifer, C., Lising, L., Tirocchi, L, & Renwick, E.  (2019, February 28). Towson University’s Elementary PhysTEC project: Final report. Retrieved from

Sandifer, C., & Lottero-Perdue, P.  (2014, April). When practice doesn’t make perfect: Common misunderstandings of the NGSS scientific practices. Workshop presented at the meeting of the National Science Teachers Association, Boston, MA.

Sandifer, C., & Lottero-Perdue, P. S.  (2019). Activities in Earth and space science and integrated engineering (2nd ed.). Unpublished course text.



A District-University Partnership to Support Teacher Development

Print Friendly, PDF & Email

Wade-Jaimes, K., Counsell, S., Caldwell, L., & Askew, R. (2020). A district-university partnership to support teacher development. Innovations in Science Teacher Education, 5(4). Retrieved from

by Katherine Wade-Jaimes, University of Memphis; Shelly Counsell, University of Memphis; Logan Caldwell, University of Memphis; & Rachel Askew, Vanderbilt University


With the shifts in science teaching and learning suggested by the Framework for K-12 Science Education, in-service science teachers are being asked to re-envision their classroom practices, often with little support. This paper describes a unique partnership between a school district and a university College of Education, This partnership began as an effort to support in-service science teachers of all levels in the adoption of new science standards and shifts towards 3-dimensional science teaching. Through this partnership, we have implemented regular "Share-A-Thons," or professional development workshops for in-service science teachers. We present here the Share-A-Thons as a model for science teacher professional development as a partnership between schools, teachers, and university faculty. We discuss the logistics of running the Share-A-Thons, including challenges and next steps, provide teacher feedback, and include suggestions for implementation.


As the 2019 school year ends, Tennessee K-12 teachers have completed a full year of implementation with new science standards. While Tennessee did not adopt the Next Generation Science Standards (NGSS), the newly created Tennessee Science Standards reflect the concepts and layout of the NGSS (NGSS Lead S). The Tennessee Academic Standards for Science provide grade level guidelines that utilize the 3-Dimensional approach of Disciplinary Core Ideas, Science and Engineering Practices, and Crosscutting Concepts (Tennessee State Board of Education, n.d.). This new framework requires shifts in teachers’ pedagogy and practices in the classroom, as well as reconceptualization of science education. While the previous standards stressed science content knowledge with scientific inquiry included separately, the new standards incorporate engagement in scientific and engineering practices as a means of learning science content. Based on the Framework for K-12 Science Education (National Research Council, 2012), the new standards require teachers to not only re-evaluate the content taught, but also how students directly engage with the content. This led the university science education faculty to question and challenge: How can we support local teachers through this shift?

Overview of MAST/Share-A-Thons

With a change in standards and a need for continued support, the Memphis Area Science Teachers (MAST) group was formed. Initially, science administration at Shelby County Schools, the school district surrounding the University and the largest school district in Tennessee, contacted science education faculty at the University to discuss how the two institutions could work together. At the first meeting between faculty and district officials, a variety of topics were discussed, but the primary concern of the school district revolved around supporting teachers as they shift and transition to the new science standards. Meeting with district officials and visiting classrooms showed great things taking place in science across schools. The university faculty suggested building on what was already going well in the district and using the resource of teachers. Instead of trying to develop a formal, pre-determined series of professional development, a more flexible, informal approach might better serve the needs of the teachers. A vision was developed of teachers throughout the district coming together to share ideas and resources with each other. This vision became MAST. The goal of MAST is to establish a community of science teachers across the metropolitan area, from all grade levels, districts, and school types (public, charter, or independent). Both preservice and in-service teachers are invited to participate in MAST; because the local school district has a significant number of teachers in the field who are still earning a teaching credential, this format allows the university to provide additional support for those teachers, and to provide networking among teachers of all experience levels. This community is designed to support science teachers by facilitating the sharing of ideas, lessons, materials, and other resources.

Three pieces were developed at the founding of MAST: a website, a listerv, and regular teaching meetings we call Share-A-Thons. The website was developed as a central location for sharing information about MAST, such as meeting topics and dates, and resources, such as lesson plans or articles. Faculty from the University developed the website for MAST using free website development tools. The website serves several roles for MAST: It is the first place events like the Share-A-Thons are announced, including links to registration; resources from Share-A-Thons are available on the website; there is a section devoted to local phenomena and resources; and state and national science education resources are available. Teachers can also join the listserv and contact science education faculty through the website. The listserv is also maintained by the University, using the university infrastructure. The primary use of the listserv currently is to send out announcements about MAST events and other events or resources that would be of interest to science teachers. Any listserv member is also invited to send questions or relevant announcements to the listserv. There are currently about 150 members of the listserv. The final piece of the MAST community is the Share-A-Thon, a regular meeting of science teachers that occurs 2-3 times per semester to provide informal professional development on a wide range of topics (see Table 1). Teachers were recruited to join MAST, and attend Share-A-Thons, through existing science teaching listservs, the school districts professional development newsletters, emails directly to teachers and principals from the University as well as school district personnel, and word of mouth.

Table 1 (Click on image to enlarge)
Share-A-Thon Topics

Framework for Professional Development

With changes facing science education today, including the adoption of new national and local science standards in most states, there has been a call for flexible and ongoing approaches to professional development (PD) for science teachers (Luft and Hewson, 2014). New views of professional development move away from static presentations of information for teachers and toward dynamic, interactive learning opportunities between teachers and schools (Opfer & Pedder, 2011), where teachers are empowered to control their own development (Kennedy, 1999; Shapiro & Last, 2002; Wilson & Berne, 1999). Research has also pointed out importance of collaboration (Wilson and Berne 1999) and the need to relate PD to local contexts and standards (Supovitz and Turner, 2000). However, districts today are faced with challenges in delivering PD to teachers, including addressing the needs of teachers with varying levels of experience and limited resources and time. A lack of high quality PD can contribute to concerns around teacher retention, achievement, and quality of science instruction. For example, many teachers in the primary grades demonstrate low levels of scientific knowledge (Palmer, 2004), which impacts confidence and self-efficacy beliefs about teaching science (McDuffie, 2001).

Basing our ideas from the NGSS Framework document and the needs of our local school district, an emphasis was placed on creating and cultivating the MAST community, including the Share-A-Thons, website, and listserv, as a flexible professional development network. As the NGSS framework document stated, “The framework and subsequent standards will not lead to improvements in K-12 science education unless the other components of the system—curriculum, instruction, professional development, and assessment— change so that they are aligned with the framework’s vision” (NRC, 2012, p. 17). Our resources as a University allowed us to design and implement a professional development network that would offer continuous opportunities for growth, based on the needs of the participating teachers. With the main components of the new standards leading the way for the first meetings, topics then covered recommendations from teachers, aligning with the NGSS framework ideas on professional development that states, “professional development should not only be rich in scientific and engineering practices, crosscutting concepts, and disciplinary core ideas but also be closely linked to teachers’ classroom practices and needs” (NRC, 2012, pg. 259).

Description of Share-A-Thons

The MAST Share-A-Thons’ initial purpose was to provide professional development and to focus local educators on one topic of the new science standards and/or framework over the course of an academic school year. Another goal for the MAST Share-A-Thon was to connect local K-12 educators experiencing the same struggles and to provide a place to problem-solve together and share ideas on implementing these practices in one’s classroom. The first two Share-A-Thons were in Spring 2018, the semester before the new science standards were implemented across the state. Teachers were recruited primarily through email and word of mouth, as described above. These Share-A-Thons focused on helping teachers understand the new standards and providing a space for sharing lessons and discussing how they align to the new standards. At the Share-A-Thons, teachers were asked to provide suggestions for future topics, through conversation as well as a survey administered at the end of the Share-A-Thon. These suggestions were compiled and at the beginning of each semester, an email was sent to the listserv allowing teachers to vote on topics. The most popular topics are then chosen for the next Share-A-Thons. At each Share-A-Thon, there were between 20 and 60 participants, across all grade levels. The largest groups of teachers are usually elementary (3rd – 5th grade) and middle school. As an incentive for participation, the local school districts offer professional development credit and the University provides door prizes, such as science teaching books, class sets of markers, or classroom equipment.

An initial challenge with conducting teacher professional development experiences like Share-A-Thons is determining the days, times, and frequencies for scheduling workshops that is the most convenient for everyone across the K-12 spectrum. Due to varying time restrictions and commitments during the work week at the different grade levels, professional learning and development opportunities are generally relegated to the weekend when more teachers are available and have greater flexibility with juggling their personal commitments in order to attend. Because of this, we decided all Share-A-Thons would be held on Saturday mornings and would finish by noon so that attendees still had the afternoon free. Therefore, the Share-A-Thons were always offered on a Saturday morning from 9:00am-11:30am and were held about 3 times a semester (or about 6 times over a K-12 academic school year). Each meeting was guided around a similar structure. The meetings began with a 30 minute allowance for breakfast (provided complimentary by the university or a community sponsor), check-in/registration, and a warm up activity where the participants responded to an open-ended question on the topic (often through an online platform such as The meeting would then move into a whole group format with a general overview of that month’s topic and a small group activity which always included discussion and share out. This portion would last about for about 45 minutes. After the whole group overview, participants moved to their grade band breakout session. These small group sessions lasted at least an hour and provided participants with hands-on examples of implementing that session’s topic specifically in the grade level the participant is teaching. Another purpose of these small group sessions was to allow educators to network with other science teachers in the area in a smaller and safe setting. The grade bands included grades K-2,  3-5, 6, 7, 8, biology, chemistry, physics, and other high school level topics as needed (teachers were asked to provide their grade level/content area when registering). Following the breakout session investigations, the whole group would reconvene and share what each group experienced and ways to implement the new knowledge into their classrooms. Each MAST Share-A-Thon concluded with a review of that month’s topic with a wrap-up from a faculty member and a survey on the session.

For example, in September 2018, crosscutting concepts were the topic (see Figure 1 for the agenda from this Share-A-Thon). While checking in, participants responded, using their own laptops or Smartphones via, to the warm-up question: “What questions do you have about the TN Science Standards and Crosscutting Concepts?” This guided the beginning of the whole group discussion and led into the initial learning portion. A faculty member from the university gave an overview of the new standards and 3-dimensional science teaching and learning, based on the Framework for K-12 Science Education and focusing on the role of the crosscutting concepts. Following the overview, participants worked in pairs to sort specific scenarios/K-12 lesson topics on premade cards into the different crosscutting concept categories. Scientific talk was required and utilized during the problem solving process, as faculty circulated and facilitated conversations, and all groups shared their findings at the conclusion of the activity. At this time, participants were given seven color-coded cards, one for each of the crosscutting concepts, that were printed on cardstock to help with durability. Each of these teacher tools listed NGSS’ definition of the concept; usefulness of this concept to scientists and engineers; the science and engineering practices that are closely related; and ended with sentence starters and discussion prompts specific to the relevant crosscutting concept. Next, the meeting transitioned into breakout grade band sessions for an hour. Each session engaged teacher participants in a grade level appropriate lesson (according to student perspectives). The attendees were then provided with a written lesson plan and had to identify which crosscutting concepts were covered and exactly where in the lesson plan did this take place. Participants worked together in discussion groups to identify and explain the crosscutting concepts that were covered in the lesson. The lessons provided were aligned to the district’s pacing guide for each grade, and teachers were invited to share activities or other resources they used for addressing the same topics. Following the small group activities and immersion into that meeting’s topic, members reassembled into a whole group setting for volunteers to share what they learned and for a final review of the topic. Participants also completed monthly surveys to help determine each meeting’s usefulness and relevance.

Figure 1 (Click on image to enlarge)
Share-A-Thon Agenda

Teacher Response to Share-A-Thons

The teacher response to the Share-A-Thons has been overwhelmingly positive. Across the seven Share-A-Thons to date, there have been around 200 attendees, with a range of 11 to 40 attendees per event and many teachers attending multiple Share-A-Thons. At the end of each Share-A-Thon, teachers are asked to complete a six question online feedback survey to indicate how useful the Share-A-Thon was for them, what parts were most useful, what they would like to see in future Share-A-Thons, and any other feedback they would like to offer the organizers (Figure 2). Across all of the Share-A-Thons, 121 surveys were completed. The responses across Share-A-Thons were consistent; i.e., no one Share-A-Thon topic received significantly different responses from any of the others. Most teachers rated the Share-A-Thons “Extremely Useful” (89) or “Very Useful” (29). The Response Scale includes: “Extremely Useful,” “Very Useful,” “Moderately Useful,” “Slightly Useful,” and “Not At All Useful.”  To date, no teachers have rated the Share-A-Thons “Slightly Useful” or “Not at All Useful.”

Figure 2 (Click on image to enlarge)
Share-A-Thon Online Feedback Survey

When asked, “Which parts of the Share-A-Thons were useful?” teachers indicated that “working or talking with other teachers” was the most useful part (67 responses), closely followed by “evaluating example lessons” (60 responses) and “whole-group overviews of the topic” (49 responses);  teachers were able to select multiple responses for this section. When asked to explain why each part was useful, teachers focused on “the practicality of each section” and “being able to access resources.”  Many respondents indicated they most appreciated “having the time to talk to other teachers,” although not always about the topic of the Share-A-Thon. Teachers responded, “When I collaborate with other teachers, I always learn something new that I can implement in my class!” and “I could get ideas from other teachers to make teaching a little easier.”

Some teachers found it interesting to compare what was happening in their school or district with other schools or districts from an overall perspective, saying, for example, “It was nice to discuss with teachers from other districts about what’s working and what’s not working.”  Other teachers indicated they valued learning from other teachers in their areas saying, “It was good to hear new strategies from other teachers,” and “Loved the collaboration in the moment as we processed the resources.”  Most of this discussion with other teachers occurred during the grade band breakouts with example lessons. Teachers also indicated that this part of the Share-A-Thon was valuable as they had access to both district personnel and science education professors to discuss the lessons, further indicating that they valued the, “availability of science advisors to ask questions.”

Another common point teachers made when asked why the Share-A-Thon was useful for them was that the information provided was relevant to their teaching. This was a benefit of working strategically with a local school district in two ways. First, we were able to align the overall topics of the Share-A-Thons with the district’s science focus. Second, the example lessons provided by grade and subject not only demonstrated the overall topic, they were also aligned to the district’s curriculum pacing guide, further enabling teachers to use the lesson in their classroom within a few weeks of the Share-A-Thon. Teachers indicated that this strategic alignment made the Share-A-Thons particularly relevant and helpful noting, “The overview and lesson plans offer insight that can translate directly to classroom practice.” Teachers also said that as a result of attending the Share-A-Thon, “I have information that I can actually use.”

Teachers were also asked to describe what else they would like to see at Share-A-Thons. This information was used to directly inform future Share-A-Thons. For example, in the fall of 2018, teachers indicated that while they appreciated the example lessons provided, they did not always have the resources necessary to implement them in their classroom and asked for information on “how to implement lessons in class with least expensive products” and “how to organize materials for labs, demos, etc.”  This became the topic of a Share-A-Thon the following semester. Teachers also indicated that they wanted more information on incorporating the topics from the Share-A-Thons into their own classrooms, saying “I am struggling to fit everything…. I am curious how the implementation of the full lesson plan would look,” and “I would like to actually plan a lesson. I am responsible for training K-5 teachers on how to create and implement effective Science lessons.” Other teachers said, similarly, that they needed support around balancing the demands of the district’s pacing and testing schedule and the topics presented at the Share-A-Thons. One teacher explained that they would like, “Exploration of how to balance the demands of the 3-D model with the curriculum so that we can stay close to the expected schedule for content.”  This indicated to us that teachers wanted to move beyond learning about the changes in the standards and 3-dimensional science teaching and learning in order to incorporate these changes in their own teaching practice. As a result, we dedicated future Share-A-Thons to lesson planning and unit planning.

This feedback from teachers highlights the importance of allowing time for teachers to interact with each other to process material in professional development sessions, a key feature of the Share-A-Thons. We, as University faculty and “experts” in science education, had to provide resources around the topic and then step back to let the teachers dissect and discuss the material. Another important piece of the Share-A-Thon is responsiveness to teachers: Having district personnel attend the Share-A-Thons meant they could answer teacher questions about, for example, district resources or curriculum. Working together with the district also meant that the resources provided were immediately useful for teachers, such as using example lessons and activities that are timed with the district’s pacing guide.

Role of the School District

Partnering with a local school district was instrumental for the development and sustainability of both MAST and the Share-A-Thons. The role of the school district in this process has been three-fold: providing support, access, and complementary learning activities. First, the school district is a partner in determining topics and planning for each Share-A-Thon. At least one, and usually multiple, district representatives attend each Share-A-Thon, representing both professional development and curriculum and instruction departments in the district. Other district and school administrators, including vice-principals and instructional coaches, have also attended Share-A-Thons. Additionally, the school district is able to provide seamless access to teachers and schools to distribute information about Share-A-Thons. This is accomplished through the district’s weekly newsletters sent to teachers and administrators as well as their online professional development platforms. Finally, because the district helps to plan and attend each Share-A-Thon, they are able to ensure that we are providing consistent support to teachers across learning opportunities. Not only do we ensure that we do not duplicate information, the language used, approaches discussed, and resources provided are likewise consistent and complementary  across learning opportunities. Teachers receive professional development (PD) credit hours for attending Share-A-Thons, and the school district offers follow-up PD sessions to further build on the topics discussed.

It is important to note that even though one district has partnered with the university, other districts are invited to participate and provide feedback on the development of Share-A-Thons. Because of the nature of the metropolitan area, the other districts are much smaller and often do not have the resources to support ongoing professional development for science teachers to the same extent as the larger school district. For the initial Share-A-Thon, other school district personnel (including principals and science coaches) were contacted via listservs and direct communication and asked to share information about the Share-A-Thons with their teachers. Multiple school districts give teachers professional development credit for attending Share-A-Thons and assist in disseminating information about the Share-A-Thons. When we solicit feedback about the usefulness of the Share-A-Thons, teachers from smaller school districts, who are sometimes the only science teacher in their school or at the only high school in the district, have expressed that the value of meeting and working with other science teachers is the most valuable part of the experience. Although they often list similar challenges as teachers from larger school districts, such as adjusting to the new standards and working with limited resources, attending Share-A-Thons also helped to address the ongoing challenge of isolation experienced by teachers in their individual schools.

Role of the University

The call to educate and prepare highly qualified educators to teach STEM content warrants the urgent need to find ways to create learning opportunities and experiences for preservice and inservice teachers with meaningful, real-world applications. This effort includes strategic partnerships with local school districts and community programs (as described above) in ways that maximize teacher preparation experiences, professional development, and learning outcomes. The MAST Share-A-Thon is an alternative to the typical stand-and-deliver, one-shot workshops presented by science experts who lecture while adult learners listen passively (Author, 2011; National Research Council, 2007). The MAST Share-A-Thon actively engages teachers to participate in a long-term scope for change in science teaching and learning that reaches far beyond the careers of individual participants in order to make change that encompasses entire learning communities. To achieve this ambitious goal, the University plays a key role in developing and implementing the STEM professional development (in collaboration with the local school district) according to teachers’ identified areas of “need” or on topics/skills they want to improve in ways that increase learners’ active STEM exploration, investigation and higher order thinking. In this way, Share-A-Thons uniquely begin with what teachers’ “already know and understand” and eventually lead to “ways to expand and improve their current practices.” Teachers share their lesson plans and activities during cooperative group discussions using Socratic dialogue guided by inquiry and problem solving along with constructive feedback and teacher reflection in order to reveal new insights and multiple perspectives.

University science, early childhood, and elementary faculty play a key role in helping to guide and facilitate K-12 teachers’ STEM investigations, activities and discussions to encourage and support sense-making, practicing, modeling, and reflecting on new strategies (Yoon et al. 2007). The university faculty also strive to create a safe space where all voices and perspectives are valued, appreciated, and celebrated as community members work to improve STEM teaching practice (Counsell, 2011; Ingersoll, 2004; Wenger, 1998).

Ongoing Challenges and Next Steps

Several challenges have been identified with the MAST website and listserv. The first is maintenance: after the initial setup of both, they need regular maintenance to ensure that content and membership are up-to-date. Additionally, teachers have hesitated to email the listserv themselves, to ask questions or share information. It is currently primarily a one-way source of communication from the university science education faculty to the teaching community. Additionally, the usefulness of the website to the MAST participants in not known; although they indicate that they do visit the website for Share-A-Thon materials, in the future we would like to collect more information about what teachers would find useful in the website, for example, if they would use discussion boards or links to local resources.

An ongoing challenge experienced with Share-A-Thons pertains to the continued struggle with how to reach a broader and more diverse audience beyond the teachers who initially begin to participate. While word-of-mouth is critical and firsthand testimonies are quite valuable, they largely resulted in additional participants limited to the same schools where current participants teach. Therefore, increasing future teacher participation will include coordinated efforts to invite teacher participation with local school districts by email, flyers, and announcements on the district website and shared during school-level faculty meetings. Broadening the range of educators who serve diverse urban communities entails a need to balance different community needs and school settings in ways that includes everyone while satisfying local challenges (such as less time allocated to science; fewer resources and materials; fewer parent/grandparent volunteers).

In addition to ongoing efforts to increase K-12 teacher participation in Share-A-Thons, next steps also include diversifying the expertise of the University Share-A-Thon faculty. For example,  future Share-A-Thons will include math and English language arts (ELA) faculty to discuss how to integrate math and ELA with science. Instructional time requirements for math and ELA at the elementary levels tend to minimize instructional time allowed for science teaching. Math and ELA faculty can help teachers to see how they can easily connect and address math and ELA standards during science teaching and investigations. This enables teachers to maximize children’s overall learning experiences and learner outcomes by effectively teaching across the curriculum without excluding or prioritizing one content area more than another. Additionally, we have partnered with other on-campus groups to offer supplementary professional development for teachers, for example, the Biology Department offered Project Learning Tree Training to teachers, and will continue to grow that network.

A final challenge is in expanding the “Share” portion of the “Share-A-Thon.”  We would like to increase teacher ownership of both MAST and the Share-A-Thons, ideally developing teacher leaders to plan and facilitate some Share-A-Thons. We have started encouraging this by soliciting teacher ideas and feedback at Share-A-Thons and discussing specific topics with teachers. At the Share-A-Thons, many teachers share wonderful ideas and thoughts on the various topics. However, many teachers are still reticent to present themselves as “experts” and more work is needed to support the development of teacher leaders within MAST.

Suggestions for Implementation

Table 2 presents a general time line for implementation of a partnership like MAST. This partnership started with a brainstorming meeting between University faculty and district personnel. At the initial meeting, we noted the topics that the district seemed most in need of support: the new science standards and providing professional development for a wide range of science teachers. With that in mind, we took inventory of the resources they could offer, in terms of personnel/expertise, space, funding, materials, and technology infrastructure. We also began informal discussions with teachers about their concerns and needs, which largely echoed the conversations with district personnel. The result of this pre-planning was the start of the three pieces of MAST: The university had infrastructure in place to support the listserv and website, and initial plans for the Share-A-Thons began.

Table 2 (Click on image to enlarge)
General Time Line for Implementation

When beginning a program such as the Share-A-Thon, there are many logistical details to consider. As part of our partnership, we secured a space on the University campus. This first step is vital as the space impacts the ease and available resources for the meetings. Our goal for implementation was to make the meetings easily accessible for teachers to attend. This required checking with district personnel for any conflicts with dates and acquiring access to easy parking.

Open communication with district personnel and the attendance of district faculty at the Share-A-Thons is vital in the beginning stages and should continue throughout the program to ensure the alignment to their specific needs. After securing an easily accessible space and aligning the programming to district needs, the available University resources need to be inventoried. These include but are not limited to materials, technology, and other faculty, including graduate assistants. Finally, for teachers to attend the meetings they must first know about the meetings. Create an easy way for teachers to get information, such as a listserv or website.

The partnership with a local school district was crucial to the success of MAST in general and the Share-A-Thons in particular. The school district took several steps to help ensure this success. The first step was similar to that taken by the university: make sure the Share-A-Thons are convenient for the teachers. This involved advertising for the Share-A-Thons through existing district channels and having district personnel attend Share-A-Thons to answer district-specific questions and ensure participants received professional development credit for attending without having to complete any additional steps (district personnel simply take a copy of the sign-in sheet and enter it into their system, so there is no extra work from the teachers required). District officials were also an important piece in ensuring the Share-A-Thons met the needs of the teachers. District personnel interacted with teachers between Share-A-Thons and were aware of district and state-wide initiatives in science education. Knowing what the teachers were saying in the field and what initiatives were coming soon for teachers from the state Department of Education meant the Share-A-Thons could be planned both reactively, to address teacher concerns, and proactively, to help teachers prepare for changes in science standards, curriculum, and assessment. Finally, the school district was able to align their own professional development for teachers to the content of the Share-A-Thons, ensuring teachers received consistent messages around science teaching and learning.

Ongoing work is necessary to sustain and continue to grow this partnership. In particular, at each Share-A-Thon, teacher feedback is solicited about the Share-A-Thons and volunteers are recruited for future Share-A-Thons. Each semester, we meet with school district personnel to confirm the topics and dates for the Share-A-Thons. The website and listserv also require ongoing maintenance to make sure they are providing relevant information and reaching as many teachers as possible.


Counsell, S. (2011). GRADES K-6-Becoming Science” Experi-mentors”-Tenets of quality professional development and how they can reinvent early science learning experiences. Science and Children49(2), 52.

Ingersoll, R. E. (2004). Who controls teachers’ work? Power and accountability in America’s schools. Cambridge, MA: Harvard University Press.

Kennedy, M. M. (1999). Form and Substance in Mathematics and Science Professional Development. NISE brief3(2), n2.

Luft, J. A., & Hewson, P. W. (2014). Research on teacher professional development programs in science. Handbook of research on science education2, 889-909.

National Research Council (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academy Press.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.

NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

Opfer, V. D., & Pedder, D. (2011). Conceptualizing teacher professional learning. Review of educational research81, 376-407.

Palmer, D. (2004). Situational interest and the attitudes towards science of primary teacher education students. International Journal of Science Education26, 895-908.

Shapiro, B., & Last, S. (2002). Starting points for transformation resources to craft a philosophy to guide professional development in elementary science. Professional development of science teachers: Local insights with lessons for the global community, 1-20.

Supovitz, J. A., & Turner, H. M. (2000). The effects of professional development on science teaching practices and classroom culture. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching37, 963-980.

Tennessee State Board of Education. (n.d.). Science. Retrieved from

Wilson, S. M., & Berne, J. (1999). Chapter 6: Teacher Learning and the Acquisition of Professional Knowledge: An Examination of Research on Contemporary Professlonal Development. Review of research in education24(1), 173-209


Facilitating Preservice Teachers’ Socioscientific Issues Curriculum Design in Teacher Education

Print Friendly, PDF & Email

Foulk, J.A., Sadler, T.D., & Friedrichsen, P.M. (2020). Facilitating preservice teachers’ socioscientific issues curriculum design in teacher education. Innovations in Science Teacher Education, 5(3). Retrieved from

by Jaimie A. Foulk, University of Missouri - Columbia; Troy D. Sadler, University of North Carolina – Chapel Hill; & Patricia M. Friedrichsen, University of Missouri - Columbia


Socioscientific issues (SSI) are contentious and ill-structured societal issues with substantive connections to science, which require an understanding of science, but are unable to be solved by science alone. Consistent with current K-12 science education reforms, SSI based teaching uses SSI as a context for science learning and has been shown to offer numerous student benefits. While K-12 teachers have expressed positive perceptions of SSI for science learning, they cite uncertainty about how to teach with SSI and lack of access to SSI based curricular materials as reasons for not utilizing a SSI based teaching approach. In response to this need we developed and taught a multi-phase SSI Teaching Module during a Science Methods course for pre-service secondary teachers (PSTs), designed to 1) engage PSTs as learners in an authentic SSI science unit; 2) guide PSTs in making sense of an SSI approach to teaching and learning; and 3) support PSTs in designing SSI-based curricular units. To share our experience with the Teaching Module and encourage teacher educators to consider ways of adapting such an approach to their pre-service teacher education contexts, we present our design and resources from the SSI Teaching Module and describe some of the ways PSTs described their challenges, successes, and responses to the experience, as well as considerations for teacher educators interested in introducing PSTs to SSI.


Socioscientific issues (SSI) based teaching is a pedagogical philosophy consistent with current reform movements in K-12 science education (Zeidler, 2014b). SSI are societal issue[s] with substantive connections to science ideas (Sadler, Foulk, & Friedrichsen, 2017, p. 75), which lack structure, are controversial in nature, and for which science understanding is necessary but insufficient to offer complete solutions (Borgerding & Dagistan, 2018; Kolstø, 2006; Owens, Sadler, & Friedrichsen, 2019; Simonneaux, 2007). Because they are values-influenced, lack clear solutions, and bear significant, and often conflicting, implications for society, SSI tend to be contentious (Zeidler, 2014a).

Studies of SSI-focused learning contexts have identified many learner benefits. Students who participated in SSI-based learning experiences have demonstrated gains in understanding of science ideas (Dawson & Venville, 2010, 2013; Sadler, Klosterman, & Topcu, 2011; Sadler, Romine, & Topçu, 2016; Venville & Dawson, 2010), nature of science (Khishfe & Lederman, 2006; Lederman, Antink, & Bartos, 2014; Sadler, Chambers, & Zeidler, 2004); and scientific practices, such as modeling (Peel, Zangori, Friedrichsen, Hayes, & Sadler, 2019; Zangori, Peel, Kinslow, Friedrichsen, & Sadler, 2017) and argumentation (Venville & Dawson, 2010). Beyond these traditional learning outcomes, studies have also identified benefits such as improved reasoning skills (Kolstø et al., 2006; Sadler et al., 2004; Sadler & Zeidler, 2005; Zeidler, Applebaum, & Sadler, 2011); moral, ethical, and character development (Fowler, Zeidler, & Sadler, 2009; H. Lee, Abd‐El‐Khalick, & Choi, 2006); and increased enthusiasm and interest within science learning contexts (M. K. Lee & Erdogan, 2007; Saunders & Rennie, 2013).

The role of classroom teachers is of primary importance in facilitating reform-oriented learner experiences (Bybee, 1993) such as those based on SSI. Research has revealed that many classroom teachers hold favorable perceptions of SSI; however, despite some K-12 science teachers’ recognition of potential benefits to learners, and acknowledgements of the subsequent importance of incorporating SSI into science classroom contexts, research indicates that K-12 science teachers struggle to incorporate an SSI-focused pedagogy in their classrooms, and those who utilize SSI tend to do so infrequently and superficially (H. Lee et al., 2006; Lumpe, Haney, & Czerniak, 1998; Sadler, Amirshokoohi, Kazempour, & Allspaw, 2006; Saunders & Rennie, 2013). Three notable explanations for teachers’ omission of SSI-focused activities from their classrooms are: teachers’ unfamiliarity, lack of experience, and/or discomfort with an SSI-focused teaching approach (H. Lee et al., 2006; Sadler et al., 2006; Saunders & Rennie, 2013); teachers’ limited access to SSI-focused curricular resources (Sadler et al., 2006); and discrepancies between teachers’ perceptions of SSI and the philosophical basis of the pedagogy (Hansen & Olson, 1996; H. Lee et al., 2006; Sadler et al., 2006).

While a small number of prepared curricular resources for SSI have begun to be made available to teachers (cf. Kinslow & Sadler, 2018; Science Education Resource Center; The ReSTEM Institute; Zeidler & Kahn, 2014a), practical access to SSI curricula remains limited. Literature around SSI features an array of project-specific SSI-focused curricular resources on a variety of topics (Carson & Dawson, 2016; Christenson, Chang Rundgren, & Höglund, 2012; Dawson & Venville, 2010; Eilks, 2002; Eilks, Marks, & Feierabend, 2008; Friedrichsen, Sadler, Graham, & Brown, 2016; Kolstø, 2006; Lederman et al., 2014; H Lee et al., 2013; Peel et al., 2019; Sadler & Zeidler, 2005). However, only very few of the studies (Eilks, 2002; Friedrichsen et al., 2016; Zeidler et al., 2011) have focused on the process or products of SSI curricular design and the curricula from this research generally have not been distributed for classroom use. In addition, research has demonstrated the potentially transformative power to teachers of engaging in the design of reform-oriented, including SSI-focused, curricular resources (Coenders, Terlouw, Dijkstra, & Pieters, 2010; Eilks & Markic, 2011; Hancock, Friedrichsen, Kinslow, & Sadler, 2019; Zeidler et al., 2011).

In view of the demonstrated discrepancy between teachers’ perceptions and enactment of SSI; limited access to SSI curricular resources; the transformative value of engaging in reform-oriented curricular design; and the potential of SSI-based pedagogy to promote reform-oriented learning experiences; we view supporting teachers in the design of SSI-oriented curricula as a promising approach to educational reform. This project reflects that view. We sought to support pre-service science teachers (PSTs) in their uptake of SSI-based teaching in a Science Methods course through our design and teaching of an SSI Teaching Module intended to: 1) engage PSTs as learners in an authentic SSI science unit; 2) guide PSTs in making sense of an SSI approach to teaching and learning; and 3) support PSTs in designing SSI-based curricular units. The purpose of this paper is to describe our Teaching Module and share related resources with teacher educators, as well as to provide some examples of PSTs’ challenges, successes, and responses to the experience. It is our hope that the Teaching Module will serve as an inspiration for teacher educators interested in supporting future science teachers’ uptake of SSI.

SSI-TL – A Framework to Operationalize SSI-Based Pedagogy

Our group has developed the SSI Teaching and Learning (SSI-TL) Framework (Sadler et al., 2017) for the purpose of supporting teachers’ uptake of SSI-based teaching. Intended as a guide for classroom teachers, the SSI-TL framework highlights elements we consider to be essential to teaching science with SSI, while also remaining highly adaptable to various subdisciplines, courses, and classroom contexts in K-12 science education. SSI-TL is one instantiation of SSI-based teaching, developed from multiple projects that utilized research-based SSI frameworks featured in previous literature (Foulk, 2016; Friedrichsen et al., 2016; Klosterman & Sadler, 2010; Presley et al., 2013; Sadler, 2011; Sadler et al., 2015; Sadler et al., 2016). This project contributed to the development of SSI-TL, and we drew from an intermediate version of the framework throughout the project (See Figure 1).

Figure 1 (Click on image to enlarge)
SSI-TL Framework

SSI-TL specifies requisite components of SSI-based learning experiences, the sum total of which are necessary for a complete SSI-TL curricular unit. Such a unit consists of a cohesive, two- to three-week sequence of lessons designed around a particular SSI, to promote students’ achievement of a defined set of science learning objectives. Within any SSI-TL curricular unit, a focal SSI is foregrounded in the curricular sequence and revisited regularly throughout the unit, in order to serve as both motivation and context for learners’ engagement in authentic science practices and sensemaking about science ideas. A continuous focus on the selected SSI also guides students in exploration of societal dimensions of the issue; that is, the potential impacts of the issue on society, such as those of a social, political, or economic nature. Participation in an SSI-TL unit is intended to engage students in sensemaking about both the relevant science ideas and the societal dimensions of the issue. Student learning in SSI-based teaching is assessed with a culminating project in which learners synthesize their understanding of scientific and societal aspects relevant to the issue. In this project, our intermediate version of the SSI-TL framework served as both a representation of SSI-based teaching and a tool to support PSTs’ uptake of the approach.

The SSI Teaching Module in a Methods Course

Project Context, Goals, and Audience

The project described in this paper consisted of a six-week SSI Teaching Module that was implemented during a semester-long Science Methods course for secondary PSTs. The Science Methods course was the last in a sequence of three required methods courses in an undergraduate secondary science education program, and occurred immediately prior to the student teaching experience. The focus of the 16-week course was curricular planning and development, and the primary course goal was that PSTs would be able to design a coherent secondary science curricular unit, consisting of a two- to three-week sequence of related lessons organized around selected NGSS performance expectations. The purposes of the six-week SSI Teaching Module were to facilitate PSTs’ familiarity with SSI-based teaching; to explicate and challenge, as appropriate, PSTs’ perceptions about SSI; and to promote PSTs’ learning about SSI-based science teaching, as evidenced by their ability to develop cohesive science curricular units consistent with the SSI-TL framework.

A cohort of 13 PSTs in their final year of undergraduate coursework completed the SSI Teaching Module during Fall 2015. The first author developed and taught the SSI Teaching Module and the Science Methods course and conducted assessment of PSTs’ work in the course. The second author served in an advisory capacity during design, enactment, and assessment phases of the Teaching Module and Methods course. Both the second and third authors served as advisors during the writing stages of the project.

Project Design

The SSI Teaching Module consisted of three distinct phases, in which PSTs engaged with SSI-based science education from the perspectives of learner, teacher, and curriculum maker. (See SSI Teaching Module Schedule, below). In the first phase of the SSI Teaching Module, PSTs participated as learners of science in a sample secondary science unit designed using the SSI-TL framework, learning science content which was contextualized in an authentic SSI. (See SSI units for secondary science at our project website: In the second phase of the SSI Teaching Module, the PSTs spent time considering their SSI learning experience, this time from a teacher perspective, with explicit attention to the SSI-TL framework and key components of the sample SSI unit. Finally, in the third phase, the PSTs created SSI-based curricular units for use in their future secondary science classrooms. In all phases of the SSI Teaching Module, PSTs were asked to engage in personal reflection about their perceptions of SSI and its potential utility in their future teaching practice, with various writing prompts used during class, reflective writing assignments, and in-class discussion. More detailed description of each phase of the SSI Teaching Module follows (See Table 1).

Table 1 (Click on image to enlarge)
SSI Teaching Module Schedule

SSI Teaching Module – Phase 1: Learning Science with SSI

The first phase of the SSI Teaching Module focused on PSTs’ engagement with a sample SSI-TL unit. The sample unit was developed for an Advanced Exercise Science course at the secondary level, using NGSS standards relevant to the topic of energy systems, and presented through a nutritional science lens. The focal SSI for the nutrition unit was taxation of obesogenic foods. The SSI nutrition unit, as representation of the SSI-TL approach, engaged PSTs in several learning activities appropriate for incorporation into their own secondary-level SSI curricular unit designs. During this phase PSTs explored societal dimensions of the issue and engaged in sensemaking about the relevant science ideas, just as secondary students would do. Find the complete “Fat Tax” SSI-TL unit plan on our project website: Tax/intro.

The nutrition focus of the sample SSI unit was purposely selected for several reasons. First, this choice of topic leveraged the first author’s personal background and interest in nutritional sciences. Second, a pair of teaching partners in a local secondary school had approached the first author for help with preparing a unit for a new course they would be teaching. Finally, this topic offered opportunities for the methods students who had content backgrounds in different science disciplines to see the integration of diverse science ideas, and to build upon their own content knowledge. The SSI nutrition unit and the secondary course for which it was prepared represented authentic possibilities for PSTs’ future teaching assignments.

As specified in the SSI-TL framework, the SSI nutrition unit was introduced with a focal SSI. PSTs began by reading an article about a proposed “fat tax,” and were then asked to articulate and share ideas about the issue, providing reasoning to support their positions. Various positions were proposed, and a lively discussion followed. “Henry,” who had previously worked in a grocery store, shared initial support for the tax, justified by his personal observations of patterns in consumer buying habits. “Gregg” pushed back on what he considered to be stereotyping in Henry’s example, and argued that taxation of groups of food items toward controlling consumer choice was not within the purview of government agencies and could place an unnecessary burden on population subgroups such as college students and young families, who might depend on convenience foods during particular life phases. Various PSTs shared about personal and family experiences linking nutrition and health, which highlighted the challenge of defining “healthful” nutrition. The result of this introductory activity was PSTs’ recognition of their need to better understand both scientific and societal dimensions of the issue.

Because societal dimensions of SSI are a key focus of SSI-based teaching, and because research indicates that science teachers may struggle most with this component of SSI (Sadler et al., 2006), the relevant social aspects of the nutrition focal SSI were heavily featured in the SSI Teaching Module. An example of a nutrition lesson that emphasized societal dimensions of the focal SSI was one that incorporated an SSI Timeline activity (Foulk, Friedrichsen, & Sadler, 2020). In small groups, PSTs explored historically significant nutrition recommendations, summarizing their findings and posting them on a collaborative class timeline. Then the PSTs discussed their collective findings, comparing and contrasting nutrition recommendations through the years, and proposing significant historical events that may have impacted recommendations. Next, the small groups reconvened to research scientific, political, and economic events, which had been selected for their historical significance to nutritional health. PSTs summarized the impact of their assigned events, color coded according to the nature of impacts on historical nutritional recommendations. The result was a very engaged group of learner-participants, and a great deal of discussion about their new understandings of nutrition policy. Following the introduction of the issue and participation in this timeline activity, PSTs expressed an awareness that meaningful interpretation and assessment of commonly shared nutrition advice (e.g., “eat everything in moderation” or “avoid cholesterol and saturated fat”) depends on an understanding of scientific ideas about nutrition. Specifically, the PSTs recognized their need to be able to make sense of the structure and function of nutrition macromolecules and their significance in metabolic pathways. As learners, PSTs benefitted from this activity by identifying science concepts they needed to know in order to address the focal issue (See Figure 2 and Figure 3).

Figure 2 (Click on image to enlarge)
SSI Timeline Activity

Figure 3 (Click on image to enlarge)
SSI Timeline Categories of Societal Dimensions

SSI Teaching Module – Phase 2: Teaching Science with SSI

The second phase of the SSI Teaching Module allowed PSTs to reflect on their learner experiences with the SSI nutrition unit, from the perspective of teachers. After participating in selected portions of the SSI nutrition unit, the PSTs began the process of unpacking their experience and making sense of the teaching approach. They were first asked to inspect the SSI-TL framework, and then they received written copies of the SSI nutrition unit for comparison. In small groups PSTs discussed elements of the framework they were able to distinguish in the nutrition unit, as well as the purposes they saw for each activity they had identified. A whole class discussion of the unit resulted in a mapping of the unit to the SSI-TL framework (See Figure 4).

Figure 4 (Click on image to enlarge)
Unit Map

In another lesson during the second phase of the SSI Teaching Module, a whole class discussion of the philosophical assumptions of the SSI-TL framework helped PSTs to consider broader educational purposes of the approach (Zeidler, 2014a). The instructor again provided a copy of the framework and asked PSTs to consider ways it compared and contrasted to their experiences as learners of science, and their ideas about teaching science. During the discussion, “Travis” shared, “I would’ve eaten this up as a high school student, because I didn’t always like science classes. I think connecting science to real life is a great way to reach students who might not like science otherwise.” Conversely, “Dale” expressed his concerns about shaking up tried and true teaching methods in his subdiscipline, arguing that there are more beneficial ways to teach than forcing science learning into SSI: “Everything we teach at the high school level for physics was settled 200 years ago. Why should students spend time looking at news stories and history?” The group revisited these conversations about educational philosophy and socioscientific issues frequently.

Following a whole class discussion about the SSI-TL framework and nutrition unit as an exemplar, PSTs used the framework to collaboratively analyze examples of externally created SSI-focused curricula. Small groups identified components of SSI-based teaching such as the focal issue, opportunities to consider societal dimensions of the issue, and connections to relevant science ideas. (Friedrichsen et al., 2016; Schibuk, 2015; Zeidler & Kahn, 2014a, 2014b, 2014c). Finally, individual PSTs completed a structured analysis of these assigned SSI curricular units. This activity served to further help the PSTs in identifying key components of SSI-based science curricula, and to see varied ways that classroom activities, lessons, and units might be created to align with the approach. See the analysis rubric tool designed to support PSTs’ individual curricular analyses (See Figure 5).

Figure 5 (Click on image to enlarge)
Curriculum Analysis Rubric

SSI Teaching Module – Phase 3: Designing SSI Curricula

The third and final phase of the SSI Teaching Module focused on curricular design. Because curricular design was the primary goal of the Science Methods course, activities prior to the SSI Teaching Module had been designed to engage PSTs in utilizing NGSS and other educational standards, as well as in structuring and planning for meaningful learning activities in secondary science classrooms. This phase of the SSI Teaching Module was designed to build upon the PSTs’ prior experiences with elements of curriculum planning, and to integrate them with the activities of the previous phases of the module.

Over a series of lessons, in various formats, and with numerous feedback opportunities, the PSTs were supported in their development of a cohesive SSI-focused curricular unit designed around the SSI-TL framework, which served as the culminating course project. With regular instructor feedback, in both in-class collaborative settings and as out-of-class assignments, PSTs selected topics applicable to their science certification areas, brainstormed potential focal SSIs in which to contextualize their science units, and identified NGSS standards most relevant to their topics. In addition to feedback from both instructor comments and class discussions, PSTs used several resources intended as tools to guide their process, including the SSI-TL framework, written requirements for the SSI Curriculum Design task, access to the SSI nutrition unit from phase one of the SSI Teaching Module, and an electronic template in which to create their units (See Figure 6).

Figure 6 (Click on image to enlarge)
Curriculum Design Task Requirements

All activities in phase three of the SSI Teaching Module served to help PSTs draft detailed unit overviews consisting of a two- to three-week sequence of lessons with multiple detailed lesson plans, specifically focused on introducing the focal SSI, exploring societal dimensions of the issue, and activities for mastery of related science content ideas. Assessment of PSTs’ units was based upon a detailed scoring rubric collaboratively constructed with the PSTs during the third phase of the Teaching Module. Together the course instructor and PSTs used the Curriculum Design Task Requirements and the SSI-TL framework, as well as the Curriculum Analysis Rubric, to prioritize elements and characteristics of SSI units. Finished units were later assessed for alignment to the SSI-TL framework in terms of unit structure, principles of SSI, and general quality of activities and lessons. See the scoring rubric for the unit design task, below. Note also that NGSS-aligned lesson plan design was a requirement for the PSTs in a previous methods course and continued as an expectation throughout PSTs’ education program. Selected PSTs’ SSI unit design products are summarized (See Figure 7 and Table 2).

Figure 7 (Click on image to enlarge)
SSI Unit Design Task – Scoring Rubric


Table 2 (Click on image to enlarge)
Table of Selected PST Curricular Units


Discussion & Conclusion

In this project, we sought address the tension between K-12 science teachers’ favorable perceptions of SSI-based pedagogy and their simultaneous unlikelihood to utilize SSI in their science classrooms. Specifially, we designed and implemented an SSI Teaching Module intended to leverage the transformative potential of the curriculum design process, in an effort to address commonly cited barriers to SSI-based pedagogy enactment, including: unfamiliarity or discomfort with SSI-based teaching; lack of access to SSI curricular resources; and misalignment between teachers’ perceptions and the pedagogical philosophy of SSI. We observed several specific examples of favorable impacts for the PST participants in this experience.

First, PSTs expressed excitement about learning with SSI. In a whole class conversation following phase one of the teaching module, Adam described his positive experience as a learner of SSI. Referring specifically to the use of SSI and related societal dimensions in the learning experience, he commented, “I think as a [secondary] student I would’ve been, like, sucked in from the very first day of the nutrition unit.” Adam’s sentiment echoed the enthusiasm that Travis had clearly demonstrated during phase one of the SSI Teaching Module. Having previously spoken to the first author privately regarding his uncertainty about a career path in education, Travis exceeded task expectations during the learner phase of the project. In ways that were atypical for him, Travis assumed leadership responsibilities for his group, encouraging his peers to explore and make connections among science and societal dimensions of the issue they were studying. On one occasion, Travis stayed after class to make additional contributions to the collaborative activity from that day’s lesson, describing to the first author his own engagement during participation in the SSI nutrition unit in class. During a whole class discussion in phase two of the SSI Teaching Module, Travis spoke favorably of his firsthand experience with SSI and enthusiastically shared with his peers his perception of the potential for SSI to promote learner engagement, particularly for those students who, like himself, are likely to find traditional K-12 science coursework unenjoyable.

Second, PSTs expressed enthusiasm for teaching with SSI during phases two and three of the SSI Teaching Module. In class conversations about the SSI-TL framework as well as in written reflections about SSI unit design required with the Unit Design Task, multiple PSTs expressed enthusiasm for SSI and plans to use it, despite its challenges. For example, after designing his unit, “Cooper” wrote, “I found that creating this [SSI] unit about waves was challenging, but also sort of exciting, because it makes me think about how much I’m looking forward to being a teacher.” Similarly, during our whole class discussion about the philosophical underpinnings of SSI, Adam repeatedly expressed his perception of the value of teaching science with SSI. Adam’s SSI curricular unit design was exceptional for his thoughtful choice of issue and the complex connections he made among science ideas and societal dimensions related to the issue, and his comments throughout the learner experience indicated his consideration of the challenges and possible solutions to utilizing SSI in the classroom. During his third year of teaching, Adam reached out to the first author to describe his own use of SSI-based pedagogy and asked for help in supporting veteran teachers in his department to take up the approach. Adam expressed a highly favorable view of teaching with SSI, and the project seemed to prepare him to do so.

Finally, PSTs demonstrated success in designing coherent SSI-TL curricular resources. Consistent with our framework, we considered an SSI unit to be successfully designed if it met the criteria specified in the Curriculum Design Task and Scoring Rubric, by including essential elements and characteristics of SSI and by representing the intent of the approach. Regarding elements and characteristics of SSI and by representing the intent of the approach. Regarding elements and characteristics, a unit overview was required, with specific reference to the science topic and related standards from NGSS, a thorough explanation of pertinent science ideas, and the selected focal SSI in which the unit was contextualized. The overview would also include a brief timeline describing a coherent sequence of lessons related to the topic. In addition, units were to include detailed plans for three specific types of lesson: introduction of the focal issue, exploration of societal dimensions of the issue, and explicit sensemaking about science ideas. Finally, a successful unit would describe plans for assessment, including requirements for a culminating unit project in which learners would demonstrate understanding of science ideas and societal dimensions related to the issue. Throughout the unit design, the selected SSI would feature prominently, and activities would allow for students’ meaningful sensemaking about the science ideas and societal dimensions relevant to the issue.

With participation in the SSI Teaching Module, support from their instructor, and interactions with the learning community in their methods course, each of our participant PSTs satisfied the requirements of the unit design task and designed curricular units consistent with the SSI-TL framework. PSTs were able to identify learning standards relevant to their selected science topics, provide explanations of their topics, and contextualize science learning opportunities within authentic, real-world issues. In addition, PSTs were able to create broad, cohesive overviews of their units, as well as detailed plans for specific lessons. Most notable with regard to the emphasis on SSI, PSTs were able to select relevant, appropriate socioscientific issues for their topics, and to thoughtfully weave these issues into their unit designs. PSTs reflected about general struggles related to selecting focal issues or integrating science ideas and societal dimensions, and the experiences in the SSI Teaching module that they found especially helpful, such as small group discussions during the planning process, and peer feedback on the drafts of their units.

Consistent with current calls for science education reform, we know SSI offer valuable opportunities for student learning, and we believe SSI curriculum design to be a beneficial way to support teachers’ uptake of SSI-based teaching. Furthermore, we view teacher education to be an appropriate context to support pre-service and early career teachers’ in making sense of and adopting the approach. We share the design of SSI Teaching Module to support other teacher educators in innovating pre-service methods courses toward promoting PSTs’ uptake of SSI.


Borgerding, L. A., & Dagistan, M. (2018). Preservice science teachers’ concerns and approaches for teaching socioscientific and controversial issues. Journal of Science Teacher Education, 29, 283-306.

Bybee, R. W. (1993). Leadership, Responsibility, and Reform in Science Education. Science Educator, 2(1), 1-9.

Carson, K., & Dawson, V. (2016). A teacher professional development model for teaching socioscientific issues. Teaching science, 62(1), 28.

Christenson, N., Chang Rundgren, S.-N., & Höglund, H.-O. (2012). Using the SEE-SEP Model to Analyze Upper Secondary Students’ Use of Supporting Reasons in Arguing Socioscientific Issues. Journal of Science Education and Technology, 21, 342-352.

Coenders, F. G., Terlouw, C., Dijkstra, S., & Pieters, J. (2010). The effects of the design and development of a chemistry curriculum reform on teachers’ professional growth: A case study. Journal of Science Teacher Education, 21, 535-557.

Dawson, V., & Venville, G. (2010). Teaching strategies for developing students’ argumentation skills about socioscientific issues in high school genetics. Research in Science Education, 40, 133-148.

Dawson, V., & Venville, G. (2013). Introducing High School Biology Students to Argumentation About Socioscientific Issues. Canadian Journal of Science, Mathematics and Technology Education, 13(4).

Eilks, I. (2002). Teaching ‘Biodiesel’: A sociocritical and problem-oriented approach to chemistry teaching and students’ first views on it. Chemistry Education Research and Practice, 3(1), 77-85.

Eilks, I., & Markic, S. (2011). Effects of a Long-Term Participatory Action Research Project on Science Teachers’ Professional Development. Eurasia Journal of Mathematics, Science & Technology Education, 7(3).

Eilks, I., Marks, R., & Feierabend, T. (2008). Science education research to prepare future citizens–Chemistry learning in a socio-critical and problem-oriented approach. Promoting successful science learning–The worth of science education research, 75-86.

Foulk, J. A. (2016). Changes in pre-service teachers’ ideas about socioscientific issues teaching and learning in a science methods course. Paper presented at the annual meeting of the National Association for Research in Science Teaching, Baltimore, Maryland.

Foulk, J. A., Friedrichsen, P., & Sadler, T. D. (2020). Embedding Science in Socio-scientific Issues: Teaching with A Timeline Activity. The Science Teacher, 87(7),

Fowler, S. R., Zeidler, D. L., & Sadler, T. D. (2009). Moral sensitivity in the context of socioscientific issues in high school science students. International Journal of Science Education, 31, 279-296.

Friedrichsen, P., Sadler, T. D., Graham, K., & Brown, P. (2016). Design of a socio-scientific issue curriculum unit: Antibiotic resistance, natural selection, and modeling. International Journal of Designs for Learning, 7(1).

Hancock, T. S., Friedrichsen, P. J., Kinslow, A. T., & Sadler, T. D. (2019). Selecting Socio-scientific Issues for Teaching. Science & Education, 28, 639-667.

Hansen, K. H., & Olson, J. (1996). How teachers construe curriculum integration: The science, technology, society (STS) movement as Bildung. Journal of Curriculum Studies, 28, 669-682.

Khishfe, R., & Lederman, N. (2006). Teaching nature of science within a controversial topic: Integrated versus nonintegrated. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 43, 395-418.

Kinslow, A. T., & Sadler, T. D. (2018). Making Science Relevant: Using Socio-Scientific Issues to Foster Critical Thinking, 40.

Klosterman, M. L., & Sadler, T. D. (2010). Multi‐level Assessment of Scientific Content Knowledge Gains Associated with Socioscientific Issues‐based Instruction. International Journal of Science Education, 32, 1017-1043.

Kolstø, S. D. (2006). Patterns in Students’ Argumentation Confronted with a Risk‐focused Socio‐scientific Issue. International Journal of Science Education, 28, 1689-1716.

Kolstø, S. D., Bungum, B., Arnesen, E., Isnes, A., Kristensen, T., Mathiassen, K., . . . Ulvik, M. (2006). Science students’ critical examination of scientific information related to socioscientific issues. Science Education, 90, 632-655.

Lederman, N. G., Antink, A., & Bartos, S. (2014). Nature of science, scientific inquiry, and socio-scientific issues arising from genetics: A pathway to developing a scientifically literate citizenry. Science & Education, 23, 285-302.

Lee, H., Abd‐El‐Khalick, F., & Choi, K. (2006). Korean science teachers’ perceptions of the introduction of socio‐scientific issues into the science curriculum. Canadian Journal of Science, Mathematics and Technology Education, 6, 97-117.

Lee, H., Yoo, J., Choi, K., Kim, S.-W., Krajcik, J., Herman, B. C., & Zeidler, D. L. (2013). Socioscientific Issues as a Vehicle for Promoting Character and Values for Global Citizens. International Journal of Science Education, 35(12).

Lee, M. K., & Erdogan, I. (2007). The effect of science–technology–society teaching on students’ attitudes toward science and certain aspects of creativity. International Journal of Science Education, 29, 1315-1327.

Lumpe, Haney, & Czerniak. (1998). Science teacher beliefs and intentions regarding the use of cooperative learning. School Science and Mathematics, 98, 123-135.

Owens, D. C., Sadler, T. D., & Friedrichsen, P. (2019). Teaching Practices for Enactment of Socio-scientific Issues Instruction: an Instrumental Case Study of an Experienced Biology Teacher. Research in Science Education.

Peel, A., Zangori, L., Friedrichsen, P., Hayes, E., & Sadler, T. (2019). Students’ model-based explanations about natural selection and antibiotic resistance through socio-scientific issues-based learning. International Journal of Science Education, 41, 510-532.

Presley, M. L., Sickel, A. J., Muslu, N., Merle-Johnson, D., Witzig, S. B., Izci, K., & Sadler, T. D. (2013). A Framework for Socio-Scientific Issues Based Education. Science Educator, 22(1), 26-32.

Sadler, T. D. (2011). Socio-scientific issues in the classroom: Teaching, learning and research (Vol. 39): Springer Science & Business Media.

Sadler, T. D., Amirshokoohi, A., Kazempour, M., & Allspaw, K. M. (2006). Socioscience and ethics in science classrooms: Teacher perspectives and strategies. Journal of Research in Science Teaching, 43, 353-376.

Sadler, T. D., Chambers, F. W., & Zeidler, D. L. (2004). Student conceptualizations of the nature of science in response to a socioscientific issue. International Journal of Science Education, 26, 387-409.

Sadler, T. D., Foulk, J. A., & Friedrichsen, P. J. (2017). Evolution of a Model for Socio-Scientific Issue Teaching and Learning. International Journal of Education in Mathematics, Science and Technology, 5(1).

Sadler, T. D., Friedrichsen, P., Graham, K., Foulk, J., Tang, N., & Menon, D. (2015). The derivation of an instructional model and design processes for socioscientific issues-based teaching. Paper presented at the annual meeting of the National Association for Research in Science Teaching, Chicago IL.

Sadler, T. D., Klosterman, M. L., & Topcu, M. S. (2011). Learning science content and socio-scientific reasoning through classroom explorations of global climate change. In Socio-scientific Issues in the Classroom (pp. 45-77): Springer.

Sadler, T. D., Romine, W. L., & Topçu, M. S. (2016). Learning science content through socio-scientific issues-based instruction: A multi-level assessment study. International Journal of Science Education, 38, 1622-1635.

Sadler, T. D., & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research in Science Teaching, 42, 112-138.

Saunders, K. J., & Rennie, L. J. (2013). A Pedagogical Model for Ethical Inquiry into Socioscientific Issues In Science. Research in Science Education, 43(1).

Schibuk, E. (2015). Teaching the Manhattan Project. The Science Teacher, 82(7), 27.

Science Education Resource Center. Using Issues to Teach Science. Pedagogy in Action: Connecting Theory to Practice. Retrieved from

Simonneaux, L. (2007). Argumentation in Science Education: An Overview. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in Science Education: Perspectives from Classroom-Based Research (pp. 179-199). Dordrecht: Springer Netherlands.

The ReSTEM Institute. [RI]^2 Modules. Rigorous Investigations of Relevant Issues. Retrieved from

Venville, G., & Dawson, V. (2010). The impact of a classroom intervention on grade 10 students’ argumentation skills, informal reasoning, and conceptual understanding of science. Journal of Research in Science Teaching, 47, 952-977.

Zangori, L., Peel, A., Kinslow, A., Friedrichsen, P., & Sadler, T. D. (2017). Student development of model‐based reasoning about carbon cycling and climate change in a socio‐scientific issues unit. Journal of Research in Science Teaching, 54, 1249-1273.

Zeidler, D. L. (2014a). Socioscientific issues as a curriculum emphasis: Theory, research, and practice. In Handbook of Research on Science Education, Volume II (pp. 711-740): Routledge.

Zeidler, D. L. (2014b). STEM education- A deficit framework for the twenty first century? A sociocultural socioscientific response.

Zeidler, D. L., Applebaum, S. M., & Sadler, T. D. (2011). Enacting a socioscientific issues classroom: Transformative transformations. In Socio-scientific issues in the classroom (pp. 277-305): Springer.

Zeidler, D. L., & Kahn, S. (2014a). It’s Debatable!: Using Socioscientific Issues to Develop Scientific Literacy K-12: NSTA press.

Zeidler, D. L., & Kahn, S. (2014b). “Mined” Over Matter. In It’s Debatable!: Using Socioscientific Issues to Develop Scientific Literacy K-12 (pp. 221-260): NSTA Press.

Zeidler, D. L., & Kahn, S. (2014c). “Pharma’s” Market. In It’s Debatable!: Using Socioscientific Issues to Develop Scientific Literacy K-12 (pp. 262-292): NSTA Press.



A Framework for Science Exploration: Examining Successes and Challenges for Preservice Teachers

Print Friendly, PDF & Email

Croce, K. (2020). A framework for science exploration: Examining successes and challenges for preservice teachers. Innovations in Science Teacher Education, 5(2). Retrieved from

by Keri-Anne Croce, Towson University


Undergraduate preservice teachers examined the Science Texts Analysis Model during a university course. The Science Texts Analysis Model is designed to support teachers as they help students prepare to engage with the arguments in science texts. The preservice teachers received instruction during class time on campus before employing the model when teaching science to elementary and middle school students in Baltimore city. This article describes how the preservice teachers applied their knowledge of the Science Texts Analysis Model within this real world context. Preservice teachers’ reactions to the methodology are examined in order to provide recommendations for future college courses.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership


Arnold, N. (2013). Comment ca marche? Moteurs et voitures. Paris: Gallimard Jeunesse

Croce, K. (2014). Assessment of Burmese refugee students’ meaning making of scientific informational texts. Journal of Early Childhood Literacy, 14, 389-424.

Croce, K. (2015). Latino(a) and Burmese elementary school students reading scientific informational texts: The interrelationship of the language of the texts, students’ talk, and conceptual change theory. Linguistics and Education, 29, 94-106.

Croce, K. (2017). Navigating assessment with linguistically diverse learners. Charlotte: Information Age Publishing

Colman, J. & Goldston, J. (2011). What do you see? Science and Children, 49(1), 42-47.

Colman, J. & McTigue, E. (2013). Methods & Strategies: Unlocking the power of visual communication. Science and Children, 50(5), 73-77.

Cosgrove, B. (2004). Weather. New York: DK Publishing.

Dusling, J. (1998). Bugs! Bugs! Bugs! New York: DK Publishing

Fang, Z. & Coatom, S. (2013). Disciplinary literacy: What you want to know about it. Journal of Adolescent & Adult literacy, 56, 627-632.

Gibbons, G. (1991). From seed to plant. New York: Holiday House.

Green, R. (1986). Caterpillars. New York: Mondo publishing

Halliday, M.A.K. & Hasan, R. (1985). Language, context, and text: Aspects of language in a social semiotic perspective. New York: Oxford University Press

Kress, G. (1999). Genre and the changing contexts for English language arts. Language Arts, 76, 461-469.

Mawyer and Johnson (2017). Read like a scientist. The Science Teacher, 84(10). 43-48.

Miller, D. & Czegan, D. (2016). Integrating the liberal arts and chemistry: A series of general chemistry assignments to develop science literacy. Journal of Chemical Education, 93, 864-869.

National Academies of Sciences, Engineering, and Medicine. (2017). Seeing students learn science: Integrating assessment and instruction in the classroom. Washington, DC: The National Academies Press.

National Research Council. (2012). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas. Committee on a conceptual framework for new K–12. Science education standards. Board on science education, Division of behavioral and social sciences and education. Washington, DC: The National Academies Press.

Next Generation Science Standards (2013). Connections to the Common Core Standards for literacy in science and technical subjects.

Shanahan, T. & Shanahan, C. (2012). What is disciplinary literacy and why does it matter? Topics in Language Disorders, 32(1), 7-18.

Shore, L. (2010). How to make slime. Mankato: MN, Capstone Press.

Simon, S. (1999).Tornadoes. New York: HarperCollins Publishing.

Simon, S. (2006). Volcanoes. New York: HarperCollins Publishing.

Parsons, A. (1990). Amazing Spiders. Dorling Kindersley: London.

Partnership for 21st Century Learning. (2007). Framework for 21st Century Learning.

Wicks, M. (2016). Science Comics: Coral Reefs: Cities of the Ocean. New York: First Second.

Wiesner, D. (2006). Flotsam. New York: Clarion Books

Enacting Wonder-infused Pedagogy in an Elementary Science Methods Course

Print Friendly, PDF & Email

Gilbert, A., & Byers, C.C. (2020). Enacting wonder-infused pedagogy in an elementary science methods course. Innovations in Science Teacher Education, 5(1). Retrieved from

by Andrew Gilbert, George Mason University; & Christie C. Byers, George Mason University


Future elementary teachers commonly experience a sense of disconnection and lack of confidence in teaching science, often related to their own negative experiences with school science. As a result, teacher educators are faced with the challenge of engaging future teachers in ways that build confidence and help them develop positive associations with science. In this article, we present wonder-infused pedagogy as a means to create positive pathways for future teachers to engage with both science content and teaching. We first articulate the theoretical foundations underpinning conceptions of wonder in relation to science education, and then move on to share specific practical activities designed to integrate elements of wonder into an elementary methods course. We envision wonder-infused pedagogy not as a disruptive force in standard science methods courses, but rather an effort to deepen inquiry and connect it to the emotive and imaginative selves of our students. The article closes with thorough descriptions of wonder related activities including wonder journaling and a wonder fair in order to illustrate the pedagogical possibilities of this approach. We provide student examples of these artifacts and exit tickets articulating student experiences within the course. We also consider possible challenges that teacher educators may encounter during this process and methods to address those possible hurdles. We found that the process involved in wonder-infused pedagogy provided possibilities for future teachers to reconnect and rekindle a joyful relationship with authentic science practice.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership


Akerson, V., Morrison. J, & McDuffie, A. (2006). One course is not enough: Preservice elementary teachers’ retention of improved views of nature of science. Journal of Research in Science Teaching, 43, 194–213.

Atkins, L., & Salter, I. (2015). Engaging future teachers in having wonderful ideas. In C. Sandifer and E. Brewe (Eds.). Recruiting and Educating Future Physics Teachers: Case Studies and Effective Practices (pp. 199-213). College Park, MD: American Physical Society.

Bianchi, L. (2014). The keys to wonder-rich science learning. In K. Egan, A. Cant, & G. Judson (Eds.). Wonder-Full education: The centrality of wonder in teaching, and learning across the curriculum (pp. 190–203). New York, NY: Routledge.

Brand, B., & Wilkins, J. (2007). Using self-efficacy as a construct for evaluating science and mathematics methods courses. Journal of Science Teacher Education, 18, 299–317. Retrieved from

Bybee, R. (2015). The BSCS 5E instructional model: Creating teachable moments. Arlington, VA: NSTA Press.

Bybee, R. (2002). Learning Science and the Science of Learning. Arlington, VA: National Science Teacher Association Press.

Carson, R. (1965). The sense of wonder. New York, NY: Harper and Row.

Cobb, E. (1977). The ecology of imagination in childhood. New York, NY. Columbia University Press.

Cox, B. (2011). Wonders of the universe. London, England: Harper Collins.

Egan, K. (2005). An imaginative approach to teaching. San Francisco, CA: Jossey-Bass.

Einstein, A. (1931). Living philosophies. New York, NY: Simon & Schuster.

Gilbert, A. (2009). Utilizing science philosophy statements to facilitate K-3 teacher candidate’s development of inquiry-based science practice. Early Childhood Education Journal, 36(5), 431-438.

Gilbert, A. (2013). Using the notion of ‘wonder’ to develop positive conceptions of science with future primary teachers. Science Education International, 24(1), 6-32. Retrieved from:

Gilbert, A. & Byers, C. (2017). Wonder as a tool to engage preservice elementary teachers in science learning and teaching. Science Education. 101(6), 907-928. Retrieved from

Hadzigeorgiou, Y. (2012). Fostering a sense of wonder in the science classroom. Research in Science Education, 42(5), 985–1005. Retrieved from

Hadzigeorgiou, Y. (2016). Imaginative science education: The central role of imagination in science education. Cham, Switzerland: Springer International.

Kenny, J. (2012). University-school partnerships: Preservice and in-service teachers working together to teach primary science.  Australian Journal of Teacher Education, 37(3), 57-82.

Llewellyn, D. (2002). Inquire Within: Implementing Inquiry Based Science Standards. California, USA: Corwin Press.

Mangiaracina, M. (2017). When is melting not really melting? Building explanations through exploration using an engaging toy. Science and Children, 55(4), 61-66.

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington DC: National Academies Press.

Piersol, (2014). Our hearts leap up: Awakening wonder within the classroom. In K. Egan, A. Cant, & G. Judson (Eds.). Wonder-Full education: The centrality of wonder in teaching, and learning across the curriculum (pp. 3-21). New York, NY: Routledge.

Schinkel, A. (2017). The educational importance of deep wonder. Journal of Philosophy of Education, 51(2), 538–553. Retrieved from

Trotman, D. (2014). Wow! What if? So what?: Education and the imagination of wonder: Fascination, possibilities and opportunities missed. In K. Egan, A. Cant, & G. Judson (Eds.). Wonder-Full education: The centrality of wonder in teaching, and learning across the curriculum (pp. 22-39). New York, NY: Routledge.

Tytler, R. (2007). Re-imagining Science Education Engaging students in science for Australia’s future. Camberwell, VIC: Australian Council for Educational Research.

Van Aalderen-Smeets, S., Walma Van Der Molen, J., & Asma, L. (2011). Primary teachers’ attitudes toward science: A new theoretical framework. Science Education, 96, 158–182. Retrieved from

Whitin, P., & Whitin, D. (1997). Inquiry at the window: Pursuing the wonders of learners. London: Heinemen.

Introducing the NGSS in Preservice Teacher Education

Print Friendly, PDF & Email

Hill, T., Davis, J., Presley, M., & Hanuscin, D. (2020). Introducing the NGSS in preservice teacher education. Innovations in Science Teacher Education, 5(1). Retrieved from

by Tiffany Hill, Emporia State University; Jeni Davis, Salisbury University; Morgan Presley, Ozarks Technical Community College; & Deborah Hanuscin, Western Washington University


While research has offered recommendations for supporting inservice teachers in learning to implement the NGSS, the literature provides fewer insights into supporting preservice teachers in this endeavor. In this article, we address this gap by sharing our collective wisdom generated through designing and implementing learning experiences in our methods courses. Through personal vignettes and sharing of instructional plans with the science teacher education community, we hope to contribute to the professional knowledge base and better understand what is both critical and possible for preservice teachers to learn about the NGSS.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership


Abell, S. K., Appleton, K., & Hanuscin, D. L. (2010) Designing and teaching the elementary science methods course. New York, NY: Routledge.

Bybee, R.W. (1997). Improving İnstruction. In Achieving scientific literacy: From purposes to practice. Portsmouth, NH: Heinemann.

Davis, E.A., Petish, D., Smithey, J. (2006). Challenges new science teachers face. Review of Educational Research, 76, 607-651.

Donnelly, L. A., & Sadler, T. D. (2009). High school science teachers’ views of standards and accountability. Science Education, 93, 1050-1075.

Duncan, R. G., & Cavera, V. L. (2015). DCIs, SEPs, and CCs, oh my! Understanding the three dimensions of the NGSS. Science and Children, 53(2), 16-20.

Donnelly, L. A., & Sadler, T. D. (2009). High school science teachers’ views of standards and accountability. Science Education, 93, 1050-1075.

Duschl, R. A. (2012). The second dimension–crosscutting concepts. Science and Children, 49(6), 34-38.

Feiman-Nemser, S. (2001). From preparation to practice: Designing a continuum to strengthen and sustain teaching. Teachers College Record, 103, 1013-1055.

Fisher, D. & Frey, N. (2008). Better learning through structured teaching: A framework for the gradual release of responsibility, Association for Supervision and Curriculum Development: Alexandria, VA.  

Hanuscin, D., Arnone, K.A., & Bautista, N. (2016a). Bridging the ‘next generation’ gap: Teacher educators implementing the NGSS. Innovations in Science Teacher Education, 1(1). Retrieved from

Lee, E., Cite, S., & Hanuscin, D. (2014). Mystery powders: Taking the “mystery” out of argumentation. Science & Children, 52(1), 46-52.

Hanuscin, D. Cisterna, D. & Lipsitz, K. (2018). Elementary teachers’ pedagogical content knowledge for teaching the structure and properties of matter. Journal of Science Teacher Education, 29, 665-692. DOI 10.1080/1046560X.2018.1488486

Hanuscin, D. & Zangori, L. (2016b) Developing practical knowledge of the Next Generation Science Standards in elementary science teacher education. Journal of Science Teacher Education, 27, 799-818.

King, K., Hanuscin, D., & Cisterna, D. (In Press). What properties matter? Exploring essential properties of matter. Science & Children.

National Governors Association Center for Best Practices, Council of Chief State School Officers. (2010). Common core state standards. National Governors Association Center for Best Practices, Council of Chief State School Officers: Washington D.C.

National Research Council. 2012. A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

Little, J. W. (1990). The persistence of privacy: Autonomy and initiative in teachers’ professional relations. Teachers College Record, 91, 509-536.

Lynch, M. (1997). Scientific practice and ordinary action: Ethnomethodology and social studies of science. Cambridge, UK: Cambridge University Press.

National Research Council. (2012). A Framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

Nollmeyer, G. E., & Bangert, A. (2015). Assessing K-5 elementary teachers understanding and readiness to teach the new framework for science education. The Researcher, 27(2), 7-13.

Putnam, R. T., & Borko, H. (2000). What do new views of knowledge and thinking have to say about research on teacher learning. Educational Researcher, 29(1), 4-15.

Reiser, B. J. (2013). What professional development strategies are needed for successful implementation of the Next Generation Science Standards? Invitational Research Symposium on Assessment, K-12 Center at ETS. Retrieved from

Ricketts, A. (2014). Preservice elementary teachers’ ideas about scientific practices. Science & Education, 23, 2119-2135.

Smith, J., & Nadelson, L. (2017). Finding alignment: The perceptions and integration of the next generation science standards practices by elementary teachers. School Science and Mathematics, 117, 194-203.

van Drie., J. H., Bijaard, D., & Verloop, N. (2001). Professional development and reform in science education: The role of teachers’ practice and knowledge. Journal of Research in Science Teaching, 38, 137-158.

Windschitl, M., Schwarz, C., & Passmore, C. (2014). Supporting the implementation of the next generation science standards (NGSS) through research: Preservice teacher education. Retrieved from

Winkler, A. (2002). Division in the ranks: Standardized testing draws lines between new and veteran teachers. Phi Delta Kappan, 84, 219-225.


Piloting an Adaptive Learning Platform with Elementary/Middle Science Methods

Print Friendly, PDF & Email

Vick M.E. (2019). Piloting an adaptive learning platform with elementary/middle science methods. Innovations in Science Teacher Education, 4(4). Retrieved from

by Matthew E. Vick, University of Wisconsin-Whitewater


Adaptive learning allows students to learn in customized, non-linear pathways. Students demonstrate prior knowledge and thus focus their learning on challenging content. They are continually assessed with low stakes questions allowing for identification of content mastery levels. A science methods course for preservice teachers piloted the use of adaptive learning. Design and implementation are described. Instructors need to realistically consider the time required to redesign a course in an adaptive learning system and to develop varied and numerous assessment questions. Overall, students had positive feelings toward the use of adaptive learning. Their mastery levels were not as high as anticipated by the instructor. The student outcomes on their summative assessment did not show high levels of transfer of the key content.

Keywords: Adaptive Learning, Science Methods, Pedagogy, Course Design

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership


Anderson, P. (n.d.).  Bozeman Science. Retrieved from

Bybee, R. (2002). Learning science and the science of learning.  Arlington, VA: NSTA Press.

Chen, B, Bastedo, K., Kirkley, D., Stull, C., & Tojo, J. (2017, August). Designing personalized adaptive learning courses at the University of Central Florida.  Educause Learning Initiative. Retrieved from

Dziuban, C. Howlin, C., Johnson, C., & Moskal, P. (2017, December, 18). An adaptive learning partnership.  EDUCAUSE Review. Retrieved from

Dziuban, C.D., Moskal, P.D., Cassisi, J., & Fawcett, A.  (2016, September). Adaptive learning in psychology: Wayfinding in the digital age. Online Learning, 3, 74-96.

Dziuban, C.D., Moskla, P.D., & Hartman, J. (2016, September 30). Adapting to learn, learning to adapt.  Research bulletin. Louisville, CO: ECAR.

Educause Learning Initiative (ELI). (2017, January). 7 Things You Should Know About Adaptive Learning. Retrieved from

Eisenkraft, A. (2003). Expanding the 5E model. The Science Teacher 70(6), 39-72.

Feldman, M. (2013, December 17). What faculty should know about adaptive learning. e-Literate blog. Retrieved from

Haysom, J., & Bowen, M. (2010). Predict, observe, explain: Activities enhancing scientific understanding. Arlington, VA: NSTA Press.

Howlin, C., & Lunch, D. (2014). A framework for the delivery of personalized adaptive content.  In 2014 International Conference on Web and Open Access to Learning (ICWOAL): 1-5. Retreieved from

Konicek-Moran, R., & Keeley, P. (2015). Teaching for conceptual understanding in science.  Arlington, VA:  NSTA Press.

NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

Ogle, D.M. 1986.  K-W-L:  A teaching model that develops active reading of expository text. The Reading Teacher, 39, 564-570.

Posner, G.J., Strike, K.A., Hewson, P.W., & Gertzog, W.A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211-227.

Richhart, R., Church, M., & Morrison, K. (2011). Making thinking visible: how to promote engagement, understanding, and independence for all learners. San Francisco, CA: Jossey-Bass.

Sloan, A. & Anderson, L. (2018, June 18). Adaptive learning unplugged: Why instructors matter more than ever. EDUCASE Review. Retrieved from

Wiggins, G. P.,  & McTighe, J. (2005). Understanding by design, 2nd edition. Alexandria, VA:  ASCD.


The Great Ice Investigation: Preparing Pre-Service Elementary Teachers for a Sensemaking Approach of Science Instruction

Print Friendly, PDF & Email

McFadden, J.R. (2019). The great ice investigation: Preparing preservice elementary teachers for a sensemaking approach of science instruction. Innovations in Science Teacher Education, 4(3). Retrieved from

by Justin R. McFadden, University of Louisville


The current article describes a sequence of lessons, readings, and resources aimed to prepare elementary preservice teachers for science instruction wherein student sensemaking, rather than vocabulary memorization, is prioritized. Within the article, I describe how the prompts, questions, and logistics of the The Great Ice Investigation drive my students’ in-class and out-of-class learning to start out every science methods course I teach. The readings and resources detailed that compliment the Great Ice Investigation should benefit both preservice as well as in-service elementary teachers just beginning to align their instruction with the Next Generation Science Standards. The lessons, readings, and resources described should be of value to science teacher educators looking to modify and improve how they prepare their students for next generation science instruction.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership


Tretter, T. & McFadden, J. (2018). Modeling structure and properties of matter: People as particles. Science and Children, 56(4), 67-73.Tretter, T. & McFadden, J. (2018). Modeling Structure and Properties of Matter: People as Particles. Science and Children, 56(4), 67-73.

Bybee, R. W. (2013). Using the 5E Model to Implement the NGSS: Translating the NGSS for classroom instruction. NSTA Press, National Science Teachers Association.

Bybee, R. W. (2014). The BSCS 5E instructional model: Personal reflections and contemporary implications. Science and Children, 51(8), 10-13.

Duncan R., Krajcik, J., & Rivet, A. (2016). Disciplinary Core Ideas: Reshaping Teaching and Learning. NTSA Press, National Science Teachers Association. ISBN: 978-1-938946-41-7.

Duncan, R. G., & Cavera, V. L. (2015). DCIs, SEPs, and CCs, oh my!: Understanding the three dimensions of the NGSS. The Science Teacher, 82(7), 67.

Harlen, W. (2015). Teaching Science for Understanding in Elementary and Middle Schools. Heinemann: Portsmouth, NH. ISBN: 978-0-325-06159-7.

Metz, K. (2008). Narrowing the gulf between the practices of science and the elementary school classroom. Elementary School Journal, 109, 138–161.

Moscovici, H., & Nelson, T. H. (1998). Shifting from activitymania to inquiry. Science and Children, 35(4), 14.

National Research Council. (2012) A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

NGSS Lead States. 2013. Next Generation Science Standards: For states, by states. Washington, DC: National Academies Press. next-generation-science-standards.

Penuel, W., Van Horne, K. & Bell, P. (2016). Steps to designing a three-dimensional assessment. Downloaded from:

Reiser, B., Brody, L., Novak, M., Tipton, K., Adams, L. (2017).  Asking questions. In Schwarz, C. V., Passmore, C., & Reiser, B. J. (Eds.), Helping students make sense of the world using next generation science and engineering practices. (p. 87-108). NSTA Press.

Van Zee, E. H., & Roberts, D. (2001). Using pedagogical inquiries as a basis for learning to teach: Prospective teachers’ reflections upon positive science learning experiences. Science Education, 85(6), 733-757.



Theory to Process to Practice: A Collaborative, Reflective, Practical Strategy Supporting Inservice Teacher Growth

Print Friendly, PDF & Email

Inouye, M., & Houseal, A. (2019). Theory to process to practice: A collaborative, reflective, practical strategy supporting inservice teacher growth. Innovations in Science Teacher Education, 4(1). Retrieved from

by Martha Inouye, University of Wyoming; & Ana Houseal, University of Wyoming


To successfully implement the Next Generation Science Standards (NGSS), more than 3.4 million in-service educators in the United States will have to understand the instructional shifts needed to adopt these new standards. Here, based on our recent experiences with teachers, we introduce a professional learning (PL) strategy that employs collaborative video analysis to help teachers adjust their instruction to promote the vision and learning objectives of the Standards. Building on effective professional development characteristics, we created and piloted it with teachers who were working on making student thinking visible. In our setting, it has been effective in providing relevant, sustainable changes to in-service teachers' classroom instruction.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership


Appleby, J. (1998). Becoming critical friends: Reflections of an NSRF coach. Providence, RI: Annenberg Institute for School Reform at Brown University

Ball, D.L., & Cohen, D.K. (1999). Developing practice, developing practitioners: Toward a practice-based theory of professional education. In G. Sykes & L. Darling-Hammond (Ed.), Teaching as the learning profession: Handbook of policy and practice (pp. 3–32). San Francisco, CA: Jossey Bass.

Banilower, E. R., Smith, S. P., Weiss, I. R., Malzahn, K. A., Campbell, K. M., & Weis, A. M. (2013). Report of the 2012 National Survey of Science and Mathematics Education. Chapel Hill, NC: Horizon Research, Inc.

Beaudoin, C., Johnston, P., Jones, L., & Waggett, R. (2013). University support of secondary stem teachers through professional development. Education, 133, 330-339.

Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. Educational Researcher, 33(8), 3–15.

Bybee, R (2014). NGSS and the next generation of science teachers. Journal for Science Teacher Education, 25, 211-221.

Cormas, P. C., & Barufaldi, J. P. (2011). The effective research-based characteristics of professional development of the national science foundation’s GK-12 program. Journal of Science Teacher Education, 22, 255-272.

Fullan, M., Hill, P., & Crevola, C. (2006). Breakthrough. Thousand Oaks, CA: Corwin Press.

Guskey, T. R. (1984). The influence of change in instructional effectiveness upon the affective characteristics of teachers. American Educational Research Journal, 21, 245-259.

Guskey, T. R. (2002). Professional development and teacher change. Teachers and Teaching: Theory and Practice, 8, 381–391.

Hestness, E., McDonald, R. C., Breslyn, W., McGinnis, J. R., & Mouza, C. (2014). Science teacher professional development in climate change education informed by the Next Generation Science Standards. Journal of Geoscience Education62, 319-329.

Houseal, A. K., Abd El Khalick, F., & Destefano, L. (2014). Impact of a Student-Teacher-Scientist Partnership on students’ and teachers’ content knowledge, attitudes toward science, and pedagogical practices. Journal of Research in Science Teaching. 51, 84-115.

Keeley, Page. (2008). Science formative assessment: 75 practical strategies for linking assessment, instruction, and learning. Thousand Oaks, CA: Corwin Press.

Krajcik, J. (2015). Three-dimensional instruction: Using a new type of teaching in the science classroom. The Science Teacher, 83(8), 50–52.

Mehan, H. (1979). Learning lessons: social organization in the classroom. Cambridge, MA: Harvard University Press.

Mezirow, J. (1990). Fostering critical reflection in adulthood: A guide to transformative and emancipatory learning. San Francisco: Jossey-Bass.

Miller, R. G., Curwen, M. S., White-Smith, K. A., & Calfee, R. C. (2014). Cultivating primary students’ scientific thinking through sustained teacher professional development. Early Childhood Education Journal, 43, 317-326.

Nagle, B. (2013). Preparing high school students for the interdisciplinary nature of modern biology. CBE-Life Sciences Education12, 144-147.

National Academies of Sciences, Engineering, and Medicine. (2015). Science Teachers Learning: Enhancing Opportunities, Creating Supportive Contexts. Washington, DC: The National Academies Press.

National Research Council. [NRC]. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

NRC. (2015). Guide to Implementing the Next Generation Science Standards. Washington, DC: National Academies Press. Available at

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: National Academies Press.

Reiser, B.J. (2013). What Professional Development Strategies Are Needed for Successful Implementation of the Next Generation Science Standards? Paper written for the Invitational Research Symposium on Science Assessment, September 24-25, Educational Testing Service, Washington, DC. Available at

Roth, K., Garnier, H., Chen, C., Lemmens, M., Schwille, K., & Wickler, N. (2011). Videobased lesson analysis: Effective science PD for teacher and student learning. Journal of Research in Science Teaching, 48, 117-148.

U.S. Department of Education, National Center for Education Statistics, Schools and Staffing Survey (SASS), “Public School Teacher Data File,” 2011–12.

Project Zero. (2016). Visible Thinking. Retrieved from

Wei, R. C., Darling-Hammond, L., and Adamson, F. (2010). Professional development in the United States: Trends and challenges. Dallas, TX: National Staff Development Council.