Science Units of Study with a Language Lens: Preparing Teachers for Diverse Classrooms

Citation
Print Friendly, PDF & Email

Heineke, A.J., & McTighe, J. (2019). Science units of study with a language lens: Preparing teachers for diverse classrooms. Innovations in Science Teacher Education, 4(3). Retrieved from https://innovations.theaste.org/science-units-of-study-with-a-language-lens-preparing-teachers-for-diverse-classrooms/

by Amy J. Heineke, Loyola University Chicago; & Jay McTighe, McTighe & Associates Consulting

Abstract

Recent educational policy reforms have reinvigorated the conversation regarding the role of language in the science classroom. In schools, the Next Generation Science Standards have prompted pedagogical shifts yielding language-rich science and engineering practices. At universities, newly required performance-based assessments have led teacher educators to consider the role of academic language in subject-specific teaching and learning. Simultaneous to these policy changes, the population has continued to diversify, with schools welcoming students who speak hundreds of different languages and language varieties at home, despite English continuing as the primary medium of instruction in science classrooms. Responding to these policy and demographic shifts, we have designed an innovation to prepare teachers and teacher candidates to design instruction that promotes students’ disciplinary language development during rigorous and meaningful science instruction. We add a language lens to the widely used Understanding by Design® framework, emphasizing inclusion and integration with what teachers already do to design science curriculum and instruction, rather than an add-on initiative that silos language development apart from content learning. This language lens merges the principles of culturally and linguistically responsive practice with the three stages of backward instructional design to support educators in designing effective and engaging science instruction that promotes language development and is accessible to the growing number of students from linguistically diverse backgrounds.

Introduction

In science classrooms spanning urban, suburban, and rural regions, students enter with ever diversifying cultural and linguistic backgrounds (National Clearinghouse for English Language Acquisition, 2010). In the context of the United States, 20% of students speak a language other than English at home, with half of these students considered English learners (ELs) due to still-developing English proficiency as measured by standardized tests of listening, speaking, reading, and writing (Linquanti & Cook, 2013; National Center for Educational Statistics, 2015). Despite the benefits of linguistic diversity in schools, these demographic shifts provide unique challenges for science teachers, who typically mediate students’ scientific learning, understanding, and achievement using the English language (Lee, Quinn, & Valdés, 2013). To ensure that students have equitable access to science content, teachers must consider and account for language in their daily classroom instruction (Heineke & McTighe, 2018).

Concurrent to the diversification of schools, science education as a field has embraced a vision of students learning and doing science through language-rich scientific and engineering practices, as evidenced by the Framework for K-12 Science Education (National Research Council [NRC], 2013) and Next Generation Science Standards (NGSS; NGSS Lead States, 2013). Indeed, the shift to the NGSS has resulted in instructional foci on science and engineering practices that simultaneously involve both scientific sense-making and language use (e.g., asking questions, constructing explanations, communicating information; Quinn, Lee, & Valdés, 2010). The resulting practice-oriented classroom thus serves as a rich language-learning and science-learning setting where science teachers are not perceived as language teachers but rather “supporters of the language learning that occurs in a content-rich and discourse-rich classroom environment” (Quinn et al., 2010, p. 1). Since the shift to the NGSS, scholars have indicated that explicit emphasis on language development is indicative of high-quality science instruction that effectively supports all students’ learning, including ELs (e.g., Lee, Llosa, Jiang, Haas, O’Connor, & Van Boonem, 2016; Maerten, Rivera, Ahn, Lanier, Diaz, & Lee, 2016; Zwiep & Straits, 2013). But achieving this practice requires concomitant teacher education that prepares science teachers to integrate language in instructional design and implementation (e.g., Stoddart, Solís, Tolbert, & Bravo, 2010; Tolbert, Stoddart, Lyon, & Solís, 2014).

Seeking to respond to the diversifying student population and changing educational policy context of teaching content and language in disciplinary classrooms, we have added a language lens to Understanding by Design® framework that already supports the design of effective instruction in thousands of schools across the country and world. Understanding by Design (UbD) prompts educators to design rigorous and authentic instruction that deepens students’ learning and understanding by beginning with the end in mind (Wiggins & McTighe, 2005). Curriculum designers progress through stages of instructional design – defining learning goals in Stage 1, designing assessments in Stage 2, and planning instruction in Stage 3 – as a means to promote meaningful learning that transfers to contexts beyond the classroom. In this article, we introduce the UbD framework with a language lens in the context of science teacher education. We (a) sketch the components of UbD with a language lens, (b) detail the integration of this approach to prepare teachers, (c) introduce the learning and application of two science teachers, and (d) share recommendations for implementation in science teacher education.

Backward Design for Learning and Language Development

UbD with a language lens uses the existing design framework, but adds a language lens using principles of culturally and linguistically responsive practice to prioritize diverse students while planning instruction that mediates the disciplinary learning and language development of all students (Heineke & McTighe, 2018). In this way, we begin with students, embracing and responding to their unique backgrounds, abilities, strengths, and needs. Grounded in culturally responsive pedagogy (Gay, 2010) and linguistically responsive teaching (Lucas, Villegas, & Freedson-González, 2008), the pre-planning component centers on getting to know learners to prompt dynamic instructional design that taps into students’ background knowledge and experiences, including language backgrounds and proficiencies. Reflecting the foundational basis of responsive and rigorous science instruction, practitioners need to recognize the diversity of students, including students’ language backgrounds, cultural background knowledge, and previous science learning and experiences. In this way, pre-planning involves amassing and analyzing data on students, including formal data (e.g., cumulative files, standardized test scores) and anecdotal data (e.g., observations, conversations).

Following pre-planning, Stage 1 begins with the end in mind by prompting educators to identify the desired results of the unit, including goals for transfer, meaning, and acquisition. Based on established goals (i.e., NGSS), transfer goals prompt students to transfer and use scientific learning beyond focal units of study, meaning goals involve students grappling with essential questions to build deep understandings about scientific concepts, principles, and processes, and acquisition goals focus on related knowledge and skills, which serve as building blocks to achieve larger transfer and meaning goals.

When adding the language lens to Stage 1, we maintain the rigor of scientific learning goals, which promotes the high expectations for all students at the heart of this approach. But science prompts complex and nuanced uses of language, including discipline-specific words, phrases, sentence structures, and text features (see Table 1). In this way, while upholding the high expectations for all students’ disciplinary learning, we want to explicitly target the development of pertinent scientific language, which fosters students’ academic language development and ensures equitable access to content. To accomplish this in instructional design, we (a) analyze the complex and demanding language that students need to achieve the unit’s transfer and meaning goals and (b) target the development of that language by writing objectives focused on language functions (e.g., analyze, critique) and language features (e.g., vocabulary, sentence structures, text features), as well as involving multiple language domains (i.e., listening, speaking, reading, writing; see Heineke & McTighe, 2018 for more information).

Table 1 (Click on image to enlarge)
Examples of Language Designs in Science

Stage 2 of UbD centers on designing assessments for students to demonstrate progress toward the unit goals defined in Stage 1. The focal point of unit assessments, performance tasks prompt students to engage in authentic situations that require transfer of scientific learning to real-world problems and practices. As a part of these experiences, students take on particular roles (e.g., scientist, meteorologist, engineer) and use understandings of scientific concepts and processes in simulated situations aligned to the unit’s learning goals. In addition to performance tasks, supplementary evidence involves students demonstrating learning across units via various measures (e.g., tests, quizzes, academic prompts; Wiggins & McTighe, 2005).

When adding the language lens on Stage 2, the goal is to design and integrate assessments that (a) capture data on both scientific learning and language development, and (b) provide equitable access for all students to demonstrate understanding (Heineke & McTighe, 2018). In this way, units should include performance tasks that are language-rich, culturally responsive, and linguistically accessible. When designed for authenticity, scientific performance tasks are naturally language-rich, as students interact with peers to discuss and solve problems (i.e., listening, speaking), as well as research and share findings via presentations, proposals, dioramas, or other products (i.e., reading, writing). To ensure all students can actively participate, tasks should (b) be culturally relevant to engage learners and not require prerequisite background knowledge, and (b) have linguistic scaffolds to ensure all students can contribute and demonstrate progress regardless of language background or proficiency. In addition to performance tasks, supplementary assessments are integrated to holistically capture students’ abilities, strengths, and needs in both science and language learning.

Table 2 (Click on image to enlarge)
GRASPS Task Framework with Language Lens

In Stage 3 of UbD, teachers design learning plans that authentically facilitate student learning and understanding as aligned to Stage 1 goals and Stage 2 assessments. This includes the learning plan, which involves hands-on experiences with real-world application and differentiation based on students’ backgrounds, abilities, and needs, as well as formative assessment embedded in instruction to glean students’ learning across the unit of study. When adding the language lens to Stage 3, we strategically plan instruction to achieve unit goals, including those for disciplinary language development, while responding to the unique and diverse needs of students (Heineke & McTighe, 2018). When planning the learning trajectory of science units, the language lens prompts consideration and purposeful integration of (a) students’ cultural and linguistic background knowledge, (b) collaborative, cognitively demanding tasks that involve listening, speaking, reading, and writing in English and students’ home languages, (c) complex texts that are culturally relevant and linguistically accessible, and (d) differentiated scaffolds and supports based on students’ language backgrounds, proficiency levels, and learning preferences (Herrera, 2016; Walqui & vanLier, 2010).

Preparing Teachers for Backward Design with a Language Lens

In addition to serving as a template to design instruction for K-12 students, UbD with a language lens provides teacher educators with an approach to prepare teachers to support diverse students’ language development in science instruction. In this section, we share ways to tackle this work with teachers in training, including in-class activities and resources for building the language lens on instructional design (for more detailed information, see Heineke, Papola-Ellis, Davin, & Cohen, 2018a).

Introducing science teachers to UbD with a language lens begins with buy-in. Science teachers are typically prepared as content experts with the pedagogical content knowledge to mediate students’ scientific learning (Shulman, 1986). Because of the very nature of schools, where English as a Second Language (ESL) and English Language Arts teachers maintain the primary responsibility for teaching language, science teachers might need convincing of their role in supporting students’ language development. We have found the most poignant way to achieve buy-in is having teachers begin by exploring data related to students’ linguistic diversity. When looking at formal data like home language surveys and English proficiency scores (e.g., ACCESS), teachers recognize students’ diverse backgrounds and proficiency levels. We then have them probe the multi-faceted nature of individual learners by collecting formal and anecdotal data on students’ background knowledge, cognitive strategies, language preferences, and scientific knowledge and self-efficacy (Collier & Thomas, 2007; Herrera, 2016). Our goal is for teachers to recognize diversity, paired with the need to maintain high expectations for all.

In Stage 1, we center efforts on deconstructing teachers’ and candidates’ linguistic blind spots. Science teachers are experts within particular disciplines, such as physics, chemistry, or biology, and in the context of the United States, many are also native English speakers. Taken together, teachers may not recognize the demanding, discipline-specific language that students need to access and engage in learning and understanding. To develop teachers’ understandings through empathy, we begin by simulating what students might experience linguistically in the science classroom, asking teachers to read highly complex articles from peer-reviewed journals (e.g., Journal of Chemical & Engineering Data) and use them to engage in a particular task (e.g., making a scientific argument using text-based evidence). We then provide specific tools and examples of disciplinary language demands to help teachers uncover linguistic blind spots, such as WIDA’s framework (2012) for academic language at word, sentence, and discourse levels, WestEd’s detailed taxonomy of academic language functions (AACCW, 2010), and Understanding Language’s overview of NGSS language demands (Quinn et al., 2010). Finally, after building empathy and awareness for the language lens in science teaching and learning, we move into analyzing unit-specific language demands and selecting those that are important, aligned, prevalent, and versatile to scientific content to then draft language-focused objectives.

In Stage 2, we want to teachers to embrace the value of performance tasks in promoting and measuring learning, understanding, and language development (Heineke & McTighe, 2018; Wiggins & McTighe, 2005). This begins by getting teachers to critically evaluate the traditional testing tools that may dominate their current repertoires. We use actual assessments, such as a summative paper-and-pencil test for a unit provided in the science textbook, to analyze for cultural and linguistic biases based on pre-planning data. Once biases are determined, we discuss the need to assess students’ scientific knowledge and skills without requiring a set level of language proficiency or privileging any particular cultural background knowledge. This then springboards into the exploration of performance tasks as the preferred approach to unit assessment, specifically probing ideas within three language-rich categories (i.e., oral, written, displayed). We then use the GRASPS framework with a lens on language (Heineke & McTighe, 2018; Wiggins & McTighe, 2005) for teachers to design performance tasks that align with students’ cultural background knowledge and scaffold access based on learners’ language proficiency (see Table 2). We use WIDA tools to determine developmentally appropriate language functions (i.e., Can-do descriptors; WIDA, 2016) and integrate authentic scaffolds (i.e., graphic, sensory, interactive; WIDA, 2007) to provide students’ equitable access to participate in the performance task.

For Stage 3, we want to build from what educators already know, such as inquiry-based science activities or EL-specific instructional strategies. In our experience working with teachers and candidates, this facet may be familiar based on previous coursework or professional preparation. The key is emphasizing not using a strategy for strategy’s sake, but selecting, organizing, and aligning instructional events and materials based on pre-planning data, Stage 1 goals, and Stage 2 assessments. Flexible based on the professional expertise and experience of the participants, adding a language lens to this stage centers on educators exploring the above facets (e.g., background knowledge, collaborative tasks, complex and relevant texts, differentiated supports) with the primary aim to build awareness of available approaches and resources that can enhance their current pedagogy and practice as science teachers (e.g., bilingual resources, amplification of complex texts). In addition to providing the space to explore high-quality, language-rich approaches and resources for various scientific disciplines, we model how to apply and integrate tools that align to the learning goals of instructional units of study.

The Language Lens in Action: A Closer Look at Two Science Teachers

Let’s exemplify this approach by looking at the instructional design work of two focal science teachers, who participated in a grant-funded professional development series on UbD with a language lens (see Heineke et al., 2018a, 2018b). Using the activities and resources detailed above, these teachers collaborated with colleagues across grades and disciplines to learn about UbD with a language lens and apply learning to their science classrooms.

Bridget, Elementary Science Teacher

Bridget was a sixth-grade science teacher at Wiley Elementary School, a K-6 elementary school with 1200 students in the urban Midwest. With the support of her assistant principal, she secured data to understand the culturally and linguistically diverse student population, including home language surveys and language proficiency tests (i.e., ACCESS). By exploring these data, Bridget learned that the majority of Wiley students spoke another language and approximately 45% of students were formally labeled as ELs. She was not surprised to see that Spanish was the majority language spoken by families, followed by Arabic, but learned about the rich array of linguistic diversity in the community with languages including French, Urdu, Tagalog, Bosnian, Hindi, Bengali, Farsi, Yoruba, Serbian, Romanian, Malay, Gujarati, Korean, Mongolian, and Burmese. Bridget also discerned that 50 of her 54 sixth graders used another language at home, including 10 labeled as ELs with 5 dual-labeled as having special needs.

Bridget chose to work on the first science unit of the school year on space systems, which merged science, engineering, and mathematics principles with the goal for sixth graders to use data and models to understand systems and relationships in the natural world. Per the suggestion of the instructor, she brought a previous unit draft to apply her evolving understandings of UbD with a language lens. Having already deconstructed her expert blind spot to flesh out the conceptual understandings pertinent to science standards and transfer goals, she considered her linguistic blind spot with the support of the instructor and other science educators. Bridget found having examples of science language demands (see Table 1) to be helpful in this process, using the categories and types of word-, sentence-, and discourse-level demands to analyze the disciplinary language her students needed to reach Stage 1 goals, including vocabulary (e.g., gravitational pull), nominalization (e.g., illuminate/illumination), idioms (e.g., everything under the sun), sentence structures (e.g., compare/contrast), and informational text features (e.g., diagrams). After pinpointing these knowledge indicators, she used data on her students’ language proficiency to draft skill indicators with attention to particular language functions (e.g., explain, compare) and domains (e.g., reading, writing).

After adding specific knowledge and skill indicators for language development in Stage 1, Bridget then shifted her attention to Stage 2 assessments. Following exploration of a multitude of language-rich performance task options, including those that prioritize oral, written, and displayed language (Heineke & McTighe, 2018), she decided to redesign her primary unit assessment using the GRASPS framework with a language lens (see Table 2). The resultant Mars Rover Team task (see supplemental unit) aimed to engage her sixth graders in authentic and collaborative practice with components strategically designed to promote disciplinary language use across domains (e.g., listening and speaking in teams, reading data tables, writing presentations) and scaffold for students’ language proficiency (e.g., drawings, technology, small groups). She planned to evaluate the resultant tasks for precise disciplinary language, including the vocabulary, nominalization, and other language features pinpointed in Stage 1 goals. In addition to the performance task, Bridget also added the collection of supplemental evidence to the unit of study, specifically aiming to collect and evaluate data on students’ scientific language development via journal prompts, personal glossaries, and resultant artifacts.

The final facet of the professional development focused on Stage 3, where Bridget revised the unit’s learning plan to target demanding disciplinary language, integrate students’ cultural backgrounds, and differentiate for multiple language proficiencies. Having embraced an inquiry-based approach to teaching science, she already had frequent opportunities for students to collaboratively engage in hands-on exploration and application of scientific concepts. By participating in language-focused professional development, she enriched students’ inquiry by adding opportunities for them to use their home languages as resources for learning, as well as tap into culturally specific background knowledge. For example, she modified her use of space mission notebooks to include personal glossaries for students to document pertinent scientific language, including translations into their home languages. Bridget also sought out and incorporated complex and culturally relevant texts, such as space-related myths, legends, and folktales from students’ countries of origin in Asia, Africa, and South America. Designed with her unique and diverse students in mind, the Stage 3 learning plan outlined her instructional trajectory for students to successfully achieve unit goals.

Jillian, Secondary Science Teacher

Jillian was a science teacher at Truman High School, a neighborhood public high school situated in a vibrantly diverse community in the urban Midwest. She began by exploring the rich diversity of her workplace, learning that 80% of the 1350 students use a language other than English home, representing 35 different languages. Spanish was the primary home language spoken, and 75% of the student body identified as Latina/o, but from countries spanning North, South, and Central America, as well as the Caribbean. Jillian also discovered that of that larger group of bilingual students, 25% are labeled as ELs, spanning a range of proficiency levels across language domains and including both newcomers to the United States and long-term ELs who had enrolled in neighborhood schools since the primary grades.

Jillian decided to focus on a weather and climate unit previously drafted for her earth and space science class. Working with other secondary teachers and using graphic organizers of academic language functions (AACCW, 2010) and features (WIDA, 2012), Jillian analyzed the unit’s transfer and meaning goals for language demands. She noted that her students would need to (a) interpret scientific evidence requiring diverse text features like maps, graphs, and charts, (b) describe weather using words that may be familiar from other contexts (e.g., humidity, temperature), (c) compare climates between local and global settings using distinct measurement systems (i.e., Fahrenheit, Celsius). From that analysis, she pinpointed the linguistic knowledge that her students would need to develop to access the larger learning goals, including weather-based text features and vocabulary terms and comparative sentence structures. She then refined skill indicators to target her students’ language development simultaneous to content, including analyzing weather-related data, interpreting weather patterns, and comparing climates. In this way, Jillian maintained the rigor of scientific learning while adding a lens on disciplinary language development to the Stage 1 goals.

Jillian wanted to design a performance task aligned to unit goals. After analyzing the paper-and-pencil test used by the previous earth science teacher, she realized the need to design an authentic, language-rich task that actively engaged her students in listening, speaking, reading, and writing focused on the disciplinary topics of weather and climate. Reflecting the instructor’s consistent messaging regarding responsive practice, she aimed to tap into her students’ rich sources of background knowledge, including their various global experiences and multilingual backgrounds. Using the GRASPS framework, she drafted a performance task where learners take on roles as potential weather reporters who use multiple sources of evidence to describe how weather affects human life around the globe. Students needed to use disciplinary language (in English and home languages) to compare and contrast how weather and climate influenced one facet of human life in various contexts. To ensure she had data to measure progress toward all Stage 1 goals, Jillian integrated opportunities to collect supplementary evidence throughout the unit.

After refining her goals and assessments with a language lens, Jillian wanted a learning plan that was rigorous, engaging, and interesting for her diverse students. Based on pre-planning data, she wove in students’ cultural and linguistic background knowledge. She began with a context-specific hook, prompting students to compare their city with other locations they had lived or traveled, and continued this strand by using global inquiry teams to analyze weather by continent and expert groups based on learners’ various countries of origin. Jillian then used approaches and resources explored during workshops to attend to disciplinary language, including consistent teacher modeling and student application with strategic scaffolds, such as sentence frames and graphic organizers. Having used the UbD template throughout the process of learning and applying the language lens, she completed a unit with a consistent and deliberate lens on scientific language. In this way, Jillian strategically designed experiences to support learners in reaching unit goals for learning and language development.

Conclusions & Recommendations

UbD with a language lens aims to provide all students with equitable access to rigorous learning and language development (Heineke & McTighe, 2018). By adding a language lens to the widely used UbD framework, educators learn to maintain the rigor of science teaching and learning while attending to disciplinary language demands (Heineke & McTighe, 2018; Lee et al., 2013). This timely innovation in science teacher education corresponds with current policy initiatives in K-12 schools and universities, including the NGSS that emphasize language-rich scientific and engineering practices (NGSS Lead States, 2013) and the Teacher Performance Assessment (edTPA) that prioritizes academic language embedded in content instruction (SCALE, 2018). In line with these broad policy shifts that bolster the role of language in science teaching and learning, this framework can be used with K-12 in-service and pre-service teachers, whether approached through professional development or university coursework.

Application in Practice

We originally designed and implemented this approach through a grant-funded, professional development project with in-service teachers working in 32 public schools in the urban Midwest, which included Bridget, Jillian, and other teachers spanning elementary, middle, and high schools in culturally and linguistically diverse communities (see Heineke et al., 2018a for more details on the project). Findings indicated that teachers, as well as participating school and district leaders, developed awareness and knowledge of discipline-specific language development, pedagogical skills to effectively integrate language in content instruction, and leadership abilities to shape implementation in their unique educational settings (Heineke et al., 2018b). By integrating the language lens into the existing UbD template, of which they were already familiar and comfortable in using, teachers embraced language development as a part of their regular teaching repertoires, rather than an add-on initiative.

We are currently integrating this approach into a university pre-service teacher education program, and our preliminary work indicates close alignment between the edTPA and UbD with a language lens. Of the many rubrics that are used to assess teacher candidates on the edTPA, over half directly relate to the components of the approach shared above, including planning for content understandings, knowledge of students, supporting academic language development, planning assessment, analyzing student learning, analyzing students’ academic language understanding and use, and use of assessment to inform instruction (SCALE, 2018). In addition to our previous research with in-service teachers, we plan to collect data on the implementation of UbD with a language lens with pre-service teachers, investigating how the approach and related professional learning experiences facilitate understandings, knowledge, skills, and dispositions for supporting language development in the science classroom.

Suggestions for Implementation

Based on our experiences in designing and implementing this approach, we have suggestions for science teacher educators who endeavor to prepare teachers and candidates for instructional design with a language lens. First, use the UbD template as a common tool to mediate both learning and application, adding the language lens to what educators already know and understand as sound instructional design (see Heineke & McTighe, 2018 as a potential resource to mediate teachers’ learning). Next, utilize the expertise of the educators themselves and build capacity more broadly across schools and programs, prompt collaborative learning and application in science-specific groups of teachers and candidates, as well as more diverse conglomerations of educators to promote co-planning and co-teaching with ESL, special education, or STEM teachers (see Heineke et al., 2018a). Finally, to avoid the conceptualization of language as an add-on initiative, integrate the language lens into science methods coursework and professional development for teacher candidates and teachers, respectively.

When approaching this professional learning in either coursework or professional development, we recommend expending ample efforts to initially build the needed buy-in that science teachers indeed play a role in supporting students’ language development. Since the educational institution has long maintained silos that separate language and content, those need to be broken down for educators to embrace learning and application to practice. Awareness of the role of the language in scientific learning can support these efforts, which can be effectively developed via simulations that build educators’ empathy for students’ interaction with discipline-specific language. When teachers are put in the position of students, such as needing to maneuver complex journal articles, they begin to recognize the need to attend to language in science teaching. Finally, emphasize the importance of students’ assets and teachers’ high expectations. The purpose of the language lens is not to reduce rigor in the science classroom, but rather to enhance instruction and provide equitable access for all learners.

References

Assessment and Accountability Comprehensive Center at WestEd (AACCW). (2010). Language for achievement: A framework for academic English language [Handout]. San Francisco, CA: WestEd.

Collier, V. P., & Thomas, W. P. (2007). Predicting second language academic success in English using the prism model. In J. Cummins & C. Davison (Eds.), International handbook of English language teaching, Part 1 (pp. 333–348). New York: Springer.

Gay, G. (2010). Culturally responsive teaching: Theory, research, and practice (2nd ed.). New York: Teachers College Press.

Heineke, A., & McTighe, J. (2018). Using Understanding by Design in the culturally and linguistically diverse classroom. Alexandria, VA: ASCD.

Heineke, A. J., Papola-Ellis, A., Cohen, S., & Davin, K. (2018a). Linguistically responsive professional development: An apprenticeship model. Improving Schools, 21, 32-47.

Heineke, A. J., Papola-Ellis, A., Davin, K. J., Cohen, S., Roudebush, A., Wright-Costello, B., & Fendt. C. (2018b). Language matters: Developing educators’ expertise for English learners in linguistically diverse communities. Language, Culture, and Curriculum. DOI: 10.1080/07908318.2018.1493493

Herrera, S. G. (2016). Biography-driven culturally responsive teaching (2nd ed.). New York: Teachers College Press.

Lee, O., Quinn, H., & Valdés, G. (2013). Science and language for English language learners in relation to Next Generation Science Standards and with implications for Common Core State Standards for English language arts and mathematics. Educational Researcher, 0013189X13480524.

Lee, O., Llosa, L., Jiang, F., Haas, A., O’Connor, C., & Van Booven, C. D. (2016), Elementary teachers’ science knowledge and instructional practices: Impact of an intervention focused on English language learners. Journal of Research on Science Teaching, 53, 579–597.

Linquanti, R., & Cook, H. G. (2013). Toward a “common definition of English learner”: Guidance for states and state assessment consortia in defining and addressing policy and technical issues and options. Washington, DC: Council of Chief State School Officers.

Lucas, T., Villegas, A. M., & Freedson-González, M. (2008). Linguistically responsive teacher education: Preparing classroom teachers to teach English language learners. Journal of Teacher Education, 59, 361-373.

Maerten-Rivera, J., Ahn, S., Lanier, K., Diaz, J., & Lee, O. (2016). Effect of a multiyear intervention on science achievement of all students including English language learners. Elementary School Journal, 116, 600–624.

National Center for Education Statistics. (2015). EDFacts file 141, Data Group 678; Common Core of Data, “State Nonfiscal Survey of Public Elementary and Secondary Education.” Table 204.27.

National Clearinghouse for English Language Acquisition. (2010). The growing number of English learner students 1998/99 – 2008/09. Washington, DC: Author.

National Research Council. (2013). Next generation science standards: For states, by states. Washington, DC: National Academies Press.

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: The National Academies Press.

Quinn, H., Lee, Okhee, & Valdés, G. (2010). Language demands and opportunities in relation to Next Generation Science Standards for English language learners: What teachers need to know. Understanding language: Language, literacy, and learning in the content areas. Palo Alto, CA: Stanford University.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4-14.

Stanford Center for Assessment, Learning, and Equity (SCALE). (2018). edTPA: Making good choices. Retrieved from https://www.edtpa.com/Content/Docs/edTPAMGC.pdf

Stoddart, T., Solís, J. L., Tolbert, S., & Bravo, M. (2010). A framework for the effective science teaching of English language learners in elementary schools. In D. Sunal, C. Sunal, & E. Wright (Eds.), Teaching Science with Hispanic ELLs in K-16 Classrooms. Albany, NY: Information Age Publishing.

Tolbert, S., Stoddart, T., Lyon, E. G., & Solís, J. (2014). The Next Generation Science Standards, Common Core State Standards, and English Learners: Using the SSTELLA framework to prepare secondary science teachers. Issues in Teacher Education, 23, 65-89.

Walqui, A., & van Lier, L. (2010). Scaffolding the academic success of adolescent English language learners: A pedagogy of promise. San Francisco: WestEd.

WIDA. (2007). English language proficiency standards and resource guide. Madison, WI: Author. Retrieved from https://www.wida.us/get.aspx?id=4

WIDA. (2012). Amplification of the English language development standards: Kindergarten–grade 12. Madison, WI: Author. Retrieved from https://www.wida.us/get.aspx?id=540

WIDA. (2016). Can-do descriptors: Key uses edition, grades K–12. Madison, WI: Author. Retrieved from https://www.wida.us/get.aspx?id=2043

Wiggins, G. P., & McTighe, J. (2005). Understanding by design. Alexandria, VA: ASCD.

Zwiep, S. G., & Straits, W. J. (2013). Inquiry science: The gateway to English language proficiency. Journal of Science Teacher Education, 24, 1315-1331.

The Great Ice Investigation: Preparing Pre-Service Elementary Teachers for a Sensemaking Approach of Science Instruction

Citation
Print Friendly, PDF & Email

McFadden, J.R. (2019). The great ice investigation: Preparing preservice elementary teachers for a sensemaking approach of science instruction. Innovations in Science Teacher Education, 4(3). Retrieved from https://innovations.theaste.org/the-great-ice-investigation-preparing-pre-service-elementary-teachers-for-a-sensemaking-approach-of-science-instruction/

by Justin R. McFadden, University of Louisville

Abstract

The current article describes a sequence of lessons, readings, and resources aimed to prepare elementary preservice teachers for science instruction wherein student sensemaking, rather than vocabulary memorization, is prioritized. Within the article, I describe how the prompts, questions, and logistics of the The Great Ice Investigation drive my students’ in-class and out-of-class learning to start out every science methods course I teach. The readings and resources detailed that compliment the Great Ice Investigation should benefit both preservice as well as in-service elementary teachers just beginning to align their instruction with the Next Generation Science Standards. The lessons, readings, and resources described should be of value to science teacher educators looking to modify and improve how they prepare their students for next generation science instruction.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Tretter, T. & McFadden, J. (2018). Modeling structure and properties of matter: People as particles. Science and Children, 56(4), 67-73.Tretter, T. & McFadden, J. (2018). Modeling Structure and Properties of Matter: People as Particles. Science and Children, 56(4), 67-73.

Bybee, R. W. (2013). Using the 5E Model to Implement the NGSS: Translating the NGSS for classroom instruction. NSTA Press, National Science Teachers Association.

Bybee, R. W. (2014). The BSCS 5E instructional model: Personal reflections and contemporary implications. Science and Children, 51(8), 10-13.

Duncan R., Krajcik, J., & Rivet, A. (2016). Disciplinary Core Ideas: Reshaping Teaching and Learning. NTSA Press, National Science Teachers Association. ISBN: 978-1-938946-41-7.

Duncan, R. G., & Cavera, V. L. (2015). DCIs, SEPs, and CCs, oh my!: Understanding the three dimensions of the NGSS. The Science Teacher, 82(7), 67.

Harlen, W. (2015). Teaching Science for Understanding in Elementary and Middle Schools. Heinemann: Portsmouth, NH. ISBN: 978-0-325-06159-7.

Metz, K. (2008). Narrowing the gulf between the practices of science and the elementary school classroom. Elementary School Journal, 109, 138–161.

Moscovici, H., & Nelson, T. H. (1998). Shifting from activitymania to inquiry. Science and Children, 35(4), 14.

National Research Council. (2012) A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

NGSS Lead States. 2013. Next Generation Science Standards: For states, by states. Washington, DC: National Academies Press. www.nextgenscience.org/ next-generation-science-standards.

Penuel, W., Van Horne, K. & Bell, P. (2016). Steps to designing a three-dimensional assessment. Downloaded from: http://stemteachingtools.org/assets/landscapes/STEM-Teaching-Tool-29-Steps-to-Designing-3D-Assessments.pdf

Reiser, B., Brody, L., Novak, M., Tipton, K., Adams, L. (2017).  Asking questions. In Schwarz, C. V., Passmore, C., & Reiser, B. J. (Eds.), Helping students make sense of the world using next generation science and engineering practices. (p. 87-108). NSTA Press.

Van Zee, E. H., & Roberts, D. (2001). Using pedagogical inquiries as a basis for learning to teach: Prospective teachers’ reflections upon positive science learning experiences. Science Education, 85(6), 733-757.

 

 

Learning About Science Practices: Concurrent Reflection on Classroom Investigations and Scientific Works

Citation
Print Friendly, PDF & Email

Basir, M.A. (2019). Learning about science practices: Concurrent reflection on classroom investigations and scientific works. Innovations is Science Teacher Education, 4(2). Retrieved from https://innovations.theaste.org/learning-about-science-practices-concurrent-reflection-on-classroom-investigations-and-scientific-works/

by Mo A. Basir, University of Central Missouri

Abstract

The NRC (2012) emphasizes eight science practices as a constitutive part of science teaching and learning. Pre-service teachers should be able to perform those practices at least in an introductory-level science investigation. Additionally, they also need to be able to elicit and interpret those science practices in the work of students. Through the integration of doing science and reading about how scientists do science, this article provides a practical teaching approach encouraging critical thinking about science practices. The instructional approach emphasizes on performing science practices, explicitly thinking about how students and scientists do science, and reflecting on similarities and differences between how students and scientists perform science practices. The article provides examples and tools for the proposed instructional approach.

Introduction

What if science teachers had a scientist friend who invited them to go with her on a scientific expedition? Wouldn’t it be interesting and exciting? What would they learn during the trip? After returning from the scientific adventure, what could they tell their students about their firsthand experiences? Don’t you think that what they would learn during the field trip could help them make science exciting and accessible to students? Even though such a thrilling experience may not occur for every educator, books about the lives and activities of scientists can take science teachers on a similar trip. Texts about scientists and their research can describe how a scientist becomes engaged with a topic of her/his study, wonders about a set of complicated questions, and devotes her/his life to these issues. This article is intended to illustrate how we could integrate these kinds of texts into inquiry-oriented lessons and how they can increase the effectiveness of the science methods or introductory science courses.

Learning about real scientific and engineering projects can help students develop an understanding of what scientists do. In science textbooks, most of the time students encounter exciting and well-established scientific facts and concepts generated by the science community, but rarely read and learn about how scientists work or generate new knowledge in science (Driver, Leach, & Millar, 1996). Helping students learn scientific practices, science teachers/educators often utilizes inquiry-oriented lessons. The National Research Council (NRC) has defined K-12 science classrooms as places in which students perform science and engineering practices while utilizing crosscutting concepts and disciplinary core ideas (2012). One of the conventional approaches to meet such expectations is to develop a series of model lessons that involve and engage students in some science investigations.

Some years ago, I started a methods course beginning with these ideas and collected data investigating any changes in classroom discourses (Basir, 2014). Results of that qualitative study revealed no significant change in classroom discourse regarding science and engineering practices. Analysis of the results revealed a list of common patterns and challenges about student learning in the courses. My students had vague ideas about what it means to develop and use a model, make a hypothesis, and construct a science argument. Analysis of their reflections also revealed that the keywords associated with the eight science practices (see Appendix I) were not traceable in their written discourses about their science investigations; they had difficulties recognizing those eight practices in their science inquiry. Trying to resolve these challenges was my motive to revise this methods course. In the following, I first describe how the wisdom of practice in science education helped me develop an idea to change the course and how that idea transformed into an instructional strategy. Then, I use examples to illustrate results of this instructional strategy. The presented instructional approach aids students using NGSS framework accurately when they reflect on their science practices and consequently learn science practices more effectively. Hopefully, this could have a positive effect on their science teaching.

Framework

The apprenticeship model (getting engaged in science inquiry while being coached by a master teacher) has been emphasized as a practical and useful approach for learning and teaching science since decades ago (e.g., NRC, 2000). NRC (2000) defined science inquiry by introducing a set of abilities for a process of science inquiry and NRC (2012) has placed more emphasis on those abilities and call them the eight science practices (see Appendix I for the comparison between the set of abilities and the eight science practices). The eight science practices as defined by NRC (2012) and those abilities for science inquiry as defined by NRC (2000) are very similar. However, as Osborne (2014) asked, in what sense the notion of inquiry as defined by NRC (2000) differs from the science practices defined by NRC (2012). One reason, among others, is about the call for more transparency on the articulation of what classroom science inquiry is or what students need to experience during an inquiry-oriented lesson (Osborne, 2014). Aiming to develop such transparency in methods courses for prospective teachers, we may need to consider some complementary instruction to the apprenticeship model. This means that while teachers and students follow the apprenticeship model of teaching and learning, they need to become more conscious about and cognizant of science practices. As a complement to the apprenticeship model of instruction, to some extent, many instructional methods can help students learn science investigations by learning about history and/or nature of science (Burgin & Sadler, 2016; Erduran & Dagher, 2014; McComas, Clough, & Almazroa, 2002; Schwartz, Lederman, & Crawford, 2004), refining their investigative skills (e.g., Hackling & Garnett, 1992; Foulds & Rowe, 1996), conducting context-based science investigation using local newspapers or local environmental issues (e.g., Barab & Luehmann, 2003; Kuhn & Müller, 2014 ), and becoming cognizant of what/how they do science (e.g., Smith & Scharmann,2008).

In the context of higher education, active learning as an instructional approach provides multiple opportunities for students to initially do activities during class and subsequently analyze, synthesize, evaluate, and reflect on what they did during those activities (Bonwell & Eison, 1991). This latter aspect of active learning, critical thinking, plays a significant role in the effectiveness of teaching (Cherney, 2008; Bleske-Rechek, 2002; Smith & Cardaciotto, 2011) and usually is a missing component in the mentioned context. Unlike the regular introductory university-level science courses, in the context of science teacher preparation, it is a common practice to ask students to write a reflection about what/how they do activities. What has been less emphasized in this context is to provide a framework and benchmark helping students to systematically reflect on their science investigation (Ellis, Carette, Anseel, & Lievens, 2014).

The stories or case studies about how actual scientists do science can function as a benchmark for students who do classroom science investigations. Comparing an authentic science study with a student-level science project can make students aware of possible deficiencies and missing components in their classroom inquiry. Presumably inspired by medical science, case study teaching approaches have been utilized for teaching science (Herried, 2015; Tichenor 2013) and showing promising effects on student learning (Bonney, 2015; Tichenor, 2013). Specifically, science educators have developed many case studies for how to teach science—many of these cases related to science methods are available at National Center for Case Study Teaching in Science (NCCSTS; http://sciencecases.lib.buffalo.edu/cs/).

In this paper, I describe how particular kinds of case studies, the stories of contemporary scientists and their projects, can be used as a complementary teaching component to inquiry-oriented instruction. The objective is to provide an environment in which students could see the “sameness and difference” (Marton, 2006) between what they do and what scientists do. They could use the stories about actual science investigations as a benchmark for reflecting on what they do in the science classroom.

Concurrent Reflections as an Instructional Strategy

Drawing on the reviewed literature, I developed a three-phase instructional approach (Figure 1). In each phase of the instruction, students are assigned with specific task and concurrently reflect on that task. In the first phase, students have multiple opportunities to do science investigations, compare and contrast how they did across the small groups, recognize and interpret the eight science practices in their work, and document their reflection about how they do science on the offered template (Figure 2). This activity helps students conceptualize the eight practices implicitly embedded in those inquiry-oriented lessons. In the second phase, students read and reflect on a case study (i.e., a book about a scientist and her/his project). By reading about scientists and scientific projects, students have the opportunities to discern first-hand instances of the eight science practices. In the third phase, students compare those first-hand investigations done by real scientists, as benchmarks, with what they do in inquiry-oriented lessons and accordingly critically reflect on how to improve their science practices.

Figure 1 (Click on image to enlarge). Illustrates the suggested learning cycle.

Figure 2 (Click on image to enlarge). Template for comparing instances of science practices (SP) in different contexts.

Discussing the Suggested Learning Strategy by an Example

In the following, a three-session lesson (about 4.5 hours) based on this instructional approach is presented. Currently, this lesson is included in one of my science courses (how to do straightforward scientific research). The course is a general education course open to all majors, and secondary and middle-level pre-service teachers are required to take the course. In my previous institution, a similar lesson was included in a science course required for prospective elementary teachers.

Phase One: Doing and Reflecting on Science Practices

In this phase of the learning cycle, students conduct a science investigation and are asked to match the eight science practices with different components of their science inquiry. Students are required to document their interpretations in the provided template (Figure 2). Students are given a worksheet for investigating electromagnet. The very first question in the worksheet is about drawing an electromagnet. This question aims to check how much they know about electromagnets. Figure 3 shows five student responses to the mentioned question. These are typical responses at the beginning of this investigation. Most students know little about electromagnets. After receiving these responses, I put students in small groups and made sure that each group had at least one student who drew a relatively correct preliminary model of an electromagnet. Due to space limitation, only four of the eight science practices have been discussed in the following.

Figure 3 (Click on image to enlarge). Illustrates how students drew the model of an electromagnet as their initial idea.

Asking Questions. Students, as a group of four, were given different size batteries, nails, wire, and paper clips. They were supposed to make an electromagnet and then they were given a focus question: how you can change the power of the electromagnet. Some groups had difficulty building and/or using their electromagnet due to issues such as a lousy battery, open circuit, not enough loop, trying to pick up a too heavy metal object by the electromagnet. With minor help from me, they were able to build the electromagnet. Some groups developed yes-no questions (i.e., does the number of loops affect the electromagnet?). I helped them revise their question by adding a “how” to the beginning of their question. Typical questions that students came up with which focused the small group investigations were: How does the voltage of the battery affect the power of the electromagnet? How does the amount of wire around the nail affect the strength of the electromagnet? How does the insulation of the wire affect the power of the electromagnet?

Developing and Using Models. Scientists utilize scientific models and discourses to explain the observed phenomena. However, students usually use vernacular discourses instead of using science/scientific models for explaining a phenomenon. Students needed to develop a hypothesis related to the questions they asked. Here are two typical hypotheses that student groups came up with: 1) making the loops tighter and the wire would have a stronger effect on the nail and in turn, the electromagnet would become more robust, or 2) a bigger battery would make the electromagnet stronger. When (at reflection time) students were asked to think and explicitly mention any models they used, they sometimes talked about the picture of the electromagnet that they drew as a model of the electromagnet (Figure 2). Nonetheless, they typically didn’t see the role of their mental model in the hypotheses they made. With explicit discussion, I helped them to rethink why they generated those hypotheses (i.e., bigger battery or more loops, more powerful magnet). I expected them to mention some of the simple electromagnetic rules learned in science courses; however, most of the hypotheses stem from their vernacular discourses rather than science/scientific discourses. Through discussion with small groups and the whole classroom, I invited them to think about the background knowledge they utilized for making those hypotheses. We discussed the possible relationship between their hypotheses and the vernacular discourses such as “bigger is more powerful,” “more is more powerful,” or “the closer the distance, the stronger interaction”—These vernacular discourses are like general statements that people regularly use to make sense of the world around them. If we use a bigger battery and more wire, then we will have a stronger magnet.” Later, as they collected data, they realized that the vernacular ideas did not always work, a 9-volt battery may not provide as much power as a 1.5-volt D battery.

Constructing Explanations. The relation between different variables and their effects on the strength of an electromagnet is a straightforward part of the investigation. However, most of the groups were not able to explain why the number of wire loops affects the power of the electromagnet, or why uninsulated wire does not work. One of the common misconceptions students hold is the thought that uninsulated wire lets electricity go inside the nail and makes the nail magnetic by touch. I did not tell them why that idea was not correct and then motivated them to explicitly write their thought in the template (Figure 4).

Engaging in Argument from Evidence. We had different kinds of batteries, so one of the groups focused on the relationship between voltage and the electromagnet power. Through investigation, they realized that a 9-volt battery did not necessarily increase the strength of the electromagnet in comparison with a D battery. Another group focused on the relation of the number of cells and the electromagnet power. I encouraged them to discuss and compare the results of their studies and find out the relation of batteries and the power of the electromagnet. However, neither group had students with enough science background on electromagnetism to develop better hypotheses.

Phase Two: Reading and Reflecting on How Scientists Perform Science Practices

As mentioned before, we can use many different kinds of texts about scientists and their projects for this instructional approach. Table 1 suggests some book series appropriate for the proposed strategy. For instance, “Sower series” can help students to learn about historical figures in science and their investigation or “scientist in the filed” is about contemporary scientists and their projects. Stronger than Steel (Heos & Comins, 2013) from the scientist in the field series is discussed to illustrate how we can use these books in the classroom in the following.

Table 1 (Click on image to enlarge)
Suggested Textbooks Describing Scientists’ Biography and Their Projects


The summary of the book. Stronger than Steel is about Randy Lewis, his team, and his long-term research project about spider silk. Randy’s early research questioned the structure of the spider silk: how spider silk could be so strong and at the same time so flexible. By applying the well-established models and methods for the analysis of the matter, Randy and his team were able to develop an explanation for why spider silk is both strong flexible at the same time. They found out that the particular spider silk they analyzed was made of two proteins; a combination of these two proteins is responsible for super flexibility and strength of the spider silk. Building on genetic theory, the research team examined spider DNA. It took them about three years to isolate two genes associated with the proteins responsible for the strength and flexibility of the spider silk. Familiar with the transgenic models, in the late 1990s, Randy’s team designed bacteria producing the main ingredient of the spider silk, the two proteins mentioned before. In the next step, they injected those specific spider genes into goat embryos and achieved incredible results. Some of the transgenic goats were able to produce the spider silk proteins, but of course not like Spiderman. The transgenic goats are very similar to regular goats, but their body produces extra spider silk proteins in their milk. Randy’s team milked the transgenic goats, processed the milk, separated the spider silk proteins, and finally spun the spider silk fibers from the mixture of those two proteins. Currently, they are working to find alternative organisms that could produce spider silk more efficiently than transgenic spider goats. They are working on two other organisms: silkworms, which are masters in making silk and alfalfa, which is a plant that produces much protein.

As can be seen in this summary, the book has many examples of eight science practices from the first-hand science projects (i.e., the research questions about making spider silk, the theory-driven hypothesis explaining the possibility of using transgenic methods and making silk from goats). We can use different reading strategies in this phase of the instruction. I often have students submit answers to a set of guided questions as they read the books. The objective here is to motivate students to match and interpret the eight science practices in the work of the scientists as described in the case study. Table 2 illustrates some of the reflections that students submitted on the reflection template (Figure 2) after reading the book.

Table 2 (Click on image to enlarge)
Instances of Science Practices as Interpreted by Students

Phase Three: Comparing and Reflecting on How Scientists and Students Perform Science Practices

In this phase of the learning cycle, students had small-group activity comparing the instances of the science practices in the case study with the instances of science practices in their electromagnet investigation. We also had a whole-classroom discussion coordinated by me.

Asking questions. Randy utilized transgenic and genetic models to do the investigation. Students were asked to think about the research questions that led Randy’s work. Here are the typical responses students came up with: Why is spider silk is so strong and flexible at the same time? What spiders’ genes are related to spiders’ ability to produce silk? Can other organisms produce spider silk? How can other creatures produce spider silk? We discussed how the questions in Randy’s project are model-based and theory-laden. Then students examined their electromagnet questions and tried to transform them into model-based and theory-laden questions.

Figure 4 depicts how student questions changed and improved after the mentioned discussion. We discussed that if we used the magnetic field model to describe what was happening around a magnet, then we could have asked how to increase the magnetic field at the tip of the nail. By discussing the formula related to the magnetic field and the amount of electric current, students were able to ask a question about the relation of electric current and power of electromagnet instead the relation of voltage of batteries and the power of electromagnet.

Figure 4 (Click on image to enlarge). Illustrates the changes in student groups, A and B, before and after of the case study.

Developing and Using Models. Based on the transgenic model, Randy’s team hypothesized that if they put those two genes in a goat embryo the goat body is going to produce those two proteins and possibly the goat milk is going to contain those two proteins. I led the whole classroom discussion focusing on how students’ hypotheses, similar to the transgenic goat project, should be based on science/scientific knowledge. I emphasized that they need to replace their vernacular discourses, described above, with simple electromagnetic models. In this phase, students were either asked to do some library research to review electromagnetic laws and formulas, or given a handout including rules and formulas related to electromagnets (the version of the worksheet designed for the elementary pre-service teachers is less demanding). Students had an opportunity to revise their vernacular ideas about electromagnets. For instance, they discussed the formula (B=μ0I/2πr) that illustrates factors affecting the magnetic field around a straight wire with electric current. They saw that the magnetic field around the wire is inversely related to the distance from the wire. We discussed how this formula is connected to the vernacular idea that the less distance from the electromagnet, the more powerful electromagnet. They also examined the formula related to the magnetic field in the center of a loop (B=μ0I/2R), which shows that the power of an electromagnet increases when the electric current increases in a circuit. With this formula, they can better explain why doubling the number of batteries increases the strength of the electromagnet or develop a hypothesis as to why D-batteries make a more powerful electromagnet than 9-volt batteries. For instance, one of the small groups initially claimed, “If we use a bigger battery and more wire, then we will have a stronger magnet.” After going through the complete lesson, they revised their claim, “If there is a stronger current, then the magnet force will increase.”

Constructing Explanations. As a part of the structured reflection on the case study, students were supposed to recognize scientific explanations that Randy’s team developed. Here are some of the scientific explanations we discussed in our class: Randy’s team used the biomaterial models to understand the structure of spider silk. They figured out why spider silk is so strong and at the same time so flexible. They described how two essential proteins make the spider silk, one makes the silk stronger than steel, and another make it as elastic as rubber. Using the genetic models, they had the understanding that specific genes carry the information for the production of particular proteins. So, after a two-year examination of the spider genes, eventually, they pinpointed the two specific genes and developed an explanation of how/why those two genes are responsible for making those proteins. These discussed scientific explanations provided a rich context and a benchmark for students to improve their explanations about electromagnet. The model-based explanations in Randy’s project encouraged students to use simple electric and magnetic laws and tools for developing explanations about the electromagnet investigation. For instance, looking at the hypothesis that group A and B made (Figure 4), we could see that both initial hypotheses look like a claim with no explanation (i.e., the more wire on the nail, the more powerful the electromagnet). However, after the discussion about Randy’s project, both groups added some model-based explanations to their claims. In the revised version of their work, by measuring the electric current, group A figured out that why a 6-volt battery created a stronger magnetic field than a 9-volt battery. Group B used the formula for electric resistance to explain why electric current would increase in the coil. They also used a multimeter and Tesla meter for measuring electric current and magnetic field for collecting supporting data.

As part of their homework, students were asked to reflect on how their explanation was changed during this lesson. Some of them emphasized the role of scientific background knowledge and the tools they used in the second round of the investigation. One of them said:

In the second explanation, we had more background knowledge about the subject, so we were better able to develop a hypothesis that was backed by a scientific theory. This led to more accurate results. We also used tools that measured the exact amount of electric current and the exact magnetic strength in the second experiment.

It is important to mention that student-teacher discussion essentially facilitated the use of background knowledge in the second round of the investigation. One of the students mentioned:

One of the explanations comes from the knowledge that we brought (which is none, or little knowledge of magnetism). The other explanation utilizes the outside knowledge that Dr. Mo presented us with. The equation that explained what makes a magnet stronger. We were then able to adjust the explanation to be more accurate.

Engaging in Argument from Evidence. Some of the discussed points from the case study that are related to engaging in argument from evidence are typically either mentioned in student reflection or suggested by me. Randy’s team used the genetic theory arguing for the relation between alfalfa, silkworms, and goats. Then they collected empirical data and developed evidence for that argument. Randy’s team developed a strong argument from evidence to convince the funding agencies for exploring the alternative methods for production of spider silk. Randy is also engaged in the debate from evidence to support the claim that transgenic research is beneficial to our society. He argues that although this kind of investigation could be misused (i.e., designer babies or spread of transgenic animals in natural environments), the beneficial aspects of transgenic research are immense.

In comparison with Randy’s work, we discussed how science goes beyond the walls of the science labs and how science, society, and technology are mutually related—one of the eight aspects of NOS based on NGSS is “science is a human endeavor.” Regarding this relationship in the context of the electromagnet investigation, through whole-class discussion, we came up with some library research questions: how a Maglev works or how electromagnetic field/wave possibly could have some possible sides effects on the human brain.

Furthermore, Randy’s work provided an environment for us to have a discussion related to the coordination of theory and evidence, which is another aspect of NOS based on NGSS: “science models, laws, mechanisms, and theories explain natural phenomena.” In return, the discussion helped students use scientific knowledge and tools for developing hypotheses. In the first round of investigation, students asked questions and developed explanations with little attention to scientific knowledge, a required component for asking scientific question and explanation. In the second round, they used scientific laws, units, and sensors to develop their hypotheses (compare before- and after-condition of the hypotheses in figure 3). The discussion about Randy’s work helped them to be conscious about the coordination of scientific background knowledge and making hypothesis and explanation. As shown in Table 3, in response to a question on the group assignment, group A mentioned:

When we read about Randy’s investigation, we understood that sometimes it is necessary to draw from the knowledge that already exists on the topic. For example, Randy knew that bacteria could be used to produce penicillin. In our electromagnet investigation, once Dr. … showed us the slides, we knew that electrical current influenced the strength of the magnet. With this knowledge, we created a better hypothesis of what was happening.

Table 3 (Click on image to enlarge)
Instances of Student Response to a Reflective Group Assignment at the End of the Lesson

Discussion and Conclusion

This article seeks ways to improve pre-service teacher learning about NGSS’ eight science practices. This learning objective can be accomplished in the suggested learning cycle (Figure 1). As discussed, in the first phase, when students work on their science investigation, what naturally comes out of students’ work are vernacular discourses, based on their mental models used in their daily life practices, rather than science models and discourses. As Windschitl, Thompson, and Braaten (2008) put it, one of the fundamental problems with student science investigation is the modeless inquiry (i.e., students conduct investigations without utilizing scientific models). Here students managed to investigate variables that affect the power of an electromagnet such as the kind of battery, number of loops, size of the nail, and diameter of the loops. At this stage, however, they were not able to utilize science models to explain “why” those variables affect the strength of the electromagnet.

In the second phase, due to the authenticity of the scientific project described in the case study, it was easy for students to recognize instances of the eight science practices in that project. Through reflection, students realized that the scientific investigation in the case study was vastly built on scientific models and theories.

In the third phase, through the negotiation process between the students and teacher and by comparing their work with Randy’s work, a majority of the students became cognizant of the fact that the electromagnetic models were almost absent in their initial electromagnet investigation. Randy’s project functioned as a benchmark assisting pre-service teachers to compare their work with the benchmark and revise their science practices. Additionally, the comparison between classroom science and actual scientists’ work provided an environment for discussion about some aspects of NOS such as the relation of science-society-technology, and the coordination of theory-evidence. In return, those discussions helped students improve their electromagnet investigation.

As a limitation of the presented strategy, it can be asked, what would happen if the case study was eliminated? Students would go through the electromagnet investigation, then I would give students the background knowledge about electromagnet, and then students would do the investigation for the second time. Probably, due to doing a similar investigation two times, we should expect some improvement in the quality of their investigation. However, the case study functioned as a benchmark and guidance. During the discussion about Randy’s work, students became cognizant of the critical role of background knowledge, modeling, and scientific lab technology for doing science. Importantly, they realized that for making hypotheses, observation and collecting data is not enough; they need to bring scientific knowledge to the table to develop a hypothesis. Accordingly, it seems that the case study provided a productive environment for students to do science investigation and learn about the eight science practices.

As Hmelo-Silver (2006) stated, scaffolding improves student learning when it comes to how and why to do the tasks. The discussed structured reflection can help students learn how and why they conduct science investigations and encourage them to critically think and talk about science practices (nature of science practices). Going through multiple inquiry-oriented lessons provides an environment for students to do the NGSS eight science practices described. To develop a thorough understanding of those practices, however, students need to repeatedly think critically to discern instances of science practices from what they do, compare them with a benchmark, and find out a way to improve their science practices. By going through the concurrent reflection embedded in all three phases of the suggested instructional strategy, prospective teachers experienced the fact that classroom science investigations should go beyond a “fun activity” (Jimenez-Aleixandre, Rodriguez, & Duschl, 2000) and the vernacular discourses that they know, and must be based on scientific knowledge, models, and technology, and explicitly relate to society.

Acknowledgment

I would like to show my gratitude to James Cipielewski and Linda Pavonetti for sharing their wisdom with me during the initial phase of this project.

Supplemental Files

Appendix-1.png

References

Basir, M.A. (2014). Pre-service Teacher Discourses: Vernacular Versus Formal Science Learning Discourses. Paper presented at NARST 2014.

Barab, S. A., & Luehmann, A. L. (2003). Building sustainable science curriculum: Acknowledging and accommodating local adaptation. Science Education, 87(4), 454-467.

Bleske-Rechek, A. L. (2002). Obedience, conformity, and social roles: Active learning in a large introductory psychology class. Teaching of Psychology, 28(4), 260-262.

Bonney, K. M. (2015). Case study teaching method improves student performance and perceptions of learning gains. Journal of microbiology & biology education, 16(1), 21.

Bonwell, C.C., and Eison, J.A. (1991). Active learning: Creating excitement in the classroom. Washington, DC: Jossey-Bass.

Burgin, S. R., & Sadler, T. D. (2016). Learning nature of science concepts through a research apprenticeship program: A comparative study of three approaches. Journal of Research in Science Teaching53, 31-59.

Cherney, I. D. (2008). The effects of active learning on students’ memories for course content. Active Learning in Higher Education9, 152-171.

Driver, R., Leach, J., & Millar, R. (1996). Young people’s images of science. London: McGraw-Hill International.

Ellis, S., Carette, B., Anseel, F., & Lievens, F. (2014). Systematic reflection: Implications for learning from failures and successes. Current Directions in Psychological Science, 23(1), 67-72.

Erduran, S., & Dagher, Z. R. (2014). Reconceptualizing nature of science for science education. In Reconceptualizing the Nature of Science for Science Education (pp. 1-18). Springer Netherlands.

Foulds, W., & Rowe, J. (1996). The enhancement of science process skills in primary teacher education students. Australian Journal of Teacher Education21(1), 2.

Hackling, M., & Garnett, P. (1992). Expert—Novice differences in science investigation skills. Research in Science Education22, 170-177.

Heos, B., & Comins, A. (2013). Stronger than Steel. Boston, MA: Houghton Mifflin Book for Children.

Herreid, C. F. (2015). Testing with case studies. Journal of College Science Teaching, 44(4), 66-70.

Jimenez-Aleixandre, M., Rodriguez, A., & Duschl, R. A. (2000). ‘‘Doing the lesson’’ or ‘‘doing science’’: Argument in high school genetics. Science Education, 84, 287–312.

Kuhn, J., & Müller, A. (2014). Context-based science education by newspaper story problems: A study on motivation and learning effects. Perspectives in Science2(1-4), 5-21.

Marton, F. (2006). Sameness and difference in transfer. The Journal of the Learning Sciences, 15, 499-535.

McComas, W. F., Clough, M. P., & Almazroa, H. (2002). The role and character of the nature of science in science education. In McComas, W.F., The nature of science in science education (pp. 3-39). New York, NY: Springer.

National Research Council. (2000). Inquiry and the national science education standards. Washington, D.C.: National Academy Press.

National Research Council. (2007). Taking Science to School: Learning and Teaching Science in Grades K-8. Duschl, H.A. Schweingruber, and A.W. Shouse. Washington, DC: The National Academies Press.

National Research Council. (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies.

Schwartz, R. S., Lederman, N. G., & Crawford, B. A. (2004). Developing views of nature of science in an authentic context: An explicit approach to bridging the gap between nature of science and scientific inquiry. Science education88, 610-645.

Smith, C. V., & Cardaciotto, L. (2011). Is Active Learning Like Broccoli? Student Perceptions of Active Learning in Large Lecture Classes. Journal of the Scholarship of Teaching and Learning, 11(1), 53-61.

Smith, M. U., & Scharmann, L. (2008). A multi-year program developing an explicit reflective pedagogy for teaching pre-service teachers the nature of science by ostention. Science & Education17, 219-248.

Tichenor, L. L. (2013). Assessing Learning Outcomes of the Case Study Teaching Method. In R. E. Yager, Exemplary College Science Teaching (pp. 91-106). Arlington, VA: NSTA Press.

Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science education, 92, 941-967.

Partnering for Engineering Teacher Education

Citation
Print Friendly, PDF & Email

Smetana, L.K., Nelson, C., Whitehouse, P., & Koin, K. (2019). Partnering for engineering teacher education. Innovations in Science Teacher Education, 4(2).     Retrieved from https://innovations.theaste.org/partnering-for-engineering-teacher-education/

by Lara K. Smetana, Loyola University Chicago; Cynthia Nelson, Loyola University Chicago; Patricia Whitehouse, William C. Goudy Technology Academy; & Kim Koin, Chicago Children's Museum

Abstract

The aim of this article is to describe a specific approach to preparing elementary teacher candidates to teach engineering through a field-based undergraduate course that incorporates various engineering experiences. First, candidates visit a children’s museum to engage in engineering challenges and reflect on their experiences as learners as well as teachers. The majority of course sessions occur on-site in a neighborhood elementary school with a dedicated engineering lab space and teacher, where candidates help facilitate small group work to develop their own understandings about engineering and instructional practices specific to science and engineering. Candidates also have the option to attend the elementary school’s Family STEM Night which serves as another example of how informal engineering experiences can complement formal school-day experiences as well as how teachers and schools work with families to support children’s learning. Overall, candidates have shown increased confidence in engineering education as demonstrated by quantitative data collected through a survey instrument measuring teacher beliefs regarding teaching engineering self-efficacy. The survey data was complemented by qualitative data collected through candidates’ written reflections and interviews. This approach to introducing elementary teacher candidates to engineering highlights the value of a) capitalizing on partnerships, b) immersing candidates as learners in various educational settings with expert educators, c) providing opportunities to observe, enact, and analyze the enactment of high-leverage instructional practices, and d) incorporating opportunities for independent and collaborative reflection.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Birmingham, D., Smetana, L.K., & Coleman, E.R. (2017). “From the beginning, I felt empowered”: Incorporating an ecological approach to learning in elementary science teacher education. Research in Science Education. https://doi.org/10.1007/s11165-017-9664-9

Bevan, B., Gutwill, J., Petrich, M., & Wilkinson, K. (2015). Learning through STEM-rich tinkering: Findings from a jointly negotiated research project taken up in practice. Science Education, 99, 98-120.

Cantrell, P., Young, S., & Moore, A. (2003). Factors affecting science teaching efficacy of pre service teachers. Journal of Science Teacher Education, 14, 177-192.

deFigueiredo, A. D. (2008). Toward an epistemology of engineering. Retrieved from https://ssrn.com/abstract=1314224

Fenichel, M., & Schweingruber, R. A. (2010). Surrounded by science: Learning science in informal environments. Washington, DC: National Academies Press

Forzani, F. M. (2014). Understanding ‘‘Core practices’’ and ‘‘practice-based’’ teacher education learning from the past. Journal of Teacher Education, 65, 357–368

Goldman S. & Zielezinski M.B. (2016) Teaching with design thinking: Developing new vision and approaches to twenty-first century learning. In A.L. & M.J. (Eds) Connecting science and engineering education practices in meaningful ways. Switzerland: Springer.

Grossman, P., Compton, C., Igra, D., Ronfeldt, M., Shahan, E., & Williamson, P. W. (2009). Teaching practice: A cross-professional perspective. Teachers College Record, 111, 2055-2100.

Jones, M. G. & Carter, G. (2007). Science teacher attitudes and beliefs. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 1067-1104). Mahwah, New Jersey: Lawrence Erlbaum Associates.

Lampert, M., Franke, M. L., Kazemi, E., Ghousseini, H., Turrou, A. C., Beasley, H., & Crowe, K. (2013). Keeping it complex: Using rehearsals to support novice teacher learning of ambitious teaching. Journal of Teacher Education, 64, 226-243.

Lottero-Perdue, Pamela (2017). Engineering design into science classrooms. In Teaching science to every child: Using culture as a starting point (pp.207-268). New York: Routledge.

Michaels, S., & O’Conner, C. (2012). Talk science primer. Cambridge, MA: TERC.

Moore, T. J., Glancy, A. W., Tank, K. M., Kersten, J. A., Smith, K. A., & Stohlmann, M. S. (2014). A framework for quality K-12 engineering education: Research and development. Journal of Pre-College Engineering Education Research, 4(1), 1-13.

Engineering is Elementary [EiE]. (2011). Engineering is elementary curriculum units. Retrieved from https://www.eie.org/eie-curriculum

National Academy of Engineering (NAE) and National Research Council (NRC). (2009). Engineering in K-12 education: Understanding the status and improving the prospects. Washington, DC: The National Academies Press.

National Research Council. (2012). A Framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a conceptual framework for new K-12 science education standards. Washington, DC: The National Academies Press.

NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.

Osisioma, I. & Moscovici, H. (2008). Profiling the beliefs of the forgotten teachers: An analysis of intern teachers’ frameworks for urban science teaching. Journal of Science Teacher Education, 19, 285–311.

Rosebery, A. & Ballenger, C. (2008). Creating a foundation through student conversation. In A. Rosebery and B. Warren (Eds.), Teaching science to English language learners, pp. 1-12. Arlington, VA: NSTA Press.

Slivovsky, K., Koin, K., & Bortoli, N. (2017). Tinkering lab overview. Lecture. Chicago, IL.

Smetana, L.K., Birmingham, D., Rouleau, H., Carlson, J., & Phillips, S. (2017). Cultural institutions as partners in initial elementary science teacher preparation. Innovations in Science Teacher Education, 2(2). Retrieved from https://innovations.theaste.org/cultural-institutions-as-partners-in-initial-elementary-science-teacher-preparation/

Smetana, L.K., Chadde, J., Goldfiend, W., & Nelson, C. (2012). Family style engineering. Science & Children, 50(4), 67-71.

Smetana, L.K. & Nelson, C. (2018). Exploring elementary teacher candidates’ understandings and self-efficacy around engineering education. Paper presented at the annual meeting of the American Educational Research Association, New York, NY.

Yoon, S.Y., Evans, M.G. & Strobel, J. (2014). Validation of the teaching engineering self-efficacy scale for K-12 teachers: A structural equation modeling approach. Journal of Engineering Education, 103, 463-485.

Zeichner, K. (2012). The turn once again toward practice-based teacher education. Journal of Teacher Education, 63, 376-382

Increasing Science Teacher Candidates’ Ability To Become Lifelong Learners Through A Professional Online Learning Community

Citation
Print Friendly, PDF & Email

Veal, W., Malone, K., Wenner, J.A., Odell, M., & Hines, S.M. (2019). Increasing science teacher candidates’ ability to become lifelong learners through a professional online learning community. Innovations in Science Teacher Education, 4(1). Retrieved from https://innovations.theaste.org/increasing-science-teacher-candidates-ability-to-become-lifelong-learners-through-a-professional-online-learning-community/

by William Veal, College of Charleston; Kathy Malone, The Ohio State University; Julianne A. Wenner, Boise State University; Michael Odell, University of Texas at Tyler; & S. Maxwell Hines, Winston Salem State University

Abstract

This article describes the use of an online professional learning community within the context of K-8 science education methods courses. The article describes the unique usage of the learning community with preservice teachers at different certification levels within the context of five distinct universities. While each approach is different there exists commonalities of usage. Specifically, the site is used to develop mastery of science content, exposure to pedagogical content knowledge, and classroom activities that focus on authentic science practices. Each case provides specific details of how the preservice teachers were immersed into a learning community that can serve them throughout their teaching career.

Introduction

What is the purpose of a science methods course? It would seem logical that a science methods course would increase the ability of the candidate to learn science content and pedagogy for that content. The actual methods for helping candidates learn to teach science are diverse and include different learning objectives, ‘student’ learning outcomes, and approaches within the classroom. A brief search of syllabi for elementary and middle grades science methods courses at the university level on the Internet yields vastly different approaches to teaching these courses and the reasons why. Science methods courses can be taught to “build fundamental knowledge of elementary science teaching and learning,” teach “strategies to bring scientific inquiry to the elementary classroom,” “increase confidence and enthusiasm for teaching elementary science,” “develop competence and confidence needed to teach science in elementary classrooms,” and “teach science skills and content.” Teacher candidates do not have the time nor training to be able to learn all of the content needed and experience the methods necessary for becoming an ‘experienced’ teacher in their first year of teaching. This article reviews how several university professors focus on a common approach to teaching a science methods course using an online learning community to guide teacher candidates to become lifelong science educators.

The Content of Learning and the Learning of Content

Methods courses are teacher preparation courses designed to prepare teacher candidates to teach a particular content area. There are typically elements of the course that boost content knowledge, but the crux of these courses is allowing teacher candidates to learn and/or practice pedagogical strategies to teach that content effectively. Methods instructors must be thoughtful about not only the activities they employ in their courses to support this knowledge and skill acquisition, but also about the materials and resources they use to support the activities in the course. Moreover, methods instructors must acknowledge they cannot possibly teach everything one needs to know to teach in their content area. Consequently, instructors must also set the foundation for teacher candidates to strategically utilize resources, many of which may be online, so they will be lifelong learners.

Table 1 provides a comparison of common goals of online syllabi from elementary and middle grades science methods courses. The search terms “elementary science methods syllabus” and “middle school science methods syllabus” were used in the Google search window. The first 40 results were downloaded and examined. Three main themes emerge from the syllabi: learning pedagogical skills to teach the science content, developing a set of habits of mind about science, and knowing the science content. In terms of the K-6 student impact, teacher candidates had to translate those skills to the students so that the students could essentially develop the same habits of mind and science content knowledge. Syllabi for courses that included the middle grades (5-8) demonstrated a change in the tenor of the language. When the middle grades course was combined with an elementary science methods course, the middle grades language, goals, and outcomes were very similar to that of the elementary methods course. At many universities, the middle grades science methods courses were combined with the secondary or high school science methods courses. The main differences between elementary and secondary science methods courses were the emphasis on depth of content knowledge and the lessening emphasis on developing habits of mind. Secondary science teachers are considered to have already developed significant content expertise and scientist’s habits of mind.

Table 1 (Click on image to enlarge)
Sample Science Methods Goals and Outcomes on Syllabi

Science teachers need science content knowledge and the appropriate pedagogical knowledge to teach at their respective levels. Elementary school teachers usually focus on pedagogy and multiple content areas, especially at the younger grade levels where classes are self-contained. In terms of elementary teacher candidates, it is well documented that they often feel unprepared to teach science or have negative attitudes towards science due in many cases to their own personal experiences with science education (Tosun, 2000). At the middle grades level, most teacher candidates have more preparation in one or two science content areas and as a result typically have greater content knowledge depth than elementary teachers. At the secondary level, science teachers have certification to teach one, two, or multiple content areas and are considered to have significant content expertise. Typically, secondary teachers hold at least a Bachelor’s degree in the content they teach. This system of silos can be summarized with a question asked to each level of teacher, “What do you teach?” The elementary teacher might say “children,” the middle school teacher might say “adolescent kids” or “science”, and the secondary teacher would say “chemistry” or “biology.” Content knowledge is needed by all science teachers at all levels. College does not prepare teacher candidates to teach all the content, concepts, and facts that teachers will encounter while in the classroom. Teacher candidates need examples of convenient approaches to learning more science content and pedagogy that can become part of their lifelong learning as professional educators.

Pedagogical Content Knowledge

In addition to knowing the content, science educators at all levels also need the pedagogical skills to teach the content, which is often referred to as pedagogical content knowledge (PCK). As Bailie (2017) noted, “PCK has…become a ubiquitous word in the preparation of teachers” (p. 633). Science methods instructors have consistently devised activities and lessons to guide teacher candidates to develop the necessary skills for teaching science. For example, Akerson, Pongsanon, Park Rogers, Carter, and Galindo (2017) implemented a lesson study activity in their science methods course that resulted in the early development of PCK for teaching the nature of science. Hanuscin and Zangori (2016) asked teacher candidates to participate in an innovative field experience that led to the beginning development of PCK for teaching in ways consistent with the NGSS. Finally, Hawkins and Park Rogers (2016) added in video-based group reflections to lesson planning and enactment to support the development of teacher candidates’ PCK. And although Davis and Smithey (2009) state that teacher educators may only be able to support the development of ‘PCK readiness’ because teacher candidates do not have much teaching experience to draw upon, it is widely agreed that strong science PCK is a necessity for successful science teaching.

Abell, Appleton, and Hanuscin (2010) state that the “main aim of a science methods course is to produce graduates who…have a ‘starter pack’ of PCK for science teaching” (p. 81). They go on to suggest that teacher candidates in methods courses should not only learn about science content, curriculum, and the nature of science, but also how to elicit students’ understandings of science, use that data to make informed decisions, and have the knowledge and skills to design instruction that support student learning. These results draw upon the foundational characteristics of PCK that science teachers should have (Veal & MaKinster, 1999). However, as Magnusson, Krajacik, and Borko (1999) and Veal and MaKinster (1999) note, content knowledge is the foundation for PCK. This leads science teacher educators to ask, how does one support the simultaneous development of science content knowledge, pedagogy, and science PCK?

Professional Learning Community

Teacher candidates at all levels learn science content and pedagogy so that they are able to teach the concepts in the appropriate manner to K-12 students. While in college, teacher candidates have the opportunity to enroll and complete science and pedagogy courses, but what happens once they begin their professional career? How do teachers maintain relevancy and stay current with new content or pedagogical practices throughout their career? Lifelong learning of science content and pedagogical strategies should be an emphasis in all methods courses. This is often accomplished by establishing and/or participating in a professional learning community (PLC) or communities of practice. One outcome of a PLC is to increase teacher candidates’ self-efficacy in science by exposing them to inquiry in science during their methods course (Avery & Meyer, 2012) as well as help them to learn more science content. A properly formed PLC can connect and scaffold the teacher candidates’ transition from pre to inservice educator establishing them as lifelong learners (e.g., Akerson, Cullen & Hanson, 2009). Without a proper transition, the elementary teacher candidates with low self-efficacy can become in-service teachers who are less likely to seek out professional development that would support improved science teaching (Ramey-Gassert, et al, 1996). In addition, it has been found that if elementary teacher candidates are uncertain about science then they are less likely to use inquiry oriented pedagogy (Appleton & Kindt, 1999; Ramey-Gassert, & Shroyer, 1992) and the performance of their students can be affected (Bybee et al, 2006).

One method to break the continuous cycle of unprepared elementary (K-6) teachers to teach science is to connect them to a community of practitioners during their science methods class as well as throughout their career. One such community could begin in a science methods course and exist as an on-line platform that allows them easy access to content, new pedagogical techniques, and classroom activities that they can rely upon throughout their career. This community could become a source of guidance as they continue to grow as professional educators of science no matter what grade level they end up teaching. The learning community that the methods instructors establish in their science methods courses must involve the learning of pedagogical strategies and content. Dogan, Pringle, and Mesa (2016) conducted a review of empirical studies investigating PLCs and determined that PLCs increased the science teachers’ content knowledge, PCK, and collaboration about student learning. Educator preparation programs are increasingly using the Internet to deliver and supplement their science methods courses with science content projects, courses, articles, and professional networks/forums. For example, Eicki (2017) studied how Edmodo could be used to create an online learning community for learning to teach science. Part of this learning community involved the communication and exchange of lesson plans and opinions about lessons in an online platform.

Given the vast nature of the Internet, it can sometimes be difficult to gauge the quality, applicability, or ‘user-friendliness’ of Internet resources. To help instructors with this problem, there are multiple legitimate educational organizations that have sites for teachers, videos of instruction, and student- and teacher-based content. For example, in this article, we present multiple cases regarding the use of the National Science Teachers Association (NSTA) Learning Center (LC) as a website in which teacher candidates can learn more about science content, find pedagogical tools that match the content, and begin to see the NSTA LC as a learning community. While this article is not an endorsement of the NSTA Learning Center, we are using the Learning Center as an example of how this site can support teacher candidates in developing the dispositions to become lifelong learners in the science education community.

Context

In science methods courses, instructors try to bring together pedagogy that is appropriate to the science content at the level in which the teacher candidates will teach. The problem with developing one course that fits all students is that science methods courses are often geared toward the developmental level of the future K-12 students. Research evidence suggests that if elementary teachers feel unprepared or negative towards science then they are less likely to teach science to their students (Ramey‐Gassert, Shroyer, & Staver, 1996). The disposition to teach science content using appropriate pedagogy is needed. At the elementary level – which can span pre-kindergarten to eighth grade in some states – most methods courses are focused on broader PCK because it is nearly impossible for the teacher candidates to know the science content across all four science disciplines. However, while elementary standards at each grade level require more integration of concepts and less depth of science-specific knowledge, to choose the appropriate pedagogy to teach content well, one must first know the content itself well. Unfortunately, most elementary teacher candidates only take 2-3 science courses as part of their general education requirements that do not prepare them to teach the breadth nor the depth of science concepts in the standards.

Many middle level certificates overlap grade spans with elementary and secondary, so there exists the potential to have a pedagogically strong teacher needing to teach depth in a science or multiple science areas. For example, in South Carolina elementary certification includes grades 2-6 and middle school includes grades 5-8. On the other extreme, a science discipline teacher may be called upon to teach other courses at the middle school. Middle schools across the country may require science teachers to be proficient in all areas of science (e.g., biology, physics, geology, Earth science, astronomy, and chemistry) since the state or national standards are more integrated or each grade level requires multiple science areas. For example, many states have a general middle grades certificate for science, but Oregon has middle level certificates in each of the science disciplines. How can a middle grades teacher be proficient in all disciplines of science? Just taking the introductory courses in each of the four major disciplines would equate to 32 hours of science (lecture and lab for all courses); and, of course, none of these courses would likely teach how to teach these content areas. In addition, even if they successfully completed these courses, odds are the courses do not cover the basic science content they will teach.

The NSTA Learning Center is an online resource that can be utilized for preservice and inservice teaching and learning by providing a professional learning community in which teachers learn from one another by sharing content knowledge, lesson plans, and strategies. The NSTA Learning Center is an online repository of articles, book chapters, webinars, and short courses aimed at improving the content and pedagogical knowledge of preservice and inservice teachers, connecting teachers through online chats, and delivering depth and breadth of science content for primary, middle, and secondary teachers. The science content, interactive learning modules, and articles are peer reviewed and vetted by content and pedagogical experts. The implementation of this type of content has been described as blended learning by Byers and Mendez (2016). Blended learning involves using online resources with “on-site efforts” to teach students. The case studies in this article show how blended learning, inquiry, project-based learning, and independent learning can be supported to provide science content knowledge, pedagogical knowledge and PCK to teacher candidates. While elementary and middle school science methods courses cannot provide all the science content and pedagogical strategies they will teach and use, these science methods courses can provide an opportunity to demonstrate and model effective lifelong learning skills.

Early Childhood Teacher Candidates

Case 1

One university offers certification through an early childhood (K-3) Masters of Education (MEd) program. The science methods course is designed to support teacher candidates learning of 1) pedagogical content knowledge, 2) science content knowledge; and 3) connect them to a community of elementary teaching practitioners to support their life-long learning of the teaching of elementary science. The learning experiences provided them with an understanding of science teaching and learning from the perspective of both learner and teacher. Though this is not a science content course, the class does utilize model lessons that exemplify science standards elementary teachers are expected to teach as outlined in national science standards such as the Next Generation Science Standards (NGSS Lead States, 2013).

In order to foster long-term and sustained improvement in standards-based science teaching and learning in elementary schools the teacher candidates are asked to demonstrate their understanding of these standards documents by engaging in lesson development during the semester that exemplifies not only the content standards but also exemplary science pedagogical methods grounded in scientific inquiry. The NSTA LC allows the teacher candidates to encounter the use of the 5E method within classroom activities via articles in Science & Children as well as Science Scope, two practitioner publications from NSTA. In addition, NSTA LC e-book chapters are regularly utilized throughout the course. The elementary teacher candidates are required to use the online site as a source of articles about teaching science, as well as basic educational research supporting practice. These NSTA LC resources are used by the teacher candidates to help them develop lesson plans that are based on activities that excite students as well as connect to science content standards.

One aspect of the NSTA LC that the teacher candidates find the most rewarding is the ability to find articles written by other elementary teachers in practitioner journals that have great ideas for their classrooms. For example, when designing lessons focused on the Engineering Design Process many teacher candidates base their lessons on articles and lesson plans found on the LC.  During focus group interviews after the course, one teacher candidate stated that she found the “…readings were relatable and things that we could see doing in our classrooms. So it was really interesting to like keep going in the article.”

The teacher candidates in this M.Ed. program must complete at least one SciPack, read 5 Science Objects, watch two Webinars, listen to two Podcasts, and participate in online discussions with science teachers outside of their class. Teacher candidates also post comments and read the forum to look at past interactions between educators. The Webinars allowed them to listen to educational researchers and scientists discuss new educational policies. Teacher candidates’ use of these resources within the NSTA LC were easily checked on the site as the Learning Center tracks the use of all the resources by students. Thus, the science teacher educator can see if they have used assigned resources such as the SciPacks. The best part of the LC in the teacher candidates’ view is that they were able to put all of the resources they use into a section of the center called “My Library” and those recourses became theirs for the rest of their career! During the post course focus group interviews, teacher candidates mentioned that one down side of the NSTA LC was the cost for a year subscription. But as one teacher candidate said, “Textbooks are sometimes even pricier but with these articles you could save them. Every article I read I saved because I liked the activities that they had.”

The teacher candidates were required to use the Science Objects and SciPacks to learn science content new to them or review content that they were uncomfortable teaching. One goal of the online communities is to illustrate to them that the SciPacks could not only support their content background but usually contain a list of the most common alternative conceptions held by students thus supporting their lesson planning. At the beginning of the class the teacher candidates had voiced concern about not knowing their students’ alternative conceptions due to their own limited science background so this practice alleviated this concern. As one teacher candidate stated, “The articles were very practical and could be used directly in our classroom.  Science is the subject I am most hesitant to teach but the readings made me see how I could teach it.” Several teacher candidates mentioned that they would buy the subscription in future years so they could continue as a member of this community of practice as in-service teachers.

Elementary Teacher Candidates

Case 2

At one Texas university, the NSTA LC has been adopted as the textbook for the Elementary Science Methods course and has been used for the past five years. Teacher candidates have access to the LC during their final methods block of courses prior to student teaching and during student teaching the following semester. Teacher candidates seeking the elementary teaching credential (EC-6) are required to complete four courses in science that must include one course in introductory Biology, Physical Science and Earth Science in addition to pedagogical courses. Typically, teacher candidates seeking elementary certification enroll in science courses for non-science majors. As these are general science courses, there are no guarantees that these courses prepare future elementary teachers in the science content they will be required to teach their future students in the EC-6 classroom.

One of the goals of the course is to prepare teacher candidates to use assessment data to plan and deliver targeted instruction. On the first day of class, teacher candidates complete the latest released version of the State of Texas Assessment of Academic Readiness 5th grade science assessment to develop familiarity with the state assessment and to assess their understanding of the elementary science content they are accountable to teach upon completion of their degree.   Preservice teacher results on the 5th Grade STAAR (state level assessment in Texas) released assessments tend to be disappointing in spite of earning passing grades in the university level science courses. The disconnect between scores on the 5th grade STAAR is in part due to lack of alignment of university science courses that elementary teacher candidates complete and the content they will teach. This creates a dilemma for the science methods instructor. Should class time be utilized and designed to prepare elementary teacher candidates in PCK to remediate content knowledge or stay focused on pedagogy? Future teachers need to be prepared in both content and pedagogy. One without the other is problematic.

To address this issue, the teacher candidates analyze the results of their personal STAAR score. Questions on the released test are categorized by science discipline, and as a PLC they work together to identify the state standard and the Texas Essential Knowledge and Skills (TEKS) each item addresses (Texas Education Agency, 2017). During this process, teacher candidates identify their areas of science content weakness and complete the appropriate NSTA Indexer in the LC for each content area in need of further development. The course instructor identifies and suggests NSTA Professional Development Indexer assessments that align to the content subsections of the STAAR assessment to help guide teacher candidates. Table 2 shows the science content TEKS and the appropriate corresponding Indexer Assessment.

Table 2 (Click on image to enlarge)
Relationship between TEKS and NSTA Indexers

Typically, teacher candidates complete 3-4 of the NSTA Indexer assessments as a result of the STAAR analysis. The number of Indexer assignments has ranged from 1 to 6, which depends upon their background content knowledge. For the purpose of this course, the teacher candidates were required to complete both the pre and posttests. While the STAAR was used due to contextual location of the university, the NSTA Indexer can be used nationally. Once teacher candidates complete their Indexer assessments, the methods professor works with each candidate to select up to two NSTA SciPacks to remediate their content knowledge in the targeted areas. SciPacks are online modules that are completed outside of class. On average, the teacher candidates improve their content scores on the NSTA Indexer by 40% when they take the posttest compared to the initial indexer score. Elementary teacher candidates have shared anecdotally that the SciPacks are very challenging. Using the Indexer and SciPacks allows the instructor to focus on PCK in class and improve teacher candidate content knowledge without sacrificing class time that is dedicated for pedagogy. The analysis of personal assessment data from an online science teacher site provided the scaffolding for these teacher candidates to become lifelong learners.

Case 3

In 2012, North Carolina Department of Public Instruction sent three representatives to Washington, DC to consult on the development of the Next Generation Science Standards. As representatives for one of the lead states for standards adoption (NGSS Lead States, 2013), the representatives were also charged with curricular development for K-12 science classrooms in North Carolina and by extension, science teacher education and professional development.  NGSS considers science learning within a 3-dimensional framework: disciplinary core ideas, science and engineering practices, and crosscutting concepts. Shortly thereafter in preparation for NGSS standards adoption, the elementary science methods course was reconceived, using the NSTA LC. The use of NSTA LC addressed a number of concerns.

The elementary undergraduate teacher candidates in the university’s programs are extremely diverse. They have attended all manner of public, private, parochial, and home schools. As a result, their level of science pedagogical understanding is not uniform. Before enrolling in the science methods course, all teacher candidates had to pass at least one college-level life science and one physical science course. Performing well in these courses provided no guarantee of attainment of the extensive science content needed to support K-6 science content knowledge.  These teacher candidates also take the NSTA Indexer, content pretest, as the first step in designing a self-study program that will fill the holes in each teacher candidates’ science content knowledge. Teacher candidates take the same Indexer posttest to determine how well they have developed their content knowledge through self-study over the semester.

The teacher candidates must contend with having to complete their studies in light of securing and sustaining employment, and using the NSTA LC allows them the course schedule flexibility to become a certified teacher. In other words, if they cannot work, they cannot complete their studies. For many, maintaining employment interferes with their studies. Using the NSTA LC allows the teacher candidates to continue to work on their classroom assignments in between their employment responsibilities. By being able to access their assignments using their e-textbook and having access to other preservice and inservice professionals, they can study, ask questions, and share their concerns without carrying heavy textbooks or waiting for office hours. The PLC emerged from the need to find a different pedagogical approach to science methods due to the personal nature of the candidates.

The University’s motto is, ‘Enter to learn, depart to serve.’ The responsibility to promote social justice and lifelong learning is palpable throughout the campus. The teacher candidates are required to buy access to their NSTA LC e-textbook for a year. This allows them to use this resource through their methods course and student teaching field experience in which they have time to strike up online discussions of national and regional social justice issues.

Course evaluations and online data about the teacher candidates’ usage of the NSTA LC indicated that teacher candidates who demonstrate the highest level of science efficacy, as measured by course grades and use of the online resources, were also the ones who have taken greatest advantage of participation in the online learning community. For example, several teacher candidates mentioned how they increased their excitement and comfort with searching for and learning about science content and science lessons. Those who have less science efficacy are reluctant to communicate and ask questions with practicing teachers in the online forums despite knowing its value. Data gathered through the NSTA LC administrator’s page, indicated that as science efficacy increased over the span of the science methods course, teacher candidates took advantage of the online science learning community. Since all teacher candidates were required to maintain an online ‘portfolio’ (Professional Development Indexer or Learning Plan), there was an increase in the amount of online artifacts (downloadable chapters, articles, lesson plans, podcasts, and videos) from the beginning of the year to the end.

The adoption of the NSTA LC supports teacher candidates to conceive science from a 3-dimensional, national perspective, rather than a 2-dimensional, state perspective. It allowed the diverse teacher candidates to personalize their learning of science content with the accessible 24/7 access to content, pedagogical strategies, and online discussions of various social justice issues. The improvement of lifelong learning through the use of an online professional development community requires continued study, but the outcomes are most promising.

Elementary and Middle Level Teacher Candidates

Case 4

In one university in Idaho, teacher candidates seeking an elementary (K-8) certification take one science methods course, typically at the junior or senior level, one or two semesters before they embark on their year-long field experience. Prior to taking this course, PSTs must have taken two natural science courses with labs (for a total of 8 credit hours); these prerequisites run the gamut from geosciences to astronomy and from biology to chemistry. On the first day of class, teacher candidates are asked to describe their feelings about teaching science at the elementary level. The responses are typically split evenly, with half providing some version of “scared” and half providing some version of “excited.” The case describes a journey into how the implementation of NSTA LC evolved over a year of teaching a science methods course.  The NSTA LC was first implemented into this elementary science methods course in the Spring of 2016 with three goals in mind: 1) to introduce teacher candidates to a supportive professional community; 2) to provide science content knowledge support when needed; and 3) to use practitioner articles to illustrate topics in the course.

As previously noted, the NSTA LC houses lesson plans, books and book chapters, and even opportunities for conferences and professional development. By introducing teacher candidates to the NSTA LC, the goal is to motivate them to find NSTA to be a useful resource and become a lifelong learner. These hopes seemed to bear out, as evidenced by the comments received from teacher candidates in course evaluations over five semesters that they appreciated the LC because they could keep documents in their library forever and refer back to them and the LC when teaching. One teacher candidate stated her appreciation of the resource by stating, “The NSTA LC had so many more resources and articles (written by a variety of authors) that we would not have read in a book,” while another teacher candidate said, “I like that I can keep this account and use the information in my own classroom.”

Given the wild variations in content knowledge encountered in the teacher candidates in the course, the implementation of the NSTA LC resources were used to immediately support teacher candidates in their science understandings for the course, and also demonstrate how one could use the LC to learn/review content for future teaching. Throughout the semester, the teacher candidates were required to complete three Science Objects that related to elementary science centers (Kittleson, Dresden, & Wenner, 2013) they taught during the semester. Unlike the case studies discussed above, candidates in this class were not required to complete the entire NSTA PD Indexer for the course, but rather strongly encouraged to complete this and ‘brush up’ on content prior to their science PRAXIS tests. Indeed, some candidates did recognize the usefulness of the LC in terms of boosting content knowledge that then enabled them to better structure their science centers, and by citing how it could support “individual learning” for the PRAXIS tests and in their careers. Beyond qualitative responses on course evaluations, downloaded statistics from each class cohort on the NSTA LC paint a promising picture: The majority of candidates downloaded at least ten Science Objects and SciPacks throughout their semester in the course. While downloading these resources does not necessarily mean that candidates completed/intend to complete them, anecdotally, teacher candidates shared that they often download the Science Objects and SciPacks as a preventative measure of sorts, thinking about what they may need to learn/review once they have their own classrooms. It is certainly encouraging that PSTs acknowledge they may have gaps in their content knowledge and see that the NSTA LC may be a way to help fill those future gaps.

The use of practitioner articles found in the NSTA LC brings the realities of science activity implementation into the classroom. The articles connect theory and practice and illustrate what elementary science can look like. On average, 30 NSTA practitioner journal articles (from Science and Children and Science Scope) are assigned for teacher candidates to read throughout the semester. These readings cover topics such as integrating the NGSS and Common Core State Standards (CCSS, National Governors Association Center for Best Practices & Council of Chief State School Officers, 2010) , argumentation, science for all students, assessment, and engineering at the elementary level. Many teacher candidates commented on the usefulness of these articles, stating, “The articles that we read were beneficial and related to the discussions we had in the classroom,” and “I will refer back to all the articles when I am teaching.” And while the majority of articles downloaded by teacher candidates were the assigned readings, nearly all of them downloaded additional articles related to other assignments in the course (lesson plans, student misconceptions, etc.), indicating that teacher candidates found the articles to be useful resources. The ensuing discussions about content from the articles helped to establish an atmosphere of professional exchange of ideas to teaching science concepts that they intend to use well into their careers as lifelong learners.

Case 5

This elementary and middle level science methods course is taught at a university in the southeast. The course focuses on the PCK necessary to teach science, which includes science content knowledge and instructional strategies. Since the focus is on teacher candidates who will become certified to teach from grade 2 to 8, the focus is on general science pedagogy with content-specific examples so that activities and demonstrations can show the depth of concepts at different grade levels within the spiral curriculum. For example, two weeks are spent discussing misconceptions related to seasons and moon phases. The content is appropriate in that the activities relate the content at the fourth and eighth grade levels due to the science standards in the state. While discussing how to introduce and conduct activities, teachers need to know depth of knowledge so that they can address potential and real misconceptions. The teacher candidates must learn the content of why there are seasons and why there are different phases of the moon not just the facts of seasons and the names of phases of the moon.

The course emphasizes learning appropriate science content knowledge for specific lesson plans so that inappropriate activities and misconceptions are not taught. While the course grade and objectives cannot require the students to know all science content knowledge in the grade 2-8 standards, it is a learning outcome that the teacher candidates can research the content needed for that lesson plan. Reading book chapters and articles and communicating with classroom teachers in an online platform helped teacher candidates understand how to teach specific topics better as evidenced by their graded and implemented lesson plans over the course of the semester. The NSTA LC was chosen for its ease of use and type of activities that could be used by teacher candidates so that they could learn content, develop pedagogical skills, and participate in a community of teachers who share ideas.

The teacher candidates in the combined elementary and middle grades science methods course subscribe to the NSTA LC for six months. During this time period they download any content they feel they can and will use in the future. These downloaded resources are theirs for a lifetime. The NSTA LC is integrated into a project for integrating science content and pedagogy. The project requires the teacher candidates to take a pre-test exam, gather online resources from the site’s resources, complete mini-courses about the science topic, and complete a posttest after six weeks. While not part of the course grade, participating and engaging in the online professional discussions and posts is encouraged so that the teacher candidates learn to become part of an extended PLC. Besides the use of the NSTA LC as a project assignment, the website is used during normal instruction to show other possible activities, lesson plans, and explanations of concepts. The project and use of the NSTA LC is more of a self-guided endeavor because when they become classroom teachers they will have to learn more science content on their own and this is one effective method for doing it. Online learning of science content within a community of science teachers is how current teachers develop and grow the depth of their topic-specific PCK. This project and use of the NSTA LC allows teacher candidates to learn this process in a controlled environment in which the content is controlled and other professionals can assist in the learning to implement science content.

Concluding Thoughts

In summary, this article showcased multiple ways to use the online NSTA Learning Center as part of pK-8 science methods courses. The LC has been used as a method to learn topic-specific PCK in multiple contexts as well as an interactive tool for teacher candidates to investigate general pedagogy. In all of the cases there is anecdotal evidence concerning the effectiveness of using the LC either as an addition to one’s course or in lieu of the course textbook. However, as can be seen in a number of the cases the LC is not just a tool one can use in the science methods course but can become part of the teacher candidates’ journey as professional educators to become lifelong learners as they develop PCK. The authors feel that these benefits far outweigh the cost of the use of the LC and put the teacher candidates on the road to becoming highly efficient teachers of science. As one teacher candidate stated:

I found the resources provided for us….like we got NSTA. Most of those articles were pretty applicable. They had ideas you could use in your own classroom. It is so beneficial. It was pricey but it was worth it as we used it every week. The site had very valuable information that I would use in the future.

Part of establishing a community of lifelong learners is to develop the context in which teacher candidates can learn from multiple resources, participate in active dialogue about teaching and learning science, and develop appropriate lesson plans and activities using diverse sources of science content and pedagogy. The introduction and discussion of forming a community of lifelong learners necessitates the need for research to determine the benefits of using online, interactive, and collaborative sites in developing science teacher candidates. The idea and implementation of a single textbook and downloaded articles are gone. The new generation of teacher candidates need more dynamic and interactive methods for developing science content and pedagogy. Online sites for promoting lifelong learning of content, pedagogy, and PCK will become the standard in the near future.

References

Akerson, V. L., Cullen, T. A., & Hanson, D. L. (2009). Fostering a community of practice through a professional development program to improve elementary teachers’ views of nature of science and teaching practice. Journal of research in Science Teaching46, 1090-1113.

Appleton, K., & Kindt, I. (1999). Why teach primary science? Influences on beginning teachers’ practices. International Journal of Science Education21, 155-168.

Avery, L. M., & Meyer, D. Z. (2012). Teaching Science as Science Is Practiced: Opportunities and Limits for Enhancing Preservice Elementary Teachers’ Self‐Efficacy for Science and Science Teaching. School Science and Mathematics112, 395-409.

Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, Co: BSCS5, 88-98.

Byers, A., & Mendez, F. (2016). Blended professional learning for science educators: The NSTA Learning Center. Teacher learning in the digital age: Online professional development in STEM education, 167

Dogan, S., Pringle, R., & Mesa, J. (2016). The impacts of professional learning communities on science teachers’ knowledge, practice and student learning: A review. Professional Development in Education, 42, 569-588.

Ekici, D. I. (2017). The Effects of Online Communities of Practice on Pre-Service Teachers’ Critical Thinking Dispositions. Eurasia Journal of Mathematics Science and Technology Education13, 3801-3827.

Kittleson, J., Dresden, J., & Wenner, J.A. (2013).  Describing the Supported Collaborative Teaching Model: A designed setting to enhance teacher education. School-University Partnerships, 6(2), 20-31.

National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common Core State Standards. Authors: Washington D.C.

NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

Ramey-Gassert, L., & Shroyer, M. G. (1992). Enhancing science teaching self-efficacy in preservice elementary teachers. Journal of Elementary Science Education4, 26-34.

Ramey‐Gassert, L., Shroyer, M. G., & Staver, J. R. (1996). A qualitative study of factors influencing science teaching self‐efficacy of elementary level teachers. Science Education80, 283-315.

Veal, W.R., & MaKinster, J.G. (1999). Pedagogical content knowledge taxonomies. Electronic Journal of Science Education, 3(4). Retrieved from http://ejse.southwestern.edu/article/view/7615/5382

Vick, M.E. (2018). Designing a third space science methods course. Innovations in Science Teacher Education 3(1). Retrieved from https://innovations.theaste.org/designing-a-third-space-science-methods-course/

Cobern and Loving’s Card Exchange Revisited: Using Literacy Strategies to Support and Enhance Teacher Candidates’ Understanding of NOS

Citation
Print Friendly, PDF & Email

Allaire, F.S. (2018). Cobern and Loving’s card exchange revisited: Using literacy strategies to support and enhance teacher candidates’ understanding of NOS. Innovations in Science Teacher Education, 3(3). Retrieved from https://innovations.theaste.org/cobern-and-lovings-card-exchange-revisited-using-literacy-strategies-to-support-and-enhance-teacher-candidates-understanding-of-nos/

by Franklin S. Allaire, University of Houston-Downtown

Abstract

The nature of science (NOS) has long been an essential part of science methods courses for elementary and secondary teachers. Consensus has grown among science educators and organizations that developing teacher candidate’s NOS knowledge should be one of the main objectives of science teaching and learning. Cobern and Loving’s (1998) Card Exchange is a method of introducing science teacher candidates to the NOS. Both elementary and secondary teacher candidates have enjoyed the activity and found it useful in addressing NOS - a topic they tend to avoid. However, the word usage and dense phrasing of NOS statements were an issue that caused the Card Exchange to less effective than intended. This article describes the integration of constructivist cross-curricular literacy strategies in the form of a NOS statement review based on Cobern and Loving’s Card Exchange statements. The use of literacy strategies transforms the Card Exchange into a more genuine, meaningful, student-centered activity to stimulate NOS discussions with teacher candidates.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

American Association for the Advancement of Science (AAAS). (1993). Benchmarks for Science Literacy: Project 2061. New York: Oxford University Press.

Ardasheva, Y., Norton-Meier, L., & Hand, B. (2015). Negotiation, embeddedness, and non-threatening learning environments as themes of science and language convergence for English language learners. Studies in Science Education, 51, 201-249.

Ardasheva, Y., & Tretter, T. (2017). Developing science-specific, technical vocabulary of high school newcomer English learners. International Journal of Bilingual Education and Bilingualism, 20, 252-271.

Clough, M. (2011). Teaching and Assessing the Nature of Science. The Science Teacher, 78(6), 56-60.

Cobern, W. W. (1991). Introducing Teachers to the Philosophy of Science: The Card Exchange. Journal of Science Teacher Education, 2(2), 45-47.

Collier, S., Burston, B., & Rhodes, A. (2016). Teaching STEM as a second language: Utilizing SLA to develop equitable learning for all students. Journal for Multicultural Education, 10, 257-273.

Harmon, J., Hedrick, W., & Wood, K. (2005). Research on Vocabulary Instruction in the Content Areas: Implications for Struggling Readers. Reading & Writing Quarterly, 21, 261-280.

Herman, B. C., Clough, M. P., & Olson, J. K. (2013). Teachers’ Nature of Science Implementation Practices 2–5 Years After Having Completed an Intensive Science Education Program. Science Education, 97, 271–309.

Jung, K., & Brown, J. (2016). Examining the Effectiveness of an Academic Language Planning Organizer as a Tool for Planning Science Academic Language Instruction and Supports. Journal of Science Teacher Education, 27, 847-872.

Miller, D., Scott, C., & McTigue, E. (2016). Writing in the Secondary-Level Disciplines: a Systematic Review of Context, Cognition, and Content. Educational Psychology Review, 1-38.

Moje, E. (2008). Foregrounding the disciplines in secondary literacy teaching and learning: A call for change. Journal of Adolescent & Adult Literacy, 52, 96-107.

Nagy, W. (1988). Teaching Vocabulary to Improve Reading Comprehension. Newark, DE: International Reading Association.

Nagy, W., & Townsend, D. (2012). Words as tools: Learning academic vocabulary as language acquisition. Reading Research Quarterly, 47(1), 91-108.

National Council for Accreditation of Teacher Education. (2008). Professional Standards for the Accreditation of Teacher Preparation Institutions. Retrieved from Washington, D.C.:

National Research Council. (2012). A Framework for K-12 Science Education: Practices, Crosscutting concepts, and Core Ideas. Retrieved from Washington, D.C.:

National Research Council. (2013). Next generation science standards: For states, by states.

National Science Foundation. (1996). Shaping the future: New expectations for undergraduate education in science, mathematics, engineering, and technology. Washington, D.C.: National Science Foundation.

National Science Teacher’s Association. (2012). NSTA Standards for Science Teacher Preparation. Retrieved from http://www.nsta.org/preservice/

NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

Reed, D. K., Petscher, Y., & Truckenmiller, A. J. (2016). The Contribution of General Reading Ability to Science Achievement. Reading Research Quarterly.

Shanahan, T., & Shanahan, C. (2012). What is disciplinary literacy and why does it matter? Topics in language disorders, 32(1), 7-18.

Taboada, A. (2012). Relationships of general vocabulary, science vocabulary, and student questioning with science comprehension in students with varying levels of English proficiency. Instructional Science, 40, 901-923.

Vacca, R., Vacca, J., & Mraz, M. (2016). Content area reading: Literacy and learning across the curriculum: Pearson.

Van Laere, E., Aesaert, K., & van Braak, J. (2014). The role of students’ home language in science achievement: A multilevel approach. International Journal of Science Education, 36, 2772-2794.

 

Promoting “Science for All” Through Teacher Candidate Collaboration and Community Engagement

Citation
Print Friendly, PDF & Email

Kahn, S., Hartman, S.L., Oswald, K., & Samblanet, M. (2018). Promoting “science for all” through teacher candidate collaboration and community engagement. Innovations in Science Teacher Education, 3(2). Retrieved from https://innovations.theaste.org/promoting-science-for-all-through-teacher-candidate-collaboration-and-community-engagement/

by Sami Kahn, Ohio University; Sara L. Hartman, Ohio University; Karen Oswald, Ohio University; & Marek Samblanet, Ohio University

Abstract

The Next Generation Science Standards present a bold vision for meaningful, quality science experiences for all students. Yet students with disabilities continue to underperform on standardized assessments while persons with disabilities remain underrepresented in science fields. Paramount among the factors contributing to this disparity is that science teachers are underprepared to teach students with disabilities while special education teachers are similarly ill-prepared to teach science. This situation creates a pedagogical and moral dilemma of placing teachers in classrooms without ample preparation, thereby guaranteeing attitudinal and practical barriers. To address this challenge, the authors of this manuscript developed a novel project in which, through voluntary participation, members of Ohio University’s National Science Teachers Association student chapter co-planned and co-taught inclusive science lessons with members of the university’s Student Council for Exceptional Children at the Ohio Valley Museum of Discovery, a local hands-on discovery museum. This manuscript describes the motivation for, methods, and findings from the project, as well as recommendations for other programs wishing to implement a similar model.

Introduction

The Next Generation Science Standards present a bold vision for equitable and excellent science opportunities through a call for “All Standards, All Students” (Next Generation Science Standards [NGSS] Lead States, 2013, Appendix D). Following in the footsteps of the earlier “Science for All” efforts, the NGSS articulate a range of supports for marginalized groups in science, including students with disabilities. For those of us who have worked on issues of science equity and accessibility throughout our careers, it seems implausible that profound educational disparities and attitudinal barriers persist in the 21st Century. Yet despite decades of work on inclusive science research and practice, persons with disabilities continue to be underrepresented in science careers while students with disabilities underperform on science assessments (National Assessment of Educational Progress [NAEP], National Center for Education Statistics [NCES], 2011; National Science Foundation [NSF], 2013). Paramount among the factors contributing to this disparity is that science teachers are underprepared to teach students with disabilities in their classrooms, while special education teachers are similarly ill-prepared to teach science ( Irving, Nti, & Johnson, 2007; Kahn & Lewis, 2014). An obvious solution is to have science and special educators co-teach in the classroom, yet research suggests that without preparation and experience in such models, teachers face tremendous obstacles including lack of co-planning time, challenges with establishing roles and responsibilities, and simply lack of familiarity with discipline-specific accommodations (Moin, Magiera, & Zigmond, 2009). This situation creates a pedagogical and, as we believe, a moral dilemma of placing teachers in classrooms without ample preparation, a set-up for attitudinal and practical barriers.

We were therefore interested in developing flexible opportunities for science teacher candidates to interact and co-teach with special education candidates in an effort to provide meaningful experiences for all of our students, contribute to the research base in inclusive science teacher education, and support our greater community. To that end, we developed an Inclusive Science Day during which members of our Ohio University National Science Teachers Association (OU-NSTA) student chapter co-planned and co-taught inclusive science lessons with student members of our Student Council for Exceptional Children (SCEC) at the Ohio Valley Museum of Discovery (OVMoD), a local hands-on discovery museum. In doing so, our candidates learned about inclusive science practices, experienced co-planning, budgeting, and delivering science activities for a diverse audience, gained appreciation for the benefits of informal science community partnerships, and learned about themselves as future teachers of all students. This manuscript describes the motivation for, methods, and findings from our project, as well as recommendations for other programs wishing to implement a similar model.

Theoretical and School Context

Teacher Preparation and Science for Students with Disabilities

The Individuals with Disabilities Education Act, later reauthorized as the IDEIA (2004), guarantees a free appropriate public education in the least restrictive environment. For the more than 6 million students in American schools identified as having disabilities, this means that they are guaranteed opportunities for learning commensurate with their abilities across subjects, including science. While most science teachers at all levels will teach students with disabilities in their classrooms, most receive little formal education in inclusive science practices. In their nationwide survey of 1088 science teachers, Kahn and Lewis (2014) found that, while 99% of the participants had taught students with disabilities during their careers, nearly one-third had not received any training on the subject and of those who had “on the job training” was cited as the most prominent context for learning. Similarly, special education teachers receive little training in science education (Patton, Palloway, & Cronin, 1990), leaving them to frequently be marginalized in inclusive science settings, with science teachers taking the lead. It is perhaps, therefore, not surprising that students with disabilities underperform on standardized science assessments and are underrepresented in science fields. Without the benefit of teachers who have been adequately prepared to develop accessible lessons using inclusive pedagogical approaches, students with disabilities will continue to be underserved in the sciences.

Although science and special education are often characterized as representing different philosophical stances (McGinnis & Kahn, 2014), contemporary frameworks like Universal Design for Learning (UDL; Meyer, Rose, & Gordon, 2015) can mediate these differences by capitalizing on the abilities and acknowledging the challenges of all students, thereby creating a cohesive approach to ensuring access for the greatest number of learners. We hypothesized that allowing candidates to co-plan and co-teach UDL activities would provide them with the unique opportunity to discover each other’s strengths, assess their own weaknesses, and become exposed to different perspectives. As in most teacher education programs, however, these opportunities were scant for our candidates due to the structural requirements of their different programs of study and teaching placements. It seemed that a less formal opportunity was needed to explore possible benefits and challenges of collaborative inclusive programming. We decided to turn to the OVMoD for assistance.

Informal Science Learning

Informal science learning spaces, such as museums, zoos, aquaria, botanical gardens, provide unique opportunities for contextualized science learning for their visitors (Bell, Lewenstein, Shouse, & Feder, 2009). By providing materials and exhibits that are not otherwise readily accessible, allowing for open, unstructured discovery, and welcoming learners of all ages and backgrounds, these spaces offer incomparable resources to their surrounding communities (Fenichel & Schweingruber, 2010). Informal science learning spaces also provide powerful contexts for learning, not only for visitors but also for teacher candidates (Duran, Ballone-Duran, Haney, & Beltyukova, 2009). By providing candidates with teaching opportunities in such spaces, candidates learn to “think on their feet” as they are met by learners about whom they have no prior information, and must therefore anticipate challenges and respond quickly. They are also exposed to visitors representing a variety of ages, backgrounds, and abilities, thus necessitating a true “science for all” attitude and approach (McGinnis, Hestness, Riedinger, Katz, Marbach-Ad, & Dai A., 2012). Finally, bringing teacher candidates to informal science learning spaces allows them to learn about and serve their community, and of course, allows the community to become better acquainted with the programs and services available through the university, thereby promoting symbiotic learning opportunities (Bevan et al., 2010).

Our Programs

The Patton College of Education at Ohio University serves approximately 1600 undergraduate and 900 graduate students and uses a clinical model for teacher preparation, thus ensuring extensive in-school opportunities for students beginning in their sophomore year and benefitting from close relationships with partner schools (National Council for Accreditation of Teacher Education, 2010). Within our Department of Teacher Education, undergraduate and masters students can select from a wide swath of science teaching majors leading to certification in middle and secondary science areas. In addition, we have a thriving early childhood program that includes courses in both preschool and elementary science methods. Likewise, our nationally-recognized special education program leads to multiple graduate and undergraduate licensures. Undergraduate licensures include programming for intervention specialists seeking degrees to work with students with mild-to-moderate or moderate-to-intensive educational needs.

As vigorous and comprehensive as our programs are, teacher candidates from science education and special education interact infrequently during school hours due to their divergent course and placement requirements. Fortunately, our college supports (both philosophically and financially) our professional organization student chapters which afford opportunities for flexible collaboration. Our Ohio University National Science Teachers Association (OU-NSTA) student chapter welcomes all students with an interest in science teaching and learning. This chapter experienced a renaissance recently with regular meetings, numerous fundraising activities, learning opportunities including attendance at a regional NSTA conference, and a concerted commitment to service learning in our community. This chapter currently has approximately 25 members representing both undergraduate and graduate programs, although most are undergraduate secondary (middle and high school) science education majors. Our Student Council for Exceptional Children (SCEC) boasts a large, consistent membership of approximately 35 to 40 teacher candidates who meet regularly, assist with functions held by the local developmental disabilities programs, and provide fundraising support for members of the community with disabilities as well as schools in need of resources for serving students with disabilities. This organization enjoys the leadership of a long-term and beloved advisor who has developed the group through many years of mentoring and modeling. In addition to our college of education, our university’s center for community engagement provides small grants for service learning projects. We were fortunate to receive funding for our Inclusive Science Day project to cover the cost of training materials used with our teacher candidates, consumables for science activities, and refreshments. In addition, this grant provided funds for two of our students to attend a regional NSTA conference early in the year at which they interviewed various leaders in the science education community as well as publishers and science education suppliers about their inclusive science materials. This experience was eye-opening for our students, who presented their findings at subsequent group meetings, as it set the stage for our Inclusive Science Day planning.

The Intervention: Inclusive Science Day

In order to determine the potential for an Inclusive Science Day at an informal learning space, the OU-NSTA advisor raised the idea with a colleague from the College of Education, who is also on the board of the OVMoD to discuss possibilities. The colleague indicated that the museum had made concerted efforts to reach out to visitors with all abilities through use of universally-designed displays and a “sensory-friendly” day; she was completely open to the idea of having teacher candidates plan and teach at the museum but would need to discuss the idea with the museum’s executive director and other board members.  The OU-NSTA advisor then met with the SCEC advisor, who was equally enthusiastic about the prospect of collaboration. Both the OU-NSTA and SCEC advisors then presented the idea to their respective executive board members who were highly receptive. Concurrently, the OU-NSTA advisor participated in an 8-week course on service learning offered by the university’s center for community engagement in order to better understand the dynamics of collaborative endeavors with community entities and to consider in depth both the potential learning opportunities for the teacher candidates and the service opportunities for the museum. While it might have been possible for this project to come to fruition without that training, the advisor felt that it undoubtedly prepared her for the potential benefits and challenges. Once all parties embraced Inclusive Science Day, the two advisors began to plan the training and research.

Planning and Orientation

One of the most daunting tasks was simply identifying a day/time that students could meet for an orientation and training. As this was a voluntary endeavor, we knew that we would need to ensure that our meetings were highly efficient, focused, and would inspire our teacher candidates to collaborate on their own time to ensure availability and convenience. Once we had an announced orientation time, the two advisors met to plan the training. We determined that the 2 1/2-hour evening training would include the following agenda:

  • Welcome, Refreshments, and Survey Invitation
  • Why Inclusive Science Day? and “Can You Name This Scientist?”
  • Collaborative Hands-on Simulation Activity (“Helicopters”) and Debriefing UDL
  • Lesson Planning and Budgeting Activities
  • Next Steps!

As we had decided to conduct research on teacher candidates’ experiences and attitudes regarding inclusive science practice, we applied for and received IRB approval for a pre and post survey that was distributed anonymously online at the orientation (pre) and after the Inclusive Science Day (post). Students were recruited for the Inclusive Science Day and associated research via e-invitations sent to organization membership lists in advance of the orientation. Because of our desire to avoid exerting pressure on students to participate in either the research or project, we did not require students to RSVP. We were very pleased to see that 18 students attended the training (ten special education and eight science education, including one elementary science methods student). When the students arrived at the orientation, they created nametags, had the opportunity to complete the survey online, and enjoyed pizza. We then distributed students among five tables so that at least one special education candidate was at each table. After introductions, we engaged in a brief brainstorming challenge to identify why inclusive science education might be important.  Candidates actively identified reasons including:

“There aren’t enough scientists with disabilities in the field.”

“Science is part of every child’s life and body.”

“You can teach science through different in different ways (e.g., visual, tactile, kinesthetic, etc…).”

“Knowing about science is important for everyone!”

“We need to know how to teach all students.”

We added three others to the list that students did not mention:

  • Science benefits from having all students contribute to its advancement.
  • There is a moral imperative for all students to have the opportunity to experience science.
  • Science is beautiful!

We then engaged in a “Can You Name This Scientist?” game in which candidates viewed pictures of famous scientists with disabilities and were asked to identify them.  Scientists included Alexander Graham Bell (Dyslexia), Thomas Edison (Hearing Impairment and Dyslexia), Temple Grandin (Autism), Geerat Vermeij (Visual Impairment), Jack Horner (Dyslexia), and Stephen Hawking (Motor Neuron Disease), among others. Most of our candidates were unaware that such accomplished scientists also had disabilities and that their disabilities, in some cases, may have enhanced the scientists’ interests and abilities in their fields. For example, Geerat Vermeij, a world-renowned paleobiologist attributes his nuanced abilities in identifying mollusks to his ability to feel and attend to distinctions in shells that sighted scientists might overlook (Vermeij, 1997). We were excited to see our students’ interests so piqued after this activity.

We then introduced the Universal Design for Learning (UDL; Meyer, Rose, & Gordon, 2014) framework, which allows teachers to develop lessons that meet the needs of the most number of learners thereby reducing the need for specific disability accommodations. The three principles of UDL are: 1) Multiple Means of Engagement (How students access the lesson or materials); 2) Multiple Means of Representation (How teachers present the material to the students); and 3) Multiple Means of Action and Expression (How students interact with the materials and show what they know). To help teacher candidates to better understand the potential barriers that students with disabilities might have in science class, we co-led a science activity in which students followed written directions for making and testing paper helicopters while assigning students equipment that helped them to simulate various disabilities. For example, some students received handouts that had scrambled letters to simulate Dyslexia, while others wore glasses that limited their vision. In addition, some students wore earplugs to simulate hearing impairments while others listened to conversations on headphones to simulate psychiatric disorders. Finally, some students had tape placed around adjacent fingers to simulate fine motor impairments, while others utilized crutches or wheel chairs. Students progressed through this activity for several minutes and then discussed their challenges as a class. We chose the helicopter activity because it required reading, cutting with scissors, throwing and observing the helicopters, and retrieving them; thus, this activity required a variety of intellectual and physical skills. We found that our students were quite impacted by this activity, as many indicated that they had never really thought about the perspective of students with these disabilities. In particular, the student who utilized a wheelchair said that she had never realized how much space was needed to accommodate the wheelchair easily during an active investigation. This led the group to discuss the need for us to set up our tables at the museum with sufficient space for all visitors to comfortably traverse the museum. Of course, we were careful to remind students that this type of simulation cannot accurately represent the true nature and complexity of anyone’s experiences, and that people with disabilities, like all individuals, develop adaptations for addressing challenges. However, this brief experience prompted our students to think about how they could redesign the lesson to ensure that as many students as possible could access it without specific accommodations.

We then informed the groups that they were each to develop plans for two activities that would be presented at the Inclusive Science Day. Based on discussions with museum administrators, we decided that having several “make and take” activities was desirable, in part because it allowed the learning to continue at home, but also because our university is in a very rural, high poverty region thus making these types of materials a particularly welcome benefit for many families (United States Census Bureau, 2014). Together, we reviewed the lesson plan document which was less formal than our typical lesson plan document (due to the informal nature of the museum activity stations format) but nevertheless, had specific learning outcomes, considerations for diversity (including gender, socioeconomic status, English language proficiency, and ability), and a budget (See Figure 1 for a Sample Lesson; a blank lesson plan template is available for download at the end of this article in supplemental materials). We then informed teams that, thanks to the grant we had received, they had $50 to spend on their two lessons and that they should anticipate approximately 50 visitors to their tables (based on prior museum visitation counts). Teacher candidates then used their laptops and various resource books we provided to identify activities and develop materials lists with prices. We decided the easiest way to ensure that all materials would be received in time, and to avoid dealing with reimbursements and other financial complexities was to have students submit their final budget sheets to us during the week following the orientation. We would then order all the materials using one account and notify students once the materials were received. Students were responsible for bringing in “freebie” materials such as newspaper, aluminum cans, matches, etc. Once materials were received, student groups came to the central storage room at their convenience to check and prepare their materials in ample time for the program. We also encouraged students to create table signs for display at the Inclusive Science Day. They did this on their own time as well. Some of the activities that students developed were:

  • Fingerprint Detectives
  • Creating a Galaxy in a Jar
  • Chemical Reactions in a Pan (using baking soda and vinegar mixed with food coloring)
  • Exploring Static Electricity with Balloons
  • Egg Drop
  • Making and Testing Kazoos
  • Blobs in a Bottle (with vegetable oil and Alka-Seltzer tablets)
  • Inflate a Balloon Using Chemistry
Figure 1 (Click on image to enlarge). Sample lesson plan for “Inflate a Balloon Using Chemistry.”

In addition to identifying activities that engaged different senses, our students thought about how to meet a variety of learners’ needs. For example, magnifiers and large ink stamp pads would be available at the fingerprint station for all students, while the “Blobs in a Bottle” activity station had alternative “jelly balls” that could be felt by visitors who couldn’t see the vegetable oil “blobs.” The kazoo station, which used toilet paper tubes, waxed paper, and rubber bands, allowed visitors who could not hear to feel the movement of the waxed paper when the kazoos were played. The station also had adaptive scissors and pre-cut waxed paper for visitors needing fine motor skill support. The UDL considerations and accommodations provided for each activity are contained in Table 1 below.

Table 1 (Click on image to enlarge)
UDL Considerations and Accommodations for Accessibility on Inclusive Science Day

The Day of the Event

The Inclusive Science Day was announced by the museum on social media, through our local schools, and through the local newspaper. The museum generously waived their admission fee for the day in order to encourage attendance as well. On the day of the program, students were asked to arrive two hours in advance to set up their stations. We provided lunch to ensure that we had time to speak to the group about the importance of the work they were about to do, and to allow the museum staff to convey any final instructions to the students. When the doors were opened, we were thrilled to see large numbers of families entering the museum space. Over the two hours that our program ran, the museum estimated that we had over 150 visitors, approximately three times their expected attendance. The attendance was so good that some of our student groups needed to send “runners” out to purchase additional materials; our “Galaxy in a Jar” group even began using recycled bottles from our lunch to meet the demands at their table.  Safety was a consideration at all times. Goggles were made available at all tables with splash potential, and safety scissors were used at stations with cutting requirements. In addition, our students (and we) wore our clubs’ T-shirts so that visitors could easily identify instructors. Each activity table had at least one science education and one special education candidate co-teaching. We supervised the students by assisting in crowd control, helping to ensure that visitors could easily navigate through the rather limited museum space, obtaining written permissions for photos from parents/caregivers, and responding to candidate questions. Some photos from the day are shown in Figures 2-4.

Figure 2 (Click on image to enlarge). “Blobs in a Bottle” activity demonstrating density and polarity of water and oil. Tactile “jelly balls” and magnifiers were available for visitors with visual impairments.

Figure 3 (Click on image to enlarge). “Chemical Reactions in a Pan” activity using baking soda, vinegar, and food coloring. Varied sizes of pipettes and pans were available to address diversity in visitors’ fine motor skills.

Figure 4 (Click on image to enlarge). “Exploring Sound with Kazoos” activity. Visitors were encouraged to use their senses of vision, touch, and hearing to test the instruments.

Research Findings/Project Evaluation

Overall, our teacher candidates found this project to be highly meaningful and helpful for their professional learning. Perhaps one of the most important themes that emerged from our evaluative research was that science and special education candidates welcomed the opportunity to collaborate as none of them had reported having opportunities to do so in the past. Some of the student post-activity responses included the following:

“[Inclusive Science Day] allowed me to gain more experience and to really learn what it is like to teach students who have disabilities. I also was able to see how students with different disabilities reacted to the same activity. I found that those students who had a disability found a different way to cope with their disability than we had thought they would.”

“I saw how different general education and special education teacher think. There were many differences to our approaches to creating the lesson.”

“I really liked that I was able to consult with the special education teachers if I was unsure of how to help a student with disabilities.”

“I had a great time sharing my content knowledge of science with those whose specialty is special education. Conversely, I had a great time learning from experts in special education and I really enjoyed seeing them be so in their comfort zone when we did have kids with exceptionalities. I envy their comfort levels and it makes me want to reach that level of comfort.”

“We were well prepared for any differentiation that would have needed to be done. And we all learned from each other.”

“I feel this was an awesome experience. The people I worked with really added something to our experiments that I otherwise may not have thought about.”

Challenges cited by our students included feeling a bit overwhelmed by the number of visitors at each station, not having knowledge about the visitors’ backgrounds in advance, and difficulties in maintaining visitors’ focus on the science content. We found one student’s reflection to be quite sophisticated in its recognition of the need for more training on inclusive science:

“I still feel that I would like more professional development when it comes to leading science activities for students with disabilities. I had an experience with a wonderful young man and I felt very challenged because I don’t feel comfortable enough to gauge what I should be allowing him to do on his own and at the same time I didn’t want to hinder him from reaching his full potential. So, I feel like further professional development in that area is needed for me.”

Qualitative  analysis of candidate pre and post responses resulted in themes that included: 1) candidates’ assessment of collaboration as a powerful professional development opportunity; 2) identification of different perspectives between science and special education candidates; 3) a common desire to do good work by making accessible for all students; 4) recognition of informal learning spaces as viable teaching venues; and; 4) a strong need for more training and opportunities to teach science to students with disabilities. Our findings support earlier research suggesting that teacher candidates are inclined toward inclusive practices (McGinnis, 2003) and that opportunities for collaboration with special education candidates enhance their comfort level in co-planning and co-teaching (Moorehead & Grillo, 2013). Our teacher candidates’ expressions of the depth of impact this professional development experience had on them makes sense when considered in light of Kahn and Lewis’ (2014) study which suggested that teachers’ experience with any students with disabilities increased their feelings of preparedness toward working with all students with disabilities. In addition, our findings reinforce studies suggesting that informal learning spaces can provide unique and flexible learning opportunities for teacher candidates, particularly in that they provided multiple opportunities to teach the same lesson repeatedly, thus allowing for reflection and revision (Jung & Tonso, 2006). Perhaps most importantly, this study underscores the desire for and efficacy of increased training and experience in implementing inclusive science practices during teachers’ pre-service educations.

Future Plans and Conclusion

Based on the feedback from the teacher candidates and the museum, we are planning to make Inclusive Science Day an annual event. However, we are considering several changes for future projects including:

  • Multiple training evenings for teacher candidates
  • Pre-registration for Inclusive Science Day so that we can anticipate attendance size and specific needs of visitors
  • Creating a “Quiet Zone” area at the museum for visitors who would benefit from a less bustling environment
  • Identifying additional sources of funding for consumable materials
  • Greater outreach to our early childhood teacher candidates to encourage participation

As students with disabilities are increasingly included in science classrooms, it is incumbent of teacher education programs to ensure that their science teacher candidates acquire the tools and the dispositions for teaching all learners. While more formal approaches, such as dual licensure programs and co-teaching internship placements are on the horizon for many programs, teacher education programs should not overlook the power of extracurricular events, informal learning spaces, and student organizations to provide important professional development opportunities for teacher candidates, pilots for new program development, and occasions to both serve and learn from the community.

 

Supplemental Files

Lesson-Plan-Template.docx

References

Bell, P., Lewenstein, B. V., Shouse, A. W., & Feder, M. A. (2009). Learning science in informal environments: People, places, and pursuits. Washington, DC: National Academies Press.

Bevan, B., Dillon, J., Hein, G.E., Macdonald, M., Michalchik, V., Miller, D., & Yoon, S. (2010). Making science matter: Collaborations between informal science education organizations and schools. Washington, DC: Center for the Advancement of Informal School Science Education (CAISE). Retrieved from http://www.informalscience.org/sites/default/files/MakingScienceMatter.pdf

Duran, E., Ballone-Duran, L., Haney, J., & Beltyukova, S. (2009). The impact of a professional development program integrating informal science education on early childhood teachers’ self-efficacy and beliefs about inquiry-based science teaching. Journal of Elementary Science Education, 21, 53-70. Retrieved from http://files.eric.ed.gov/fulltext/EJ867290.pdf

Fenichel, M. & Schweingruber, H. A. (2010). Surrounded by science: Learning science in informal environments. Washington, DC: National Academies Press. doi:10.17226/12614

Individuals with Disabilities Education Act, 20 U.S.C. § 1400 (2004).

Irving, M., Nti, M., & Johnson, W. (2007). Meeting the needs of the special learner in science. International Journal of Special Education, 22, 109–118. ISSN-0827-3383

Jung, M. L., & Tonso, K. L. (2006). Elementary preservice teachers learning to teach science in science museums and nature centers: A novel program’s impact on science knowledge, science pedagogy, and confidence teaching. Journal of Elementary Science Education 18 (1), 15–31. ISSN:1090-185X

Kahn, S., & Lewis, A. R. (2014). Survey on teaching Science to K-12 students with disabilities: Teacher preparedness and attitudes. Journal of Science Teacher Education, 25, 885-910. DOI 10.1007/s10972-014-9406-z

McGinnis, J. R. (2003). The morality of inclusive verses exclusive settings: Preparing teachers to teach students with mental disabilities in science. In D. Zeidler (Ed.), The role of moral reasoning on socioscientific issues and discourse in science education (pp. 196–215). Boston: Kluwer Academic Publishers.

McGinnis J.R., Hestness E., Riedinger K., Katz P., Marbach-Ad G., Dai A. (2012) Informal science education in formal science teacher preparation. In: Fraser B., Tobin K., McRobbie C. (eds) Second International Handbook of Science Education. Springer International Handbooks of Education, vol 24. Springer, Dordrecht. DOI https://doi.org/10.1007/978-1-4020-9041-7_72

McGinnis, J. R., & Kahn, S. (2014). Special needs and talents in science learning. In N.G. Lederman & S.K. Abell (Eds.), Handbook of research in science education (Vol. II), (pp. 223-245). New York, NY: Routledge.

Meyer, A., Rose, D., & Gordon, D. (2014). Universal design for learning: Theory and practice. Wakefield, MA: CAST Publications.

Moin, L.J., Magiera, K. & Zigmond, N. (2009). Instructional activities and group work in the U.S. inclusive co-taught high school science class. International Journal of Science and Math Education, 7, 677-697. doi:10.1007/s10763-008-9133-z

Moorehead, T., & Grillo, K. (2013). Celebrating the reality of inclusive STEM education: Co-teaching in science and mathematics. Teaching Exceptional Children, 45(4), 50-57. ISSN: ISSN-0040-0599

National Center for Education Statistics. (2011). The nation’s report card: Science 2009 (NCES 2011-451). Washington, DC: Institute of Education Sciences, U.S. Department of Education.

National Council for Accreditation of Teacher Education. (2010). Transforming teacher education through clinical practice: A national strategy to prepare effective teachers. Report of the Blue Ribbon Panel on Clinical Preparation and Partnerships for Improved Student Learning. Retrieved from https://files.eric.ed.gov/fulltext/ED512807.pdf

National Science Foundation, National Center for Science and Engineering Statistics. (2013). Women, minorities, and persons with disabilities in science and engineering: 2013. Special Report NSF13-304. Arlington, VA. Retrieved from https://www.nsf.gov/statistics/women/

Patton, J., Polloway, E., & Cronin, M. (1990). A survey of special education teachers relative to science for the handicapped. Honolulu, HI: University of Hawaii. Unpublished manuscript.

United States Census Bureau. (2014). State and county quick facts. Retrieved from https://www.census.gov/quickfacts/fact/table/athenscountyohio,US/PST045217

Vermeij, G. (1997). Privileged hands: A Scientific Life. W.H. Freeman & Co. New York: NY.

Personal Science Story Podcasts: Enhancing Literacy and Science Content

Citation
Print Friendly, PDF & Email

Frisch, J.K. (2018). Personal science story podcasts: Enhancing literacy and science content. Innovations in Science Teacher Education, 3(2). Retrieved from https://innovations.theaste.org/personal-science-story-podcasts-enhancing-literacy-and-science-content/

by Jennifer K. Frisch, University of Minnesota Duluth

Abstract

Podcasts (like “You are Not So Smart”, “99% Invisible”, or “Radiolab”) are becoming a popular way to communicate about science. Podcasts often use personal stories to connect with listeners and engage empathy, which can be a key ingredient in communicating about science effectively. Why not have your students create their own podcasts? Personal science stories can be useful to students as they try to connect abstract science concepts with real life. These kinds of stories can also help pre-service elementary or secondary teachers as they work towards understanding how to connect science concepts, real life, and literacy. Podcasts can be powerful in teaching academic language in science because through producing a podcast, the student must write, speak, and listen, and think about how science is communicated. This paper describes the personal science podcast assignment that I have been using in my methods courses, including the literature base supporting it and the steps I take to support my teacher candidates in developing, writing, and sharing their own science story podcasts.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Amicucci, A. N. (2014). How they really talk. Journal of Adolescent & Adult Literacy, 57, 483-491.

Anthony, L. (2014). AntWordProfiler (Version 1.4.1) [Computer Software]. Tokyo, Japan: Waseda University. Retrieved from http://www.laurenceanthony.net/

Borgia, L. (2009). Enhanced vocabulary podcasts implementation in fifth grade classrooms. Reading Improvement, 46, 263-272.

Burmark, L. (2004). Visual presentations that prompt, flash & transform. Media and Methods, 40(6), 4-5.

Challinor, J., Marín, V. I., & Tur, G. (2017). The development of the reflective practitioner through digital storytelling. International Journal of Technology Enhanced Learning9, 186-203.

Couldry, N. (2008). Mediatization or mediation? Alternative understandings of the emergent space of digital storytelling. New Media & Society, 10, 373-391.

Coxhead, A. (2000). A new academic word list. TESOL Quarterly, 34, 213-238.

Delpit, L. (2005). Other People’s Children: Cultural Conflict in the Classroom. 1995. New York: New Press.

Derman-Sparks, L. (1989). Anti-bias curriculum: Tools for empowering young children. National Association for the Education of Young Children, 1834 Connecticut Avenue, NW, Washington, DC 20009-5786.

Dillingham, B. (2001). Visual portrait of a story: Teaching storytelling. Juneau, AK: School Handout.

Dip, J. M. R. B. P. (2014). Voices from the heart: the use of digital storytelling in education. Community Practitioner, 87(1), 28.

Dong, Y. (2002). Integrating language and content: how three biology teachers work with non-English speaking students. International Journal of Bilingual Education and Bilingualism, 5, 40-57.

Frisch, J.K., Cone, N. & Callahan, B. (2017). Using Personal Science Story Podcasts to Reflect on Language and Connections to Science. Contemporary Issues in Technology and Teacher Education, 17, 205-228.

Frisch, J. K., Jackson, P. C., & Murray, M. C. Transforming undergraduate biology learning with inquiry-based instruction. Journal of Computing in Higher Education, 1-26. https://doi.org/10.1007/s12528-017-9155-z

Hendry PM (2007) The future of narrative. Qualitative Inquiry, 13, 487–498.

Huber, J., Caine, V., Huber, M., & Steeves, P. (2013). Narrative inquiry as pedagogy in education: The extraordinary potential of living, telling, retelling, and reliving stories of experience. Review of Research in Education, 37, 212-242.

Hung, C. M., Hwang, G. J., & Huang, I. (2012). A Project-based Digital Storytelling Approach for Improving Students’ Learning Motivation, Problem-Solving Competence and Learning Achievement. Educational Technology & Society, 15, 368-379.

Lambert, J. (2002). Digital storytelling: Capturing lives, creating communities. Berkeley, CA: Digital Diner.

Lambert, J. (2010). Digital Storytelling Cookbook. Berkley, CA: Digital Diner.

Ohler, J. B. (2013). Digital storytelling in the classroom: New media pathways to literacy, learning, and creativity. Thousand Oaks, CA: Corwin Press.

Pearson, P., Moje, E., and Greenleaf, C. (2010). Literacy and science: Each in the service of the other. Science, 328, 459-463.

Pegrum, M., Bartle, E., and Longnecker, N. (2015). Can creative podcasting promote deep learning? The use of podcasting for learning content in an undergraduate science unit. British Journal of Educational Technology, 46, 142-152.

Putman, S. M., & Kingsley, T. (2009). The atoms family: Using podcasts to enhance the development of science vocabulary. The Reading Teacher, 63, 100-108. Roadside Theater. (2016). Imagining America: Artists and Scholars in Public Life. Case Study: Story Circles as an Evaluation Tool. Retrieved from https://roadside.org/asset/case-study-story-circles-evaluation-tool

Robin, B.R. (2008). Digital storytelling: A powerful technology tool for the 21st century classroom. Theory into practice, 47, 220-228.

Snow, C. E. (2010). Academic language and the challenge of reading for learning about science. Science, 328, 450-452.

Silva, C., Weinburgh, M., and Smith, K.H. (2013). Not just good science teaching: Supporting academic language development. Voices from the middle, 20, 34- 42.

West, M., & West, M. P. (Eds.). (1953). A general service list of English words: with semantic frequencies and a supplementary word-list for the writing of popular science and technology. Boston, MA: Addison-Wesley Longman Limited.

Willox, A. C., Harper, S. L., & Edge, V. L. (2012). Storytelling in a digital age: digital storytelling as an emerging narrative method for preserving and promoting indigenous oral wisdom. Qualitative Research, 13, 127-147

 

 

An Innovative Integrated STEM Program for PreK-6 Teachers

Citation
Print Friendly, PDF & Email

Lottero-Perdue, P.S., Haines, S., Bamberger, H., & Miranda, R.J. (2018). An innovative integrated STEM program for preK-6 teachers. Innovations in Science Teacher Education, 3(2). Retrieved from https://innovations.theaste.org/an-innovative-integrated-stem-program-for-prek-6-teachers/

by Pamela S. Lottero-Perdue, Towson University; Sarah Haines, Towson University; Honi J. Bamberger, Towson University; & Rommel J. Miranda, Towson University

Abstract

In this article, we describe an innovative, 6-course, 18-credit post-baccalaureate certificate (PBC) program for pre-kindergarten through grade six teachers (PreK-6) in Integrated Science, Technology, Engineering and Mathematics (iSTEM) Instructional Leadership. Here, the acronym, “iSTEM,” refers to education that not only addresses each of the S, T, E and M subjects, but also emphasizes the connections among them. We collaboratively contributed to the development of the program, and teach courses within it. The program graduated its pilot cohort of teachers in 2015, is running its second cohort, and is recruiting for a third. The article summarizes the program’s origins and integration approach and key aspects of program design. Those key aspects include: make-up of the program team; a deliberate course sequence; decrease in structure (and increase in more open-ended, student-centered learning approaches) over time in the program; and movement in the program from growth as an iSTEM teacher towards growth as iSTEM teacher leader. Each of the courses is described in greater detail, followed by a discussion of program assessment and evaluation. The article concludes with our reflections about the program’s challenges and successes thus far.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Berkowitz, A., Ford, M., & Brewer, C. (2005). A framework for integrating ecological literacy, civics literacy, and environmental citizenship in environmental education. In E. A. Johnson & M. J. Mappin (Eds.). Environmental education and advocacy (pp. 227-266). Cambridge, UK: Cambridge University Press.

Blake, R., Frederick, J.A., Haines, S.A., & Colby Lee, S. (2010). Inside-Out: Teaching environmental science inside and outside the elementary/middle school classroom. Arlington, VA: National Science Teachers Association (NSTA) Press.

Buck Institute for Education (BIE). (2011). PBL in the Elementary Grades: Step-by-Step Guidance, Tools & Tips for Standards-focused K-5 Projects. Project Based Learning Toolkit Series. Novato, CA: BIE.

Coyle, K. (2005). Environmental literacy in America: What ten years of NEETF/Roper research and related studies say about environmental literacy in the U.S. Washington, DC: The National Environmental Education and Training Foundation.

Cunningham, C. M., & Carlsen, W. S. (2014). Teaching engineering practices. Journal of Science Teacher Education, 25, 197-210.

Cunningham, C. M., & Lachapelle, C. P. (2014). Designing engineering experiences to engage all students. In S. Purzer, J. Strobel & M.E. Cardella (Eds.), Engineering in pre-college settings: Synthesizing research, policy, and practices, (pp. 117-142). West Lafayette, IN: Purdue University Press.

Dufour, R. (2004, May). What is a “Professional Learning Community?” Educational Leadership, 61(8), 6-11.

EiE. (2011). Thinking inside the box: Designing plant packages. Boston, MA: National Center for Technological Literacy.

Erdogan, M. (2009). Fifth grade students’ environmental literacy and the factors affecting students’ environmentally responsible behaviors. Unpublished doctoral dissertation, Middle East Technical University, Ankara, Turkey.

Gess-Newsome, J. & Lederman, N. (Eds.) (1999). Examining pedagogical content knowledge. Science and Technology Library Series. Boston, MA: Kluwer Academic Publishers.

Haines, S.A. (2006). Outdoor classrooms: Planning makes perfect. Science and Children, 43(8), 44-48.

Instructional Leader STEM (Grades PreK-6), COMAR 13A.12.02.29. (2015). http://mdrules.elaws.us/comar/13a.12.02.29

Johnson, D. W., Johnson, R. T., & Smith, K. A. (2006). Active learning: Cooperation in the college classroom. Edina, MN: Interaction Book Company.

Kamkwamba, W. & Mealer, B. (2016). The boy who harnessed the wind (Young Readers Edition). New York, NY: Puffin Books.

Kitagawa, L. (2016, January). Made for the shade: A creative task engages kindergarteners in building protective structures for UV-sensitive lizards. Science and Children, 53(5), 34-40.

Learning Forward. (2011). Standards for Professional Learning.  Oxford, OH:  Author.

Lester, H. & Munsinger, L. (ill.) (2008). Tacky the penguin. New York: Houghton Mifflin Harcourt.

Lottero-Perdue, P.S. (2017). Engineering design into science classrooms. In Settlage, J., Southerland, S., Smetana, L., & Lottero-Perdue, P.S. Teaching Science to Every Child: Using Culture as a Starting Point. (Third Edition). (pp. 207-266). New York, NY: Routledge.

Reeves, D. B. (2010). Transforming Professional Development into Student Results. Alexandria, VA:  ASCD.

Schulman, I. S. (1987). Learning to teach. American Association of Higher Education, 40, 1-5.

Suskie, L. (2009). Assessing student learning: A common sense guide (2nd ed). San Francisco, CA: Jossey-Bass.

Maryland State Department of Education (MSDE). (2012). Maryland STEM Standards of Practice. Retrieved October 12, 2017 from: http://mdk12.msde.maryland.gov/instruction/academies/MarylandStateSTEMStandardsofPractice.pdf

MSDE. (2007). Maryland State Technology Literacy Standards for Students. Retrieved October 12, 2017 from: http://mdk12.msde.maryland.gov/instruction/curriculum/technology_literacy/vsc_technology_literacy_standards.pdf

National Academy of Engineering (NAE) and National Research Council (NRC). (2009). Engineering in K-12 Education: Understanding the Status and Improving the Prospects. Washington, DC: The National Academies Press. doi:10.17226/12635.

NAE and NRC. (2014). STEM Integration in K-12 Education: Status, Prospects, and an Agenda for Research. Washington, DC: The National Academies Press. doi:10.17226/18612.

National Council of Teachers of Mathematics. (2013, February). Focus Issue: Mathematics Teaching in a STEM Context, Mathematics Teaching in the Middle School, 18(6).

National Governors Association Center (NGAC) for Best Practices and Council of Chief State School Officers (CCSSO). (2010). Common Core State Standards. Washington, DC: NGAC and CCSSO. Retrieved from http://www.corestandards.org

Next Generation Science Standards (NGSS) Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: National Academies Press. Retrieved from www.nextgenscience.org/next-generation-science-standards

Park, L.S. (2010). A Long Walk to Water. Boston, MA: Houghton Mifflin Harcourt.

Reimers, J.E., Farmer, C.L., and Klein-Gardner, S.G. (2015). An introduction to the standards for preparation and professional development for teachers of engineering. Journal of Pre-College Engineering Education Research (J-PEER), 5(1), Article 5, pp. 40-60.

Rothstein, D. & Santana, L. (2011). Make Just One Change: Teach Students to Ask their Own Questions. Cambridge, MA: Harvard University Press.

Vasquez, JA., Sneider, C. & Comer, M. (2013). STEM lesson essentials: Integrating Science, Technology, Engineering and Mathematics. Portsmouth, NH: Heinemann.

The Watercourse/Project WET International Foundation and the Council for Environmental Education. (1995).  Project WET: Water Education for Teachers, Curriculum and Activity Guide. Bozeman, MT.: The Watercourse/Project WET International Foundation and the Council for Environmental Education.

 

Supporting Science Teachers In Creating Lessons With Explicit Conceptual Storylines

Citation
Print Friendly, PDF & Email

Cisterna, D., Lipsitz, K., Hanuscin, D., de Araujo, Z., & van Garderen, D. (2018). Supporting science teachers in creating lessons with explicit conceptual storylines. Innovations in Science Teacher Education, 3(1). Retrieved from https://innovations.theaste.org/supporting-science-teachers-in-creating-lessons-with-explicit-conceptual-storylines/

by Dante Cisterna, University of Nebraska-Lincoln; Kelsey Lipsitz, University of Missouri; Deborah Hanuscin, Western Washington University; Zandra de Araujo, University of Missouri; & Delinda van Garderen, University of Missouri

Abstract

We describe a four-step strategy used in our professional development program to help elementary science teachers recognize and create lesson plans with coherent conceptual storylines. The conceptual storyline of a lesson refers to sequencing its scientific concepts and activities to help students develop a main scientific idea and, often, is an implicit component of a lesson plan. The four steps of this learning strategy are, 1) Building awareness of conceptual storylines; (2) Analyze the coherence of the conceptual storyline of existing lessons; (3) Creating an explicit conceptual storyline as part of the planning process; and (4) Promote conceptual coherence throughout the storyline. We provide examples of how these steps were developed in our professional development program as well as evidence of teachers’ learning. We also discuss practical implications for using conceptual storylines in professional development for science teachers.

Introduction

Lesson planning is a central activity for developing and enacting teachers’ instructional practices. A well-designed lesson plan concretizes the multiple decisions made by teachers to organize their instruction, based on their knowledge of teaching and student learning (Remillard, 2005). However, lesson plans–even detailed ones—do not necessarily convey the rationale behind choices made regarding teaching approaches, sequences of ideas, and specific activities and representations of content (Brown, 2009). In fact, teachers use a variety of lesson plan formats that require a variety of different components, often based on school or district priorities (e.g. connections to other content areas, integration of technology, etc.). Likewise, some lesson plans have teachers indicate the science standards that are aligned with the activities, while other lessons do not.

In our professional development program targeted to elementary science teachers and focused on physical science concepts (see more details of the PD model in van Garderen, Hanuscin, Lee, & Kohn, 2012), we support teachers in making the central features of a lesson plan more explicit. Given that the teachers who participate in our professional development program come from different school buildings and districts (and may use different curricula), we are interested in promoting their pedagogical design capacity (Brown, 2009) so they can apply and adapt the central features of lesson plan design into their particular contexts. We also use the 5E Learning Cycle (Bybee et al., 2006) as a model for guiding the organization of their lesson activities. A substantial body of research over past decades shows that lessons that utilize a learning cycle framework (Bybee, 1997) can result in greater achievement in science, better retention of concepts, improved attitudes toward science and science learning, improved reasoning ability, and superior process skills than would be the case with traditional instructional approaches (e.g., Bilgin, Coşkun, & Aktaş, 2013; Evans, 2004; Liu, Peng, Wu, & Lin, 2009; Wilder & Shuttleworth, 2005). During our professional development program, teachers learn first about physical science concepts, and then, they refine their understanding of the 5E Learning Cycle and select activities that are aligned to the purpose of each phase in their lesson plans. We know that learning to plan using the 5E Learning Cycle may be challenging for some teachers, as described in previous research studies (e.g., Ross & Cartier, 2015; Settlage, 2000). However, in our experience working with teachers, we noticed a new challenge for teachers’ lesson plan design: recognizing the sequence of concepts so that the lesson has conceptual coherence.

Although teachers were often adept at aligning particular activities with specific phases of the 5E Learning Cycle based on their intended purposes, the complete sequence of activities they chose did not always exhibit strong conceptual connections or align with the scientific concepts stated in lesson learning goal(s). Many teachers focused more on the activities in which students engaged than the science concepts that students should be developing through the activities. A similar finding was also described in the Trends in International Mathematics and Science Study (TIMSS) video analysis study, which indicated that in the majority of US classrooms, “ideas and activities are not woven together to tell or reveal a coherent story” (Roth et al., 2011, p. 120).

In our experience, we found that even teachers who are provided lesson plans that have a coherent sequence of concepts may not recognize this key element of lesson design, and may make adaptations to lessons that are counterproductive to their intent and purpose (Hanuscin et al., 2016). We saw teachers struggled to select activities whose underlying scientific concepts were connected to one another and followed a coherent progression that helped students connect the different concepts to better support their learning. That is, the particular challenge we noticed was related to the creation of a coherent conceptual storyline.

What is a Conceptual Storyline?

We use Ramsey’s (1993) definition of conceptual storylines in our professional development program. The conceptual storyline of a lesson refers to the flow and sequencing of learning activities so that concepts align and support one another in ways that are instructionally meaningful to student learning. We focus on ensuring that the sequence of activities for a particular lesson plan is coherent; that means, the organization of the underlying scientific concepts allows students to develop a full understanding of the scientific concepts stated in the lesson learning goals. Therefore, we expect the conceptual storyline of a lesson to be coherent both in terms of activities and scientific concepts to help students build an organized understanding of a scientific phenomenon (McDonald, Criswell, & Dreon, 2007). Similarly, incoming research suggests that the use of some strategies related to building coherence in lesson plans can impact student learning (see Roth et al., 2011).

Conceptual coherence in lessons

The conceptual storyline of a lesson is often an implicit dimension of planning and, as such, teachers may lack awareness of storylines and how to develop them. Therefore, a key goal that we implemented in our professional development model was supporting teachers’ development of coherent conceptual storylines as an explicit element of lesson design. We have been working with several strategies to help teachers recognize conceptual storylines as an explicit and central component of a lesson plan. We begin by using a Conceptual Storyline Probe (Hanuscin et al., 2016), an example of which is shown in Table 1, to highlight differences in two teachers’ lesson plans. Showing these differences to teachers is the first step to help them recognize that lessons have storylines with different levels of coherence.

Table 1 (Click on image to enlarge)
Two Lessons with Different Levels of Conceptual Coherence

After reading both lessons, teachers share examples of the criteria they used for evaluating the lessons. In doing this, it is very important that PD facilitators or instructors let teachers talk and provide all the criteria they consider relevant. For example, these criteria might include whether the lesson is hands-on, and whether or not there are connections to the students’ daily lives. Sometimes, during the discussion teachers make comments about the sequence of activities (see examples of teachers’ responses in Figure 1). When prompted about this, teachers mention that there is ‘something’ in the lesson activities that make them flow differently. To be clear, Diana’s lesson includes different ideas about bulbs that lack connections between each other, while Michelle’s lesson organizes its activities in a sequence by which students can build an understanding of a central concept (switches). Therefore, noticing the difference in each lesson’s conceptual coherence is the first step in recognizing conceptual storylines as a component of lesson design.

Figure 1 (Click on image to enlarge). Examples of teachers’ initial responses to the evaluation of two lessons with different levels of conceptual coherence.

A Strategy to Supporting Teachers Plan Lessons with Coherent Conceptual Storylines

Given the challenging nature of identifying the conceptual nuances in lesson plans, we recognize the importance of providing teachers support in constructing lessons with coherent conceptual storylines. To help teachers recognize coherent conceptual storylines as essential for well-designed lessons and encourage them to plan lessons that are conceptually coherent, our team has developed a strategy that includes four distinctive steps, as illustrated in Figure 2. Although our prior work was situated in elementary science, awareness of conceptual storylines can extend to all grade levels.

Figure 2 (Click on image to enlarge). Steps for supporting teachers in developing a coherent conceptual storyline.

Step 1. Building awareness of conceptual storylines

For teachers unfamiliar with conceptual storylines as a component of lesson planning, we help them build their awareness of what storylines are, how important they are for meaningful instruction, and how they may support student learning. We help teachers think about the storyline of an instructional lesson or learning cycle by making an analogy using two familiar television shows, Saturday Night Live (SNL) and Downton Abbey. While SNL has consistencies in structure between shows (e.g. musical guest, celebrity monologue, etc.) the storylines of sketches within an episode, and indeed from episode to episode lack coherence. This means that the viewer can watch a whole episode or pieces of a given episode in any sequence. In contrast, to make sense of the storyline of Downton Abbey, one needs to watch the episodes in sequence to connect the events and ideas. Thus, Downton Abbey exemplifies a coherent storyline within and across episodes. When discussing this analogy between TV shows, teachers easily recognize that lessons also need to organize their concepts sequentially so each activity is necessary and sufficient for promoting student understanding. Drawing on this analogy helps teachers realize that conceptual coherence is an important feature of a lesson and that planning with conceptual storylines allows students to build science concepts within a larger arc and in connected ways—rather than as disconnected pieces.

Step 2. Analyze the coherence of the conceptual storyline of existing lessons

Once teachers recognize the importance of conceptual coherence in a lesson, they can use conceptual storylines for analyzing existing lesson plans. Some teachers examined their own lesson plans and others focused on district-provided lesson plans or lesson plans from commercial curricula. To help teachers learn how to identify and evaluate conceptual storylines, we provide them with two contrasting lesson plans, similar to the lessons presented in Table 1. One lesson has a coherent set of activities focused on a single concept (coherent conceptual storyline), and the second lesson includes activities that address multiple concepts loosely related to a topic (incoherent conceptual storyline). As teachers compare and contrast these lessons, they identify key considerations of different types of conceptual storylines. For example, the coherent conceptual storyline would sequence a key concept in such a manner that one concept builds to the next and allow students to develop the scientific concepts of the lesson learning goal, scientific phenomenon, or big idea.

We also provide teachers support in identifying the lesson’s main scientific idea and the key concepts that students should develop in each phase of the 5E Learning Cycle. For example, we use a card-sorting activity to help teachers make connections between the specific key ideas in a lesson and the phases of the 5E Learning Cycle. Before introducing this aspect of lesson plan design, we have teachers sequence the activities of a lesson based on their own understanding of a good instructional sequence. After learning about the 5E Learning Cycle and conceptual storylines, teachers sort the cards again and provide a rationale for their choices. To illustrate this we include responses of Anne, a fourth grade teacher, to the card sorting activity about a lesson focused on identifying characteristics of conductors and insulators (See Figure 3). At the end, Anne was able to justify that the activity in which students test a mystery box for electrical connections was not adequate for the Engage phase of the lesson, because this activity did not provide enough evidence for students about the components of an electric circuit that would serve as a foundation for the following activities through the lesson. We recognize that the process of learning about conceptual storylines is often slow, and needs to be fostered through several activities.

Figure 3 (Click on image to enlarge). Responses to a card sorting activity before and after learning about conceptual storylines.

Overall, these learning opportunities allow for the teachers to examine different lesson plans and engage in discussions about what a coherent conceptual storyline looks like, as well as potential implications for student learning when using coherent or incoherent lessons.

Step 3. Creating an explicit conceptual storyline as part of the planning process

Once teachers were able to identify a lesson’s conceptual storyline and assess it for coherence, we engaged them in the design of a new conceptual storyline for their own lesson plans. We scaffolded this process by helping teachers break down a main concept, a scientific phenomenon, or big idea into more specific key ideas. Similarly, the use of the NGSS Disciplinary Core Ideas can help teachers identify key scientific concepts to organize the conceptual storyline. The example presented in Figure 4 shows how the main concept about magnetic poles is ‘unpacked’ in several sub-concepts. The teacher began the sequence by anticipating a student misconception and used it to build the storyline.

Figure 4 (Click on image to enlarge). Examples of specific concepts about magnet poles organized by teachers in the creation of a conceptual storyline.

To support teachers in making explicit connections among those key ideas, we introduce teachers to a Conceptual Storyline Map, an instructional scaffold adapted from Bybee’s (2015) work (see map in Appendix A). By using this map, teachers sequence the specific concepts and are able to connect two concepts through a linking question, while making connections to the phases of the 5E Learning Cycle. For example, one third grade teacher created a lesson plan to help her students understand how magnetic objects interact. When articulating the conceptual storyline she linked two important key ideas: 1) that magnets can attract, repel, or have no interaction with other objects, and 2) that magnets attract or repel other magnets, attract some metals (ferromagnetic), but have no interaction with other materials. In this case, the second idea builds on the first one and supports the construction of a conceptual storyline. The teacher included a linking question to make the connection between both ideas explicit, “What types of interactions do magnets have?”.

We note this process may be frustrating for some teachers who are not as familiar with the content knowledge or struggle to articulate the links between key concepts in a conceptual storyline. We recommend that PD instructors or facilitators do not provide the connections between the key concepts of the conceptual storyline, because these connections are not necessarily explicit for teachers. In our experience, having teachers create the conceptual storyline in collaborative teams has been helpful for addressing these potential problems.

Articulating concepts in a coherent conceptual storyline as an explicit component in lesson planning provided the teachers’ with a basis for the selection of activities and content representations. Therefore, the storyline acts as a backbone for the lesson. That backbone is a necessary foundation for the lesson, but does not provide a complete lesson plan; teachers must still select the particular activities and content representations to complete the lesson. In this way, the activities and content representations become the ‘connective tissue’ to the backbone of the lesson.

Step 4. Promote conceptual coherence throughout the storyline

Following teachers’ identification of the big idea or main concepts for the storyline, as well as the specific key ideas targeted during each phase of the learning cycle, the last step in teachers’ construction of conceptual storylines involves the ‘fine grain’ work needed to secure conceptual coherence in a lesson. In this step, teachers select activities and content representations (e.g., models, diagrams, analogies), and make any adjustments to their lessons to retain the conceptual coherence.

As teachers select activities and content representations, they must attend to the ‘big idea’ they developed in Step 3 that encompasses the various activities in the lesson. Likewise, these activities might provide opportunities to explore a scientific phenomenon and engage students in tasks related to the NGSS performance expectations. Whether teachers use curricular standards for their big idea or independently identify the main concepts, the main ideas guide the development of the lesson storyline. To assist teachers in planning a lesson with a coherent conceptual storyline, we provide teachers with a lesson plan form that designates the first column to the main concept that students are developing in that particular phase of the 5E learning cycle. Consequently, those concepts help teachers select and organize the activities of a lesson. For example, one fifth grade teacher created a lesson plan named “What is matter?”, in order to help students develop a scientific definition of matter and an understanding that matter can take multiple forms (see Appendix B).

The process of selecting particular activities and representations is iterative, and multiple adjustments can and should be made to ensure conceptual coherence across the big idea, the key concepts of the storyline, the concept representations, and activities. Because lesson plans are not created in isolation, we encourage teachers to make connections with ideas that were developed in previous lessons or relate to prior knowledge and students’ ideas.

Concluding Thoughts

Designing lesson plans with a coherent conceptual storyline may take more time initially because of the added layer of complexity in aligning concepts and activities. However, every lesson plan is based on a storyline—coherent or incoherent. If teachers do not plan for coherence, the result may be a set of disconnected concepts and activities.

In our professional development experience, we have noticed that teachers not only use conceptual storylines to select activities and content representations, but also for assessment purposes. In the last iteration of our program, we started supporting teachers in making connections between the concepts included in particular storylines and the ways to assess these concepts—either formatively or summatively (see matrix on Appendix C). We decided to include this component because we noticed teachers struggled to select topic-specific assessments strategies throughout the lesson. Given that many lesson plans require the inclusion of the assessment strategies, the use of conceptual storylines may help teachers identify what concepts need to be assessed during the lesson and when. The use of conceptual storylines may become an important tool to gather students’ evidence, especially to guide students in developing main scientific ideas.

In addition, the use of conceptual storylines is key towards building conceptually coherent lessons and thus, helping students build foundational science concepts. In our work, participant teachers are able to recognize the importance of planning lessons with conceptual coherence as an explicit component of lesson plan design and as a guide for the use of activities and representations. As one participant teachers stated:

When we planned our entire learning cycle we really did go over what the storyline would be…I think [PD facilitator] really helped us understand what may be a huge piece of what’s missing with a lot of instruction…the storyline of each of the learning cycles really built upon the previous one.

Conceptual storylines are just one tool that teachers can use to create coherent lesson plan designs. In emphasizing the importance of conceptual coherence, we do not mean to imply that content has greater importance than the process by which students learn the content—indeed, careful consideration should be given to the kinds of activities that will support students in building new understandings, developing facility with new skills, and developing confidence and competence as learners. We recognize that to create conceptual storylines, teachers need strong foundations in content knowledge to identify the key scientific concepts and the ways they are connected to each other. Therefore, in our professional development program, learning about conceptual storylines is embedded as part of a comprehensive curriculum that integrates content knowledge about physical science concepts and pedagogical lenses. For professional developers interested in adapting this strategy in their contexts, we recommend that learning about conceptual storylines be embedded in a larger professional development program rather than included as an isolated feature of lesson design.

References

Abell, S. K., & Volkmann, M. J. (2006). Seamless Assessment in Science: A Guide for Elementary and Middle School Teachers. Portsmouth, NH: Heinemann.

Bilgin, I., Coşkun, H., & Aktaş, I. (2013). The effect of 5E learning cycle on mental ability of elementary students. Journal of Baltic Science Education, 12, 592-607.

Brown, M. (2009). The teacher–tool relationship: Theorizing the design and use of curriculum materials. In J. T. Remillard, B. A., Herbel-Eisenmann, & G. M. Lloyd (Eds.), Mathematicsteachers at work: Connecting curriculum materials and classroom instruction (pp. 17–35). New York, NY: Routledge, Taylor, and Francis.

Bybee, R. W. (1997). Achieving scientific literacy: From purposes to practices. Portsmouth, NH: Heinemann.

Bybee, R.W., Taylor, J.A., Gardner, A., Van Scotter, P., Carlson, J., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins, effectiveness, and applications. Unpublished white paper. Retrieved August 2008, from http://www.bscs.org/pdf/5EFull Report.pdf.

Bybee, R., Taylor, J., Gardner, A., Van Scotter, P., Carlson, J., Westbrook, A., & Landes, N. (2006). The BSCE 5E instructional model: Origins, effectiveness, and applications. Colorado Springs: BSCS.

Bybee, R. W. (2015). The BSCS 5E instructional model—Creating teachable moments. Arlington, VA: NSTA Press.

Evans, C. (2004). Learning with inquiring minds, students are introduced to the unit on gas laws and properties of gases using the 5E model. The Science Teacher, 71(1), 27-30.

Hanuscin, D., Lipsitz, K., Cisterna-Alburquerque, D., Arnone, K. A., van Garderen, D., de Araujo, Z., & Lee, E. J. (2016). Developing coherent conceptual storylines: Two elementary challenges. Journal of Science Teacher Education, 27, 393-414.

Liu, T. C., Peng, H., Wu, W. H., & Lin, M. S. (2009). The effects of mobile natural-science learning based on the 5E learning cycle: A case study. Educational Technology & Society, 12, 344–358.

McDonald, S., Criswell, B., & Dreon, O. (2008). Inquiry in the chemistry classroom: Perplexity, model testing, and synthesis. In J. Luft, R. Bell, & J. Gess-Newsome & (Eds.). Science as Inquiry in the Secondary Setting (pp. 41-51). Arlington, VA: NSTA Press.

Ramsey, J. (1993). Developing conceptual storylines with the learning cycle. Journal of Elementary Science Education, 5(2), 1-20.

Remillard, J. T. (2005). Examining key concepts in research on teachers’ use of mathematics curricula. Review of Educational Research, 75, 211-246.

Ross, D. K., & Cartier, J. L. (2015). Developing Pre-service Elementary Teachers’ Pedagogical Practices While Planning Using the Learning Cycle. Journal of Science Teacher Education, 26, 573-591.

Roth, K. J., Garnier, H., Chen, C., Lemmens, M., Schwille, K., & Wickler, N. I. Z. (2011). Videobased lesson analysis: Effective science PD for teacher and student learning. Journal of Research in Science Teaching, 48, 117-148.

Settlage, J. (2000). Understanding the learning cycle: Influences on abilities to embrace the approach by preservice elementary school teachers. Science Education, 84, 43-50.

van Garderen, D., Hanuscin, D., Lee, E., & Kohn, P. (2012). QUEST: A collaborative professional development model to meet the needs of diverse learners in K‐6 science. Psychology in the Schools, 49, 429-443

Wilder, M. & Shuttleworth, P., (2005). Cell inquiry: A 5E learning cycle lesson. Science Activities: Classroom Projects and Curriculum Ideas, 41(4), 37-43.