Eliciting and Refining Conceptions of STEM Education: A Series of Activities for Professional Development

Citation
Print Friendly, PDF & Email

Dare, E. A. & Ring-Whalen, E. A. (2021). Eliciting and refining conceptions of STEM education: A series of activities for professional development. Innovations in Science Teacher Education, 6(2). Retrieved from https://innovations.theaste.org/eliciting-and-refining-conceptions-of-stem-education-a-series-of-activities-for-professional-development/

by Emily A. Dare, Florida International University; & Elizabeth A. Ring-Whalen, St. Catherine University

Abstract

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education. These activities not only engage teachers in conversations with peers and colleagues in a professional development setting but also enable teachers to reflect on their learning related to STEM education in the context of creating lesson plans and considering future teaching. In addition to describing these activities, we share suggestions related to how these activities may be used in venues outside of professional development.

Introduction

Current policy documents have called for K–12 science classrooms to employ integrated science, technology, engineering, and mathematics (STEM) strategies that provide a more authentic learning environment for students (Honey et al., 2014). Although the Next Generation Science Standards (NGSS; NGSS Lead States, 2013) and state standards that include engineering (Moore et al., 2013) strongly support the incorporation of engineering into science classrooms, the nature of engineering and how to effectively integrate it into science teaching is typically outside of most teachers’ knowledge bases (Cunningham & Carlsen, 2014). Although national policy documents strongly support the integration of STEM education, there remains disagreement on models and effective approaches for integrated STEM instruction (e.g., Breiner et al., 2012; Moore et al., 2020; Martín‐Páez et al., 2019).

Because of this disagreement, there is a need to better understand what integrated STEM education is in order to implement it in practice. The literature reveals a wide variety of approaches that include: STEM as a replacement term for science and mathematics (Breiner et al., 2012; Sanders, 2009), STEM as a pedagogical shift toward an integrated approach (Breiner et al., 2012; English, 2016; Honey et al., 2014; Kelley & Knowles, 2016), curriculum changes that reflect the work of STEM professionals (Breiner et al., 2012; Labov et al., 2010; Sanders, 2009), and curricula that emphasize engineering design challenges (Bryan et al., 2015). Despite these variations in definitions, there are common elements across these approaches to STEM, such as the inclusion of an engaging, real-world context (e.g., Breiner et al., 2012; Brown et al., 2011; Moore et al., 2020); explicit connections between science, technology, engineering, and mathematics and modeling those connections as they would be observed in STEM careers (e.g., English, 2016; Herschbach, 2011; Honey et al., 2014; Kelley & Knowles, 2016; Moore et al., 2020); the intentional development of 21st-century competencies (e.g., Bryan et al., 2015; Honey et al., 2014); and an emphasis on student-centered pedagogies (e.g., Bryan et al., 2015; Breiner et al., 2012; Labov et al., 2010; Sanders, 2009). In short, integrated STEM education is a complex combination of content and pedagogy, which makes it difficult to define.

This creates an additional challenge for teachers who are asked to implement integrated STEM. Professional development (PD) is one way to assist teachers not only in learning integrated STEM education instructional practices but also in helping them conceptualize what integrated STEM education means within their particular context. This is especially important given that “PD programs have the best chance of impact on teacher and student outcomes when the goals of the PD program are aligned with policies at the school, district, and state levels, as well as existing teacher beliefs regarding STEM” (Johnson & Sondergeld, 2015, p. 204). By eliciting teachers’ conceptions of integrated STEM education at the beginning of a STEM-focused PD through drawing conceptual models, facilitators can help teachers move from undefined or vague models to better defined models (Dare et al., 2019; Ring et al., 2017); similar activities have been included in preservice teacher education (Radloff & Guzey, 2016). Furthermore, teachers can reference these drawings during the PD to help them conceptualize integrated STEM curricula and recognize when their conceptual model has changed.

In our previous work analyzing teacher’s conceptual models of STEM, we found that K–12 science teachers’ understanding of what STEM education is varied greatly (Ring et al., 2017). These models ranged from simply using STEM as an acronym to prioritizing science or engineering to focusing on real-world problem-solving. We found that teachers’ conceptions reflected the variety of definitions that exist in the literature (e.g., Bybee, 2013) and that these conceptions can change through PD, curriculum writing, and implementation. Our prior research allowed us to meaningfully redesign previously used activities and design new activities for use in PD settings that would allow teachers to confront their conceptions of integrated STEM education, reflect on those conceptions, and collaborate with others to better define what STEM education is in their specific teaching context.

The work presented here highlights activities designed to elicit STEM conceptions during a week-long PD workshop on integrated STEM education. Informed by our prior work, the purpose of these activities was to elicit teachers’ conceptions of integrated STEM, share and reflect on those conceptions with others, use those conceptions as a foundation to guide the writing of curricular materials for classroom use, and ultimately develop new conceptions of STEM education through reflection. These activities may be used in a variety of settings, and we offer suggestions for alternative implementation.

 

Professional Development Context

The work described here is part of a larger 4-year funded project that seeks to improve the quality of K–12 integrated STEM education in science and engineering classrooms through the development and dissemination of a classroom observation protocol for integrated STEM instruction. The authors are two of the five principal investigators (PIs) on the project. As part of the project, three separate week-long (5-day) PD workshops were offered near the home institutions of project personnel, which include a large Southeastern city (Site 1) and a large Midwestern city (Site 2). One secondary (middle and high school) PD workshop was offered at Site 1, and two separate PD workshops were offered at Site 2: one elementary (K–5) and one secondary (high school). The professional development activities were planned jointly by project personnel from both sites, allowing for site-specific modifications as necessary. The project PIs designed and facilitated the PD with the assistance of several graduate research assistants and science and STEM coordinators from the local school and district. Within the context of the larger project, these workshops provided teachers with a foundational knowledge of integrated STEM; examples of integrated STEM activities, lessons, and units; and dedicated time to develop their own curriculum materials for classroom use. The teachers in these workshops were then expected to participate in classroom observations when they implemented their developed lessons (typically one or two 50-minute class periods) or curricular units (anywhere from week-long units to units that spanned several weeks) the following school year. The observations also allowed project personnel to continue supporting teachers’ learning and implementation of integrated STEM education because observations were followed by post-observation coaching conversations.

Participants. A total of 106 participants across the two sites participated in the three PD workshops (Table 1). Of these participants, 21 teachers participated in the secondary PD at Site 1; 58 teachers, two principals, and five instructional coaches participated in the elementary PD at Site 2; and 15 teachers, two administrators, and three instructional coaches participated in the secondary PD at Site 2. These teachers came from six different school districts. Two of these were large urban school districts, three were large suburban districts, and one was a smaller, rural district. The secondary teachers taught across multiple content areas: There were 12 middle school science teachers, eight biology/life science teachers, seven chemistry teachers, four physical science or physics teachers, one environmental science teacher, one photography teacher, one agriculture teacher, and one orchestra teacher.

 

Table 1

Professional Development Participants

PD participant descriptors across two sites

Our integrated STEM education framework. During the PD, we elicited teachers’ conceptions of integrated STEM education, exposed teachers to different approaches to integrated STEM instruction, actively engaged these teachers in example integrated STEM activities, and supported teachers in developing integrated STEM curricular materials for use in their classrooms. The definition of integrated STEM education that guided our work was adopted from Kelley and Knowles (2016) who defined integrated STEM education as “the approach to teaching the STEM content of two or more STEM domains, bound by STEM practices within an authentic context for the purpose of connecting these subjects to enhance student learning” (p. 3). This definition was selected due to its emphasis on student learning through context and making connections between disciplines and its flexibility as to how many domains were needed to “count” as integrated STEM. To reflect the states’ science standards and district initiatives, activities in the PD fore-fronted science and engineering, but mathematics and technology were integrated into the activities throughout the week.

In addition to the broad definition of STEM education shared above, we used a project-developed integrated STEM framework to guide the workshops’ activities. This framework consists of 13 components (Table 2) identified in the literature as being important within effective integrated STEM instruction (e.g., Breiner et al., 2012; Bryan et al., 2015; Martín‐Páez et al., 2019; Moore et al., 2020). These components have guided the development of the larger project’s observational protocol, which was still under development during the time of the PD. These components were grouped into three separate categories: STEM Concepts and Practices, STEM Pedagogies, and Contextualizing Learning. The concepts of “communicating understanding” and “collaboration” were identified as components that cut across the other three categories. Each of these 13 components was explicitly explored before, during, or immediately following at least one example of the integrated STEM activities in the PD, which is described below.

 

Table 2

Components of Integrated STEM Education Used in Professional Development

Descriptions of components of integrated STEM Education used in PD

Professional development design. The overall design of the PD utilized best practices to actively engage teachers in hands-on integrated STEM instruction as learners, reflect on their learning individually and with others, try out new practices through curriculum work while receiving feedback from peers and facilitators, receive feedback on their teaching, and reflect on their teaching (e.g., Banilower et al., 2007; Capps et al., 2012; Garet et al., 2001; Luft et al., 2020; Supovitz & Turner, 2000); the last of these two practices were incorporated into the coaching support during the school year. The purpose of the PD was not to improve content knowledge but to develop teachers’ understanding of STEM education as a pedagogy, which requires developing a conceptual understanding of integrated STEM as a whole. The collaboration with the teachers’ schools and districts ensured that our PD met their needs (Garet et al., 2001; Johnson & Sondergeld, 2015; Luft et al., 2020). Teachers were asked to come to the PD with curricular materials that they currently used in their classrooms. During the PD, we engaged teachers in modifying those curricular materials to transition them from a science-only focus to one that reflected integrated STEM. Teachers used project-supplied composition notebooks to respond to key reflective prompts throughout the week, which included explicit reflections on STEM conceptions, and to keep track of their own curricular ideas.

 

Conceptualizing Integrated STEM Education in Professional Development

As with most PD workshops, teachers were first introduced to the logistics of the week and what the following school year would look like in relation to the larger project (e.g., continued support through observations and coaching). Before introducing teachers to our STEM framework and a mix of facilitator-designed and published integrated STEM activities, we elicited teachers’ conceptions of STEM education through a series of activities and discussions. The sections that follow detail the activities used, which were revisited throughout the week as a means to reflect upon and revise teachers’ thinking related to STEM. These activities provided a foundation for teachers’ learning throughout the week. Although examples of integrated STEM activities are provided, the purpose of this manuscript is to share activities related to eliciting teachers’ STEM conceptions and to describe how teachers used these conceptions during reflection and curriculum-writing portions of the PD.

Initial STEM conceptions drawings. At the beginning of Day 1, we tasked teachers with creating individual, sketched representations of what integrated STEM education was to them. Our previous work has shown that teachers enter into professional development spaces with their own conceptions of STEM education (Ring et al., 2017). Since the intention of this activity was to elicit each teacher’s conception, we did not provide a definition or give any instruction prior to this exercise. After teachers drew their conceptions, they shared them with their self-selected table teams (approximately four or five members). As they shared, we asked teachers to identify similarities and differences among the various drawings they examined that were then shared in whole-group discussion. This exercise served to demonstrate the variety of conceptions that existed. Following this activity, the teachers responded to two prompts on the backside of their drawing: (1) “How does your STEM model compare to the other models at your table,” and (2) “after seeing other models, would you make any changes to yours?” Once teachers had individually responded to these prompts, they were asked to keep their drawings out for reference during the next activity.

STEM poster activity. After sharing their conceptions about integrated STEM, each teacher was provided with four sticky notes. We asked teachers to write down their ideas related to the roles of science, technology, engineering, and mathematics in STEM education, each on a separate sticky note. Those who wanted to add more than one idea for each area used additional sticky notes. Teachers then added their sticky notes to large poster papers corresponding to each area (science, technology, engineering, or mathematics) hanging around the room. We placed the teachers in four teams, and each team was assigned to one of the large poster papers. Because of the large size of the elementary group at Site 2, there were multiple sets of posters to keep the teams small. At their assigned posters, each team read the sticky notes and then arranged them into team-developed categories that were labeled with marker.

Once each team had created and labeled their categories, teams rotated from poster to poster. While reading through the other posters, we asked teachers to reflect upon what they noticed about the identified categories, note any changes they would make to those categories, and identify how the categories across the posters related to one another, if at all. Once all teams had read through the other three posters, we facilitated a large group discussion in which the teachers shared their reflections, specifically focusing on the relationships across the posters. Teachers were then asked to individually reflect upon what it means to integrate science, technology, engineering, and mathematics using their personal conceptual models from the preceding activity by responding to the following prompt: “Using your model, explain what it means to integrate S-T-E and M.” Finally, the teachers shared their ideas about the integration of S-T-E and M with their small groups, and commonalities among ideas were recorded as a whole group. The large S-T-E-M posters remained in the workshop space for the remainder of the week, and after copies were made, the teachers held on to their individual conceptions of STEM education models, which were used throughout the rest of the week as described below.

Approach to integrated STEM activities. Each day of the PD focused on one or more of the 13 components of our integrated STEM framework that were highlighted in that day’s activities (an example from Site 1 in shown in Table 3). Because of the complexity of STEM education, it was important to slowly introduce these components within the context of example activities. Teachers engaged in a variety of examples of integrated STEM activities as learners followed by discussions about how to implement them into their own classrooms. Many of these activities were developed by project personnel, but some were adopted from published curricula. Appropriate state standards were shared to demonstrate alignment with curricular expectations. For each activity that was introduced, teachers first participated in the activity as students would. This allowed the teachers to encounter the same challenges that their own students might face in the classroom. Afterward, project personnel facilitated whole-group and small-group discussions to allow teachers to reflect both as learners and as educators. Each of the activities included built-in reflection time around the components emphasized during that activity, and each day concluded with a final, deeper reflection related to the days’ focal components of STEM. These reflections were completed individually and collaboratively and were recorded in the teachers’ STEM notebooks to document their growing conceptions of integrated STEM. As part of this, teachers spent time modifying their curriculum materials to reflect what they learned about integrated STEM education throughout the day. Teachers were encouraged to work with others who were focusing on similar science content and discuss ideas with workshop facilitators. The facilitators would frequently prompt teachers to refer back to their conception of STEM drawing as a formative self-assessment of their learning.

 

Table 3

Example Workshop Schedule From Site 1

Example PD schedule divided into morning and afternoon activities across 5 days

For example, after the STEM conceptions activities on Day 1, we introduced teachers to our project’s STEM framework and focused on one component: collaboration. To do this, we used the marshmallow challenge, a popular activity used to emphasize the importance of planning and communicating with peers (Wujec, 2010). After doing the activity as students would and discussing why collaboration was important in this activity, teachers were asked to use their STEM conceptions drawings to decide if this was an integrated STEM activity and, if not, how they might make it one. Teachers were quick to point out that the activity does not explicitly call for the inclusion of science content. They argued the value of an activity like this to engage students in collaboration and problem-solving skills, which could be the basis for introducing engineering. Even without a clear “right answer” of what STEM education is, teachers were able to think critically about what they valued. To this end, teachers reflected on whether or not their initial STEM models were robust enough to determine the difference between a STEM activity that helps students learn STEM content and one meant to develop STEM skills and practices. To end the day, we asked teachers to examine their curricular materials and reflect on where they would include collaboration. As facilitators, we checked in with teachers as they worked and encouraged them to reflect upon the presence of collaboration in their STEM conceptions drawings, modifying them as needed, and then use those drawings to guide their curriculum writing. Although collaboration had been included in some teachers’ initial models, this focus on collaboration prompted others to consider this as a new addition to their model.

This pattern of being introduced to target components of STEM education each day, participating in an example STEM activity, reflecting on that activity, and working on curriculum was repeated on Days 2–4. Day 2 emphasized the importance of real-world problems, STEM-specific technologies, and communicating understanding within the context of integrated STEM activities. As part of this, engineering and the engineering design process were introduced to teachers through an introductory engineering activity (e.g., creating tabletop hovercrafts in the Site 1 PD and reviewing Engineering is Elementary in the Site 2 elementary PD). As on Day 1, the last activity of the day included reflection on the key components and a review of their Day 1 STEM conceptions, modifying them as needed, to work on their curriculum materials.

By Day 3, we had provided the teachers with foundational knowledge of integrated STEM education, arming them with the tools needed to participate in a fully integrated STEM curriculum unit. We used the Save the Penguins curriculum (Schnittka, 2009) to engage teachers in examining the relationship between heat transfer and the engineering design challenge of creating a well-insulated habitat for penguins. This curriculum unit allowed us to emphasize the following components of our integrated STEM framework.

  • Real-world problems: The design challenge was framed broadly by global climate change.
  • STEM content integration: After first learning about the three forms of heat transfer through a series of hands-on, inquiry-based activities, teachers were tasked with using their knowledge of heat transfer to complete the design challenge.
  • Multiple solutions: Teachers worked in small groups to develop prototypes, build and test those prototypes, and then modify their designs to rebuild and retest their prototypes.
  • Evidence-based reasoning: Teachers were tasked with explaining their design solutions using evidence collected through a variety of hands-on activities.

At the end of the activity, we facilitated discussions about these components in connection to Save the Penguins as well as how these elements might be highlighted in (or added to) activities the teachers already use in their classrooms; teachers also made suggestions about alternative contexts that their students might find more relatable than penguins, such as making insulated dog houses. Once more, teachers were asked to consider how this activity compared to their own developing conceptions, modify their conceptions as needed, and work on their selected curriculum materials.

Day 4 started with revisiting the importance of multiple solutions and emphasizing the importance of allowing students to learn from their first designs. We also spent time reflecting on all of the activities from the week and how they could each be presented in ways that developed students’ interest in STEM careers. The afternoon was spent entirely on curriculum development. Because the teachers had been introduced to all 13 components of the integrated STEM framework, they were tasked with incorporating these into their curricular materials, using their modified conceptions and written reflections to guide their work. Many teachers chose to work with peers, even though they were not working on the same materials.

To end the week, Day 5 was spent primarily in unstructured curriculum work time during which teachers worked with each other and the workshop facilitators to continue modifying their curricular materials. We reminded teachers of the 13 components of STEM used during the workshop and encouraged them to use their STEM conceptions, written reflections, and the posters that still hung on the walls as they worked. After sharing the progress on the curricular materials and reviewing logistics for the coming year (including how to share curricular materials within the group), we ended the PD by repeating the STEM conceptions activity.

Revisiting the STEM conceptions activity. In the afternoon of Day 5, we asked teachers to examine their conceptual models and written reflections from Day 1 before drawing a new model of STEM education. We reminded teachers that (just as before) there were no wrong answers. If they felt that their model had not changed, they were not obligated to change it; however, they were required to draw it on a new sheet of paper. Similar to the Day 1 activity, teachers shared their new models with their tablemates and identified similarities and differences across the different models present at their tables. Additionally, we asked the teachers to compare their own two models. We specifically asked them to consider how their own models had changed (if at all) and how they planned to implement their model during the upcoming school year. We asked them to write their responses to the following questions on the back of their second model.

  1. “How does your STEM model from today compare to your previous model?”
  2. “Describe how your STEM thinking has both changed and stayed the same. What do you think or know that is new?”
  3. “What will be your approach to implementing this model into your classroom?”

Although these written reflections were done individually, teachers also shared their reflections with their peers during a whole-group discussion. These final models were collected and copied by facilitators.

 

Outcomes of STEM Conceptions Activities

Unsurprisingly, we observed that participating teachers came to the PD with different ideas related to what STEM education is. Because of this, teachers were able to engage in meaningful discussions with their peers to consider multiple perspectives. For instance, some teachers focused on the presence of multidisciplinary content, some focused on the engineering design process, and others focused on framing STEM as real-world problem-solving. These different models showcased how STEM was conceptualized by teachers as a mix of content and pedagogical considerations. The reflections that arose out of conversations with peers allowed teachers to identify similarities and differences across their conceptions of STEM, positioning them to understand that STEM does not have to be just one thing. Furthermore, they recognized that there were common features valued across the models and that no model was “wrong.” In reviewing the Day 1 reflections, we found that 75% of the 106 teachers noted that they would want to make changes after seeing other models, stressing the importance of multiple “correct” models. This supports the rest of the work during the week in which teachers engaged in activities that encouraged them to revise their thinking. The workshop activities emphasized the constant revision of thinking surrounding STEM education because each activity focused on different components of STEM education from our STEM education framework. At no point did we, as facilitators, suggest that there was one way to “do STEM.” By pointing to their Day 1 models throughout the week, we encouraged teachers to consider whether or not their model was still an accurate representation of their understanding of STEM education and to refine their thinking in the process.

The repeated STEM conceptions activity on Day 5 allowed teachers to consider their learning over the course of the week and think forward to the upcoming school year. Some teachers chose not to modify their drawings, but side-by-side comparisons revealed that 91% of the teachers made changes, many of which included the addition of pedagogical elements from the PD activities. For example, one high school teacher’s drawing changed from a complex model that focused on content to a simple model of STEM education that showcased STEM education as a strategy (Figure 1). One elementary teacher shifted from thinking STEM was equivalent to a linear engineering design process to recognizing that STEM includes real-world problems, collaboration, and multiple solutions (Figure 2). Through these side-by-side comparisons, it is clear that most teachers’ conceptions changed. Furthermore, the inclusion of some of the 13 components of our STEM framework in teachers’ models on Day 5 indicates that teachers saw value in the framework we shared. Because our own STEM framework shared with teachers was not prescriptive, teachers were able to highlight which components were of importance to them in their models.

 

Figure 1

Day 1 and Day 5 conceptions of STEM education from a high school teacher.

Drawings of conceptions of STEM with written reflections

 

Figure 2

Day 1 and Day 5 conceptions of STEM education from an elementary teacher.

Drawings of conceptions of STEM with written reflections

 

Although the first STEM conceptions activity is a modification of an activity that we had previously used in workshops, the “Roles of S-T-E-M” large poster activity was new (Figures 3, 4, 5, and 6). We designed this activity based on our experience in observing how science, technology, engineering, and mathematics are used in lessons tagged as integrated STEM such that often S, T, E, and M are present but not necessarily well-defined or explicitly connected to one another (Dare et al., 2019; Ring-Whalen et al., 2018). The third reflective prompt on Day 1 (“Using your model, explain what it means to integrate S-T-E and M”) aimed to help teachers consider how these roles might play out in their own models. By allowing teachers to first consider the various roles and purposes of science, technology, engineering, and mathematics, they were better prepared to consider how these disciplines might work together when considering an integrated STEM approach in their models. For instance, the Site 1 secondary science teachers conceptualized science in STEM education as the intersection of theory and practice that leads to innovation (Figure 3). They also positioned technology in STEM education as assisting with teaching strategies that provide students with hands-on applications to collect data and communicate. This activity explicitly asked teachers about the connections between S, T, E, and M, which is often not captured in drawn models alone (Dare et al., 2019) but is important when considering lesson planning and implementation.

 

Figure 3

Role of science in STEM poster by the secondary science teachers at Site 1.

Poster showing how practices and theory come together to generate innovation in science

Figure 4

Role of technology in STEM poster by the secondary science teachers at Site 1.

Poster show components of technology: data gathering, teaching strategies, application/hands-on, communication, presentation

Figure 5

Role of engineering in STEM poster by the secondary science teachers at Site 1.

Poster showing components of engineering: principles, problem-solving practices, specific outcomes

Figure 6

Role of mathematics in STEM poster by the secondary science teachers at Site 1.

Poster showing components of mathematics: data, logic, quantification, calculating, defining math

Facilitator Reflection on Activities

As facilitators, this set of activities allowed us to activate the different conceptions of STEM education teachers held before they engaged in STEM activities when they might assume there is one way to “do STEM.” Additionally, they allowed teachers to work with others to understand that STEM education is not just one prescribed way of teaching that has to be conducted in the same manner all the time. Through activities designed to elicit STEM conceptions, teachers engaged in rich conversations that allowed them to explore a variety of conceptions of STEM, thus, leading to a deeper understanding of what STEM can look like in different contexts. These conversations and explicit reflections on the integrated STEM activities helped the teachers further develop their own conceptions of STEM, as indicated by the changes from Day 1 to Day 5. We were able to help the teachers actualize and refine their conceptions of STEM as we guided the them in curriculum writing throughout each day of the PD.

Furthermore, these activities allowed teachers to confront what roles science, technology, engineering, and mathematics play in STEM education in their own classrooms. Our previous work noted that teachers’ interpretations of models of STEM failed to show how to “do STEM” (Dare et al., 2019), so these activities required teachers to specifically consider the mechanisms through which they might integrate across various content areas. This helped the teachers identify places where science, technology, engineering, and mathematics can be integrated more naturally, which resulted in conversations about what, specifically, that integration can look like. These conversations were important in helping the teachers develop curricula for their own classrooms that not only included two or more of the STEM disciplines but also included various elements addressed in the PD, such as collaboration and solving real-world problems.

Implementing these activities was not without challenges. Some teachers began the week looking for the “correct” way to “do STEM” and were initially disappointed that they would not be provided one answer, nor would they be blindly led through examples of integrated STEM curricula. Our approach required teachers to consider their own ideas and reflect on their learning. Additionally, the conceptions elicitation activities were inherently challenging and cognitively demanding tasks because they forced individuals to interrogate something that they were not necessarily confident about. Reminding the teachers that there was no wrong answer was key in eliminating some of their fears associated with being wrong; these fears were further ameliorated by sharing ideas in small groups first before opening up to the large group. Our openness to discussion, constant challenging of ideas, and adoption of high-quality PD practices (e.g., peer collaboration, engaging in activities as students, and dedicated curricular work time) allowed us to push teachers to question others and reflect on their own learning, which proved successful.

Teacher feedback solicited on the last day demonstrated that the overall design of the PD was well-received. Although differences existed across the three workshops, the positive feedback was echoed. For instance, one secondary science teacher from Site 1 shared:

 

The theory combined with the modeling followed by action and reflection made the PD very effective. I feel very confident in my ability to integrate STEM in my classroom because of the format in which this PD was presented. I also loved the time that we had to develop units and lessons that integrate STEM.

 

Site 2 was no different. The positive feedback from secondary and elementary teachers at Site 2 was very similar. One secondary science teacher shared the following:

 

Thank you for a great week of learning. I was very happy with the workshop and what I learned. Thank you for the time to work on lessons/units that are applicable to what we will do. The time to chat with others helped A LOT!

 

Elementary teachers at Site 2 also valued their new knowledge:

 

The time to collaborate and discuss our learning with colleagues was incredibly helpful. It allowed us to take the new information and apply it to our individual units, schools, etc. It also allowed us to digest the information and ask questions in a safe environment.

 

From these examples, it is clear that the ability to directly have a take-away product that teachers could immediately use in their classrooms and the conversations with others was beneficial.

Furthermore, these types of activities allowed us to address these very visual conceptions in the moment and to refer back to them throughout the PD to reflect on and refine their understanding of STEM. As they participated in the workshop activities, teachers often referenced the large poster papers that hung in the room as a reminder of different ways to incorporate each of the STEM disciplines while they worked on developing their own lesson plans. Additionally, when teachers requested assistance during curriculum writing, we frequently asked them to revisit their conceptions and consider if they needed modification or how they were being actualized in their planning. Full curriculum materials and observations are still being collected as part of the larger project; however, we anticipate that this may result in more cohesive and more well-integrated lessons and units. Future research will address how teachers’ conceptions of STEM were actualized in their curricular materials and implementation.

 

Implications for Future Practice

These activities were used primarily with inservice teachers, but they can also be used with administrators, preservice teachers, and teacher educators to better parse out what STEM education means and how to enact it. In schools and districts moving to become STEM schools or STEM districts, these activities could be used to develop a unified vision for STEM within the school or district, which is important for making forward progress. Participating administrators then have an opportunity to gain a realistic sense of what is being asked of their teachers when tasked with developing integrated STEM lessons and implementing them in the classroom. The conversations these activities promote are useful in helping to define STEM education within bounded contexts.

These activities can also be used for research, the primary motivation in the initial creation of the STEM conceptions activity (Ring et al., 2017). Post-PD comparisons of the teachers’ conceptions on Day 1 of the PD to their conceptions on Day 5 of the PD can help facilitators measure and evaluate the impact of the professional development’s activities, which aligns with our own future research plans. This research could then allow facilitators to adjust the activities to better serve the needs of professional development participants. Understanding the conceptions of STEM education held by teachers will allow administrators, professional development facilitators, and others involved in improving STEM education to better support teachers implementing STEM in their classrooms.

Acknowledgments

This work was supported by the National Science Foundation under Award Numbers 1854801, 1812794, and 1813342. The findings, conclusions, and opinions herein represent the views of the authors and do not necessarily represent the view of personnel affiliated with the National Science Foundation.

References

Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2015). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds), STEM road map: A framework for integrated STEM education (pp. 23–37). Routledge. https://doi.org/10.4324/9781315753157-3

Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3–11. https://doi.org/10.1111/j.1949-8594.2011.00109.x

Brown, R., Brown, J., Reardon, K., & Merrill, C. (2011). Understanding STEM: Current perceptions. Technology and Engineering Teacher, 70(6), 5–9.

Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. NSTA Press.

Cunningham, C. M., & Carlsen, W. S. (2014) Teaching engineering practices. Journal of Science Teacher Education, 25(2), 197–210. https://doi.org/10.1007/s10972-014-9380-5

Dare, E. A., Ring-Whalen, E. A., & Roehrig, G. H. (2019). Creating a continuum of STEM models: Exploring how K-12 science teachers conceptualize STEM education. International Journal of Science Education, 41(12), 1701–1720. https://doi.org/10.1080/09500693.2019.1638531

English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3, Article 3. https://doi.org/10.1186/s40594-016-0036-1

Garet, M. S., Porter, A. C. , Desimone, L., Birman, B. F., & Yoon, K. S. (2001). What makes professional development effective? Results from a national sample of teachers. American Education Research Journal, 38(4), 915–945. https://doi.org/10.3102/00028312038004915

Herschbach, D. R. (2011). The STEM initiative: Constraints and challenges. Journal of STEM Teacher Education, 48(1), 96–122. https://doi.org/10.30707/JSTE48.1Herschbach

Honey, M., Pearson, G., & Schweingruber, H. (Eds.). (2014). STEM integration in K–12 education: Status, prospects, and an agenda for research. National Academies Press. https://doi.org/10.17226/18612

Johnson, C. C., & Sondergeld, T. A. (2015). Effective STEM professional development. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 203–210). Routledge.

Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3, Article 11. https://doi.org/10.1186/s40594-016-0046-z

Labov, J. B., Reid, A. H., & Yamamoto, K. R. (2010). Integrated biology and undergraduate science education: A new biology education for the twenty-first century? CBE—Life Sciences Education, 9(1), 10–16. https://doi.org/10.1187/cbe.09-12-0092

Luft, J. A., Diamond, J. M., Zhang, C., & White, D . Y. (2020). Research on K-12 STEM professional development programs: An examination of program design and teacher knowledge and practice. In C. C. Johnson, M. J. Mohr-Schroeder, T. J. Moore, & L. D. English (Eds). Handbook of research on STEM education (pp. 361–374). Routledge. https://doi.org/10.4324/9780429021381-34

Martín‐Páez, T., Aguilera, D., Perales‐Palacios, F. J., & Vílchez‐González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799–822. https://doi.org/10.1002/sce.21522

Moore, T. J., Johnston, A. C., & Glancy, A. W. (2020). STEM integration: A synthesis of conceptual frameworks and definitions. In C. C. Johnson, M. J. Mohr-Schroeder, T. J. Moore, & L. D. English (Eds). Handbook of research on STEM education (pp. 3–16). Routledge. https://doi.org/10.4324/9780429021381-2

Moore, T. J., Tank, K. M., Glancy, A. W., Kersten, J. A., & Ntow, F. D. (2013). The status of engineering in the current K-12 state science standards (research to practice). Paper presented at the 2013 ASEE Annual Conference & Exposition, Atlanta, GA. https://doi.org/10.18260/1-2–22619

NGSS Lead States. (2013). Next generation science standards: For states, by states. National Academies Press. https://doi.org/10.17226/18290

Radloff, J., & Guzey, S. (2016). Investigating preservice STEM teacher conceptions of STEM education. Journal of Science Education and Technology, 25(5), 759–774. https://doi.org/10.1007/s10956-016-9633-5

Ring, E. A., Dare, E. A., Crotty, E. A., & Roehrig, G. H. (2017). The evolution of teacher conceptions of STEM education throughout an intensive professional development experience. Journal of Science Teacher Education, 28(5), 444–467. https://doi.org/10.1080/1046560X.2017.1356671

Ring-Whalen, E., Dare, E., Roehrig, G., Titu, P., & Crotty, E. (2018). From conception to curricula: The role of science, technology, engineering, and mathematics in integrated STEM units. International Journal of Education in Mathematics, Science and Technology, 6(4), 343–362. https://www.ijemst.net/index.php/ijemst/article/view/257

Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20–26.

Schnittka, C. G. (2009). Save the penguins STEM teaching kit: An introduction to thermodynamics and heat transfer. Auburn University. http://www.auburn.edu/~cgs0013/ETK/SaveThePenguinsETK.pdf

Wujec, T. (2010, February). Build a tower, build a team [Video]. TED Conferences.  https://www.ted.com/talks/tom_wujec_build_a_tower_build_a_team?language=en

Reflection in Action: Environmental Education Professional Development with Two Cohorts

Citation
Print Friendly, PDF & Email

Madden, L., Ammentorp, L., Heddy, E., Stanton, N., & McCotter, S. (2021). Reflection in action: Environmental education professional development with two cohorts. Innovations in Science Teacher Education. Retrieved from https://innovations.theaste.org/reflection-in-action-environmental-education-professional-development-with-two-cohorts/

by Lauren Madden, The College of New Jersey; Louise Ammentorp, The College of New Jersey; Eileen Heddy, The College of New Jersey; Nicole Stanton, The College of New Jersey; & Suzanne McCotter, The College of New Jersey

Abstract

This article shares lessons learned from a 2-year environmental education professional development initiative with two cohorts. Each cohort consisted of school-based teams of elementary teachers. The professional development included a series of five workshops aimed at integrating environmental education across the curriculum, and each teacher team developed and implemented a school-based project to put these ideas into practice. The project team modified their approach between Cohorts 1 and 2 based on strengths and shortcomings of the first experience. Key takeaways to inform future professional development efforts include ensuring the timeframe of the project allows teachers to build momentum in their work, recruiting teams of teachers with diverse classroom experiences, and including presenters who can offer tangible and actionable ideas to use in the classroom.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Álvarez-García, O., Sureda-Negre, J., & Comas-Forgas, R. (2015). Environmental education in pre-service teacher training: A literature review of existing evidence. Journal of Teacher Education for Sustainability, 17(1), 72–85. https://doi.org/10.1515/jtes-2015-0006

Ashmann, S., & Franzen, R. L. (2017). In what ways are teacher candidates being prepared to teach about the environment? A case study from Wisconsin. Environmental Education Research, 23(3), 299–323. https://doi.org/10.1080/13504622.2015.1101750

Banilower, E. R., Heck, D. J., & Weiss, I. R. (2007). Can professional development make the vision of the Standards a reality? The impact of the National Science Foundation’s Local Systemic Change through Teacher Enhancement Initiative. Journal of Research in Science Teaching, 44(3), 375–395. https://doi.org/10.1002/tea.20145

Bryk, A. S., Sebring, P. B., Allensworth, E., Luppescu, S., & Easton, J. Q.(2010). Organizing schools for Improvement: Lessons from Chicago. University of Chicago Press. https://doi.org/10.7208/chicago/9780226078014.001.0001

Crim, C., Moseley, C., & Desjean-Perrotta, B. (2017). Strategies toward the inclusion of environmental education in educator preparation programs: Results from a national survey. School Science & Mathematics, 117(3–4), 104–114. https://doi.org/10.1111/ssm.12211

Datnow, A. (2011). Collaboration and contrived collegiality: Revisiting Hargreaves in the age of accountability. Journal of Educational Change, 12(2), 147–158. https://doi.org/10.1007/s10833-011-9154-1

Desjean-Perrotta, B., Moseley, C., & Cantu, L. E. (2008). Preservice teacher’s perceptions of the environment: Does ethnicity or dominant residential experience matter? The Journal of Environmental Education, 39(2), 21–31. https://doi.org/10.3200/JOEE.39.2.21-32

Dyment, J. E., Davis, J. M., Nailon, D., Emery, S., Getenet, S., McCrea, N., & Hill, A. (2014). The impact of professional development on early childhood educators’ confidence, understanding and knowledge of education for sustainability. Environmental Education Research, 20(5), 660–679. https://doi.org/10.1080/13504622.2013.833591

European Commission. (2014, June). The Teaching and Learning International Survey (TALIS) 2013: Main findings from the survey and implications for education and training policies in Europe. https://ec.europa.eu/assets/eac/education/library/reports/2014/talis_en.pdf

Holdsworth, S., Wyborn, C., Bekessy, S., & Thomas, I. (2008). Professional development for education for sustainability: How advanced are Australian universities? International Journal of Sustainability in Higher Education, 9(2), 131–146. https://doi.org/10.1108/14676370810856288

Johnson, S. M. (2015). Will VAMs reinforce the walls of the egg-crate school? Educational Researcher, 44(2), 117–126. https://doi.org/10.3102/0013189X15573351

Moseley, C., Desjean-Perrota, B., & Crim, C. (2010). Exploring preservice teachers’ mental models of the environment. In A. M. Bodzin, B. S. Klein, & S. Weaver (Eds.), The inclusion of environmental education in science teacher education (pp. 209–223). Springer. https://doi.org/10.1007/978-90-481-9222-9_14

Parise, L. M., & Spillane, J. P. (2010). Teacher learning and instructional change: How formal and on-the-job learning opportunities predict change in elementary school teachers’ practice. The Elementary School Journal, 110(3), 323–346. https://doi.org/10.1086/648981

Powers, A. (2004). Teacher preparation for environmental education: Faculty perspectives on the infusion of environmental education into preservice methods courses. The Journal of Environmental Education, 35(3), 3–11.

Ronfeldt, M., Farmer, S. O., McQueen, K., & Grissom, J. A. (2015) Teacher collaboration in instructional teams and student achievement. American Educational Research Journal, 52(3), 475–514. https://doi.org/10.3102/0002831215585562

Schliefer, D., Rinehart, C., & Yanisch, T. (2017) Teacher collaboration in perspective: A guide to research. Spencer Foundation and Public Agenda. http://www.in-perspective.org/pages/teacher-collaboration-a-guide-to-research

Yavetz, B., Goldman, D., & Pe’er, S. (2014). How do preservice teachers perceive ‘environment’ and its relevance to their area of teaching? Environmental Education Research, 20(3), 354–371. https://doi.org/10.1080/13504622.2013.803038

Preservice Elementary Teachers Using Graphing as a Tool for Learning, Teaching, and Assessing Science

Citation
Print Friendly, PDF & Email

Gould, D.L., Robles, R., & Rillero, P. (2021). Preservice elementary teachers using graphing as a tool for learning, teaching, and assessing science. Innovations in Science Teacher Education, 6(1). Retrieved from https://innovations.theaste.org/preservice-elementary-teachers-using-graphing-as-a-tool-for-learning-teaching-and-assessing-science/

by Deena L. Gould, University of New Mexico; Rolando Robles, Arizona State University; & Peter Rillero, Arizona State University

Abstract

Graphing is an important tool for seeing patterns, analyzing data, and building models of scientific phenomena. Teachers of elementary school children use graphs to display data but rarely as tools for analyzing or making sense of data (Coleman, McTigue, & Smolkin, 2011). We provide a set of lessons that guide preservice elementary school teachers to analyze their conceptions about graphing and use graphing to (a) see patterns in data, (b) discuss and analyze data, (c) model scientific phenomena, and (d) teach and assess inquiry-based science. Examples are adduced for how we guided and supported preservice elementary teachers in their conceptual understanding and deeper use of graphing.

Introduction

Graphing has been used as a tool for analyzing and interpreting the world around us for at least eleven centuries (Friendly, 2007). Graphing can render abstract concepts, such as the relationship between variables, more visually apparent and hence more concrete. Graphing played key roles in revolutionary scientific discoveries (i.e. Newton’s laws, 1699; Boyle’s law, 1662) and everyday engineering and scientific discoveries, such as where best to position armor plating on aircrafts (Wainer, 1992) and the source of a cholera epidemic (Wainer, 1992). While the skills and practice of graphing were included in the National Science Education Standards (NRC, 1996), they take a central role in the Next Generation Science Standards (NRC, 2013). Graphing is an important tool in each of the following NGSS science and engineering practices: 2. Developing and using models; 4. Analyzing and interpreting data; 5. Using mathematics and computational thinking; 6. Constructing explanations (for science) and designing solutions (for engineering); 7. Engaging in argument from evidence; and 8. Obtaining, evaluating, and communicating information.

When teachers have used graphs for instruction in elementary school, it has been mainly limited to observing graphical representations in books or interpreting basic graphical representations (Coleman, McTigue, & Smolkin, 2011). Teachers in elementary school have rarely incorporated graphing as a tool for visualizing, discussing, analyzing, or making sense of data or scientific phenomena (Coleman, et al., 2011). When students in elementary school have been asked to construct graphs, they rarely knew the reasons for doing so (Friel, Curcio, & Bright, 2001).

The reasons for the limited use of graphing in elementary school has not been well researched. However, Szjka, Mumba, and Wise (2011) reported that preservice elementary school teachers (PSTs) viewed graphing as more a function of mathematics than as an analytical tool useful for learning, teaching, or assessing inquiry-based science. There is potential for change, however. Roth, McGinn, and Bowen (1998) reported that PSTs who used graphing as a tool for understanding science activities in their preservice classes were later more likely to teach graphing as an analytical tool in their classrooms.

The Lessons

The set of experiences in this article was designed to help PSTs construct and use knowledge about graphing that could be applied in their teaching and assessment. In a 2017 study, teacher preparation courses that covered fewer topics with increased opportunity to unpack knowledge and apply that knowledge to teaching situations had a greater impact on the graduates’ later teaching practices than teacher preparation courses that covered many topics (Morris & Hiebert, 2017). Thus, in this set of experiences, we provided opportunity for PSTs to reflect on, and analyze, their conceptions about graphing in a form that allowed them to apply it to learning and teaching situations. This was an innovative approach for us. Our prior teaching had not assisted PSTs in transferring their use of graphing as an analytical tool into their own instruction.

Overall, the purpose of the set of experiences described in this article was to guide PSTs to experience, discuss, and use graphing as a tool for 1) seeing patterns in data, 2) discussing and analyzing data, 3) modeling scientific phenomena, and 4) teaching and assessing inquiry-based science. In these experiences, inquiry-based science was taken to mean using multiple modes of teaching to guide students to discover or construct understandings about science instead of having teachers directly convey the information about science (Keys & Bryan, 2001). In this set of experiences, we strived to support the PSTs in moving along a continuum of using and applying graphing as an analytical tool in the context of inquiry-based science as shown in Figure 1.

Figure 1 (Click on image to enlarge)
Overview of Lessons

The context for our lessons was a one-semester elementary science methods course. This course was taken in the last semester of undergraduate study prior to student teaching. As a requirement of the course, PSTs planned and taught at least one inquiry-based science lesson in an elementary school classroom. As part of the course, PSTs also planned and delivered an inquiry-based microteaching lesson and an integrated STEM microteaching lesson to peers. PSTs were required to integrate math in one or more of these lessons.

Prior to the graphing lessons, we administered the 26 item multiple-choice Test of Graphing Skills (McKenzie & Padilla, 1986). The majority of PSTs demonstrated basic graphing skills (mean percent = 76.3, SD = 14.4; n = 77). These basic skills included selecting an appropriately scaled set of axes, selecting a set of coordinates, identifying manipulated and responding variables, selecting the best fit line, selecting a graph that correctly displays data, selecting the corresponding value for Y or X, identifying trends, interpolating and extrapolating from trends, selecting an appropriate description of a relationship shown on a graph, and identifying a generalization that interrelates the results of two graphs.

We built on this foundational knowledge with three focused lessons that guided the PSTs to use graphing in actual practice as a tool for 1) seeing patterns in data, 2) discussing and analyzing data, and 3) modeling scientific phenomena. These three initial lessons employed inquiry-based group work, direct instruction, and guided discussion to support PSTs to unpack their thinking and content knowledge about graphing as an analytical tool to build scientific understandings. The initial focused lessons occurred over three class sessions of one hour each during the second and third week of the course. Throughout the rest of the semester, we guided PSTs to extend and apply the knowledge from these lessons in their microteaching and field-based teaching and assessment. In this article, we show how PSTs’ conceptions about graphing evolved to become more explicit so the conceptions could be used as tools for learning, teaching, and assessing science.

The sequence of three lessons began with a guided-inquiry experience that used graphing as a tool to make visible the relationship between the amount of space a volume of a solid occupies and the amount of space a volume of a liquid occupies (Author citation, 2014). The second lesson focused on using graphing as a tool to discuss and analyze data about the mathematical relationship between mass and volume of water and vegetable oil. The third lesson used graphing as a tool to model and compare the density of seven distinct homogeneous substances.

Lesson 1: Graphing as a Tool for Seeing Patterns

The first lesson guided PSTs to develop standard graphing conventions that enabled them to visualize the relationship between the volume of a solid and the volume of a liquid. In particular, PSTs used graphing as a tool to discover and see clearly the relationship between the volume of space occupied by a milliliter (mL) of liquid and the volume of space occupied by a cubic centimeter (cm3) of solid. Our experience with this group of preservice elementary teachers indicated that a significant majority did not recognize this relationship prior to the lesson.

For the lesson, each group of three or four participants was provided a 0.5L bottle of water, 10 plastic 1 cubic centimeter blocks, a 100 mL graduated cylinder, and a metric ruler. They were asked to collect data and make a graph to show the relationship between the volume of the plastic cubes (cubic centimeters) and the volume of the water (milliliters) those cubes displaced. We used the following questions to facilitate discussion and support the PSTs to collectively design the investigation:

What are the variables? What are their units of measurement?

What could you do with the cubes to compare their volume to the volume of the water they displace?

How will you organize your data as you collect it?

Where does the manipulated variable go on the two column T chart? Is it X or Y?

How will you design the investigation so you can measure the responding variable in step-by-step coordination with the manipulated variable?

The questions and discussion led PSTs to suggest that they could drop the cubic centimeters one-at-a time into the graduated cylinder partly filled with water, record the measurements after each cube is submerged, and plot the data on a graph. We used plastic lab equipment and tap water that posed no significant safety concerns.

As PSTs investigated the relationship between the volume of a mL and the volume of a cm3 using the method of water displacement, some of the PSTs initially confused the measurement of the amount of water in the graduated cylinder with the measurement of the total volume taken up in the cylinder which included both the water and the cubes. It was helpful to ask if the amount of water in the graduated cylinder had changed so participants could conceptualize the meaning of water displacement and develop the concept that volume represents the amount of space matter occupies.

As PSTs used graphing to display and see patterns in the data, it was important to bring attention to conventions in graphing that are commonly overlooked. These include the conventions of titling the scatter plot as Y vs. X, making a scale of equal increments on each axis, positioning the responding variable on the Y-axis and the manipulated variable on the X-axis, and drawing a best-fit line (McKenzie & Padilla, 1986). A graphic organizer with the mnemonic DRY MIX served as a teaching tool and a reminder for placing data on axes (Figure 2).

Figure 2 (Click on image to enlarge)
Teaching Mnemonic and a Student’s Graph of mL vs. cm3

The PSTs noticed and stated that graphing made the one-to-one positive relationship between the volume of a mL and the volume of a cm3 clearly visible. They recorded their perceptions in writing and participated in oral discussion. During the discussion, we prompted PSTs to discuss aspects of the graphs that supported their understanding. It was helpful when we guided attention to the variety of ways that PSTs visualized and described the relationship as represented in Table 1. A word wall (Figure 3) also served as a valuable resource.

Figure 3 (Click on image to enlarge)
Word Wall That Added Oral and Written Explanations

Table 1 (Click on image to enlarge)
Representative Student Responses During Lesson 1

After the end of lesson 1, we prompted the PSTs to describe the role that graphing played in their exploration and understanding. One PST stated, “Graphing paints a picture. You can see things and use graphing to justify explanations.” Another stated, “Graphs are visuals. They show how things look and how things work by making a picture of the data.” One declared, “I liked that we got to see the concepts that we knew!” Another summarized the use of graphing as a tool, “Graphs communicate visually.”                                              

Lesson 2: Graphing as a Tool for Discussing and Analyzing Data

              During the second lesson, PSTs used graphing as a tool to analyze data and discuss the relationship between mass and volume of two liquids: vegetable oil and water. Half of the PSTs in each class explored the relationship between the mass and volume of water. Half of the PSTs in each class explored the relationship between the mass and volume of oil. Prior to beginning the hands-on investigation, we demonstrated the procedure for using the electronic scales, discussed reading the liquid meniscus in the graduated cylinder, and reviewed standard graphing practices covered in the previous session. To challenge PSTs to properly scale a graph with equal increments, we directed students to collect data for 10 mL, 15 mL, 25 mL, 40 mL, and 50 mL of their liquid. To help PSTs with their discussions and analyses, we prompted them to calculate the slope of the line and discuss what the slope of the line represented (Figure 4).

Figure 4 (Click on image to enlarge)
PST’s Graph of Mass Vs. Volume

For the final activity of lesson 2, students who explored and graphed the relationship between mass and volume of water partnered with students who explored and graphed the relationship between mass and volume of oil. We directed them to analyze data together by comparing graphs, describing relationships, and discussing possible reasons for the similarities and differences they observed. In other words, they were prompted to use the ratio of the relationship between mass and volume as depicted by the scatter graphs to discuss and explain similarities and differences between oil and water. The visual representation on the graph displayed the proportional relationship between the two quantities and helped lead the PSTs to attend to both quantities simultaneously.

As PSTs discussed the data and the relationships among the data, they were able to describe the meaning of the slope of the best-fit-line without using the word “density,” which helped them unpack their thinking and develop multiple ways to discuss, represent, and explain this concept. During the discussion, we modeled the use of a word wall as a resource in their discussions. After the students conducted the investigation, they noted that a word wall could serve as a tool to help their students bridge from everyday language to scientific language during discussions and data analyses. To help students unpack their conceptions about graphing, we brought attention to the diversity of ways that students analyzed and described the data (Table 2).

Table 2 (Click on image to enlarge)
Representative Student Responses During Lesson 2

After the end of lesson 2, we asked the PSTs to describe the role that graphing played in their data analyses and discussions. PSTs elaborated about the value of using graphing to visualize data. One stated, “Graphing makes it easier to see and read the data.” Another stated, “Graphing helps stimulate ideas and words. It helps you come up with ideas and explanations. It shows patterns so you can see and talk about them.” Another stated, “Graphing can help students explain when they don’t know because graphing can help you see and explain relationships.” Another PST stated, “Graphs can help you make a claim and justify the claim with evidence and reasoning that everyone can see.”

Lesson 3: Graphing as a Tool for Modeling Scientific Phenomena

            Graphing is also a valuable tool in modeling approaches to science instruction as analyses and discussions of data are central to the approach (Jackson, Duckerick, & Hestenes, 2008; Lehrer & Schauble, 2004; NRC, 2012). This third lesson was similar to the second lesson, however, each group of PSTs selected different substances to explore. Sets of one-cubic centimeter cubes of wood, aluminum, copper iron, brass, lead, zinc, and plastic were available. PSTs were directed to use graphing as a tool to model the mathematical relationship between the mass and volume of the selected substances. The previous two lessons provided experience for participants to be able to design this investigation in small groups with little instructor guidance. We prompted PSTs to calculate the slope of the line, discuss what the slope of the line represented, and use this information in their models (Table 3).

To help PSTs synthesize a mathematical model of density, we prompted them to rotate around the room, share data with classmates, and add lines representing several different substances from the data they gathered from classmates (Figure 5). They compared graphs, compared relationships, and discussed reasons for the similarities and differences they observed. As they shared data, they were able to develop a model that represented the relationship between mass and volume that was valid across a variety of substances.

Figure 5 (Click on image to enlarge)
PST’s Graph of Mass Vs. Volume

In the final activity of lesson 3, we presented each group with a mystery substance (a 2 x .5 inch cylinder of brass, aluminum, or steel) and asked them to use their model to make and justify a claim about the identity of the mystery substance. In small groups, PSTs generated strategies about how to compare the mystery substance with the known substances. They measured and calculated the densities of the mystery substances and compared them to the densities of the known substances (Table 3).

Table 3 (Click on image to enlarge)
Representative PST Responses During Lesson 3

After the end of lesson 3, we asked the PSTs to describe the role graphing and modeling played in their learning. One PST stated, “The graphic model helped us describe the abstract idea of density. It helped us use math to answer a question and it showed us how to use data and to represent data. It allowed us to work interdependently.” Another described the experience, “The graphs helped us talk about the strategies we came up with for the mystery substance. I found a lot of new ideas that way.” Another PST stated, “We were able to use data to make a model and to construct a reasonable explanation with the model. Graphing can communicate information. It (graphing) has many different purposes.” Another stated, “This shows that students can use math skills in reading, analyzing, and creating data and graphs for models. Modeling is useful to science because it helps make real world connections to actual events. It is important to make models for abstract concepts to demonstrate how the world works. I think that sharing was beneficial because it provides enough data to show a true trend.” One PST summarized the experience, “This graphing and modeling connects math and science to the real world and real problem solving rather than just question answering.”

Pedagogical Applications: Graphing as a Tool for Teaching and Assessing Inquiry-Based Science

Over the course of the three scaffolded lessons, PSTs took on more responsibility for planning the investigation, collecting the data, and using graphing as a tool for 1) seeing patterns in data, 2) discussing and analyzing data, and 3) modeling scientific phenomena. We helped facilitate this transition by prompting PSTs to do more, analyze their conceptions, and share their perspectives with each other. By gradually assuming greater ownership of the investigations, PSTs developed foundational knowledge, confidence, and initiative to use graphing as a tool for their own teaching over the rest of the semester.

Over the course of the semester, the PSTs analyzed, discussed, refined, and developed their use of graphing as a tool for learning, teaching, and assessing. Initially, some PSTs struggled to transfer their graphing knowledge and skills into actual practice, especially in ill-defined situations with unclear data. For example, a group of PSTs defaulted to using the collected data points instead of a scale of equal units when planning a lesson to guide elementary school students to graph and analyze the changes in stages of life cycle (larva, pupa, adult) of a population of mealworm beetles over time. In this example, the PSTs chose time as the variable for the X-axis. However, they initially used only the dates of data collection for values on the X-axis. The intervals between these values did not represent equal intervals of time. When the PSTs were prompted to identify the number of days between each value on the X-axis, they realized that some of the intervals represented 7 days while other intervals represented 10 days. They articulated that they had not used equal intervals. They also articulated that they could teach their students to create a scale of equal intervals by prompting the students to “skip counting” instead of just recording the dates of date collection. Therefore, it was important for the course instructors to continue to monitor and guide the PSTs as they applied their graphing skills in the development of lesson plans. Over time, the PSTs lesson plans began to show that they used graphing as a tool to engage their own students in seeing patterns, analyzing and discussing data, and modeling scientific phenomena (Table 4).

Table 4 (Click on image to enlarge)
Representative Excerpt From PST’s Lesson Plan

Over the course of the semester, we asked PSTs to share their experiences and their perspectives about teaching science in elementary school. Unsolicited, the PSTs described graphing as a tool for both teaching and assessing:

“For my evaluation I had the students pool their collected data and create a graph that explained what they had just completed with the number of coils and the strength of the magnet. I just love the fact that the students were the star scientists in this type of modeling.”

“In my class, we graph data and see how to apply math in our daily lives. Numbers are just numbers until we give them meaning. Graphing can give meaning to measurements and how it interacts with another variable such as time. I did a lesson about speed and time. I had the students make sense with real world applications and graphing. The students explored meanings rather than just taking science at face value. I think the making sense gives students a reason to want to learn more.”

“For assessment, a lot of that is done in their notebooks, I check for specific processes on certain days (charts, data, graphs, etc.) or I check for answers to certain questions. I can see what they know and answer any questions that students have. I comment on their thoughts and scientific knowledge that is brought out in the notebook. Using the notebooks and seeing the charts, data, and graphs really helps me gauge what concepts the students are grasping and which ones they are struggling with.”

Conclusion

Children in elementary school need access to analytical tools, such as graphing, that help them make sense of the world around them (NRC, 2012). In this article, we provide science teacher educators with a set of lessons to prepare preservice elementary teachers to use and teach graphing as a tool to (a) see patterns in data, (b) discuss and analyze data, (c) model scientific phenomena, and (d) teach and assess inquiry-based science.

We built this set of activities on the belief that PSTs need a strong knowledge foundation about the use of graphing as a tool to be able to apply it to their teaching and assessing (Bowen & Roth, 2005; Morris & Hiebert, 2017; Roth et. al, 1998). Therefore, we provided PSTs opportunities to analyze their conceptions about graphing and to also discuss, refine, and improve their use of graphing in different contexts.  To document progress and provide feedback, we reviewed PSTs’ written work samples and oral responses across the three lessons and across the field experiences and microteaching. We documented individual progress and provided feedback about the use of graphing to (a) see patterns in data, (b) discuss and analyze data, (c) model scientific phenomena, and (d) teach and assess inquiry-based science. Criteria for achieving these outcomes were incorporated into our course rubrics. Over time, we noticed that PSTs conceptions about graphing that were initially based on partial understandings, evolved and became more explicit. Compared to previous years, the use of graphing enabled these PSTs to be more descriptive, more precise, and more analytical when they made scientific observations, engaged in discussions, and problem solved.

While developing graphing abilities was a goal of the set of experiences, equally important was fostering the development of preservice teachers in viewing graphing, and its associated mathematical reasoning, as a tool for scientific inquiry rather than solely as something done in math. Compared to previous years, we noticed that these PSTs were more explicit in their lesson plans about how they used graphing as a tool to engage and assess student reasoning and scientific sense-making. The majority of PSTs showed in at least one of their three lesson plans that they were able to use graphing to support elementary school students in scientific sense-making and discovering or constructing understandings about science. These results are reflective of the novel and innovative approach we outlined in this article that guided PSTs to reflect and analyze their conceptions about graphing in a form that enabled them to apply those conceptions to new learning and teaching situations.

Finally, it is important to note that a limitation of this set of lessons is that each of the relationships that PSTs graphed represented a positive linear correlation. In future implementations, we think it is important to provide opportunities for PSTs to work with data that represent other types of relationships such as nonlinear, curved, exponential, etc. PSTs also need opportunities to work with, and explore, data for which no fully determined mathematical relationships emerge (this opportunity is available in Meyer, 2016). However, this set of lessons provided a starting point; linear relationships are a good place to start considering that linear relationships form the basis of many relationships in science.

References

Bowen, G.M., & Roth, W.M. (2005). Data and graph interpretation practices among preservice teachers. Journal of Research in Science Teaching, 42, 1063-1088.

Coleman, J.M., McTigue, E.M., & Smolkin, L.B. (2011). Elementary teachers’ use of graphical representations in science teaching. Journal of Science Teacher Education, 22, 613-643.

Friel, S.N., Curcio, F.R., & Bright, G.W. (2001). Making sense of graphs: Critical factors influencing comprehension and instructional implications. Journal for Research In Mathematics Education, 32, 124-158.

Friendly, M. A. (2007). A brief history of data visualization. In C. Chen, W., & Hardl, A. Unwin (Eds.). Handbook of Computational Statistics: Data Visualization (pp. 15-56). Heidelberg, Germany: Springer-Verlag.

Gould, D., & Mitts, L. (2014). Eureka! Causal thinking about matter and molecules. Science Scope, 37(11), 47 – 56.

Jackson, J., Dukerich, L., & Hestenes, D. (2008). Modeling instruction: An effective model for science education. Science Educator, 17(1), 10-17.

Keys, C. & Bryan, L. (2001). Co-constructing inquiry-based science with teachers: Essential research for lasting reform. Journal of Research in Science Teaching, 38, 631-645.

Lehrer, R. & Schauble, L. (2004). Modeling natural variation through distribution. ? American Educational Research Journal. 41, 635-679.

McKenzie, D.L. & Padilla, M.J. (1986). The construction and validation of the test of graphing in science (TOGS). Journal of Research in Science Teaching, 23, 571-579.

Meyer, D.Z. (2016). Comparing classroom inquiry and sociological account of science as a means of explicit-reflective learning of NOS/SI. Innovations in Science Teacher Education, 1(2). Retrieved from https://innovations.theaste.org/comparing-classroom-inquiry-and-sociological-account-of-science-as-a-means-of-explicit-reflective-learning-of-nossi/.

Morris, A.K., & Hiebert, J. (2017). Effects of teacher preparation courses: Do graduates use what they learned to plan mathematics lessons? American Educational Research Journal. 54, 524-567.

National Research Council (NRC). (1996). National science education standards. Washington, DC.

National Research Council (NRC) (2012). A framework for K-12 science education: Practices crosscutting concepts and core idea. Committee on conceptual framework for new K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences Education. Washington, DC: The National Academies Press.

National Research Council (NRC). (2013). Next generation science standards. Washington, DC: National Academies Press.

Roth, W.M., McGinn, M.K., & Bowen, G.M. (1998). How prepared are preservice teachers to teach scientific inquiry? Levels of performance in scientific representation practices. Journal of Science Teacher Education, 9, 25-48.

Szjka, S., Mumba, F., & Wise, K.C. (2011). Cognitive and attitudinal predictors related to line graphing achievement among elementary pre-service teachers. Journal of Science Teacher Education, 22, 563-578.

Wainer, H. (1992). Understanding graphs and tables. Educational Researcher, 21, 14-23.

 

Supporting Schoolyard Pedagogy in Elementary Methods Courses

Citation
Print Friendly, PDF & Email

Feille, K. & Hathcock, S. (2021). Supporting schoolyard pedagogy in elementary methods courses. Innovations in Science Teacher Education, 6(1). Retrieved from https://innovations.theaste.org/supporting-schoolyard-pedagogy-in-elementary-methods-courses/

by Kelly Feille, University of Oklahoma; & Stephanie Hathcock, Oklahoma State University

Abstract

Schoolyard pedagogy illustrates the theories, methods, and practices of teaching that extend beyond the four walls of a classroom and capitalize on the teaching tools available in the surrounding schoolyard. In this article, we describe the schoolyard pedagogy framework, which includes intense pedagogical experiences, opportunities and frequent access, and continuous support. We then provide an overview of how we are intentionally working toward developing schoolyard pedagogy in elementary preservice teachers at two universities. This includes providing collaborative experiences in the university schoolyard and nearby schools, individual experiences in nature, opportunities to see the possibilities in local schoolyards, and lesson planning that utilizes the schoolyard. We also discuss potential barriers and catalysts for schoolyard pedagogy during the induction years, future needs, and potential for continuous support.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Bricker, P. Faetz, M., Tracy, K. N., & Luke, N. (2015). Poetry rocks. Science and Children, 53(3), 38-45.

Carrier, S. J. (2009). The Effects of Outdoor Science Lessons with Elementary School Students on Preservice Teachers’ Self-Efficacy. Journal of Elementary Science Education, 21(2), 35-48. doi:10.1007/BF03173683

Feille, K. (2019). A Framework for the Development of Schoolyard Pedagogy. Research in Science Education. doi:10.1007/s11165-019-9860-x

Gilbert, A., & Byers, C.C. (2017). Wonder as a tool to engage preservice elementary teachers in science learning and teaching. Science Education, 101, 907-928.

Graham, H., & Zidenberg-Cherr, S. (2005). California teachers perceive school gardens as an effective nutritional tool to promote healthful eating habits. Journal of the American Diabetic Association, 105, 1797-1800. doi:10.1016/j.jada.2005.08.034

Gross, L., McGee, J., James, J., & Hodge, C. (2019). From play to pedagogy: Formative childhood experiences and development of preservice elementary science educators. Journal of Science Teacher Education, 30, 856-871. doi: 10.1080/1046560X.2019.1616516.

Heerwagen, J. H., & Orians, G. H. (2002). The ecological world of children. In P. H. Kahn & S.Kellert (Eds.), Children and nature: Psychological, sociocultural and evolutionary investigations (pp. 29-62). Cambridge, MA: MIT Press.

Klemmer, C. D., Waliczek, T. M., & Zajicek, J. M. (2005). Growing Minds: The Effect of a School Gardening Program on the Science Achievement of Elementary Students. Horticulture Technology, 15, 448-452.

Laws, J. M., Breunig, E., Lygren, E., & Lopez, C. (2012). Opening the world through nature journaling: Integrating art, science, and language arts (2nd Ed.). California Native Plant Society.

Leslie, C. W., & Roth, C. E. (2003). Keeping a nature journal: Discovering a whole new way of seeing the world around you. North Adams: Storey Publishing.

Lewis, E., Mansfield, C., & Baudains, C. (2008). Getting Down and Dirty: Values in Education for Sustainability. Issues in Educational Research, 18, 138-155.

Lieberman, G. A., & Hoody, L. L. (2005). Closing the achievement gap: Using the environment as an integrating context for learning. State Education and Roundtable, General Education.

Martin, S. C. (2003). The influence of outdoor schoolyard experiences on students’ environmental knowledge, attitudes, behaviors, and comfort levels. Journal of Elementary Science Education, 15, 51-63.

NGSS Lead States. (2013). Next generation science standards: For states, by states. The National Academies Press Washington, DC.

Ozer, E. J. (2007). The effects of school gardens on students and schools: conceptualization and considerations for maximizing healthy development. Health Education & Behavior, 34, 846-863. doi:10.1177/1090198106289002

Passy, R. (2012). School gardens: teaching and learning outside the front door. Education 3-13, 42(1), 23-38. doi:10.1080/03004279.2011.636371

Silverstein, S. (1964). The giving tree. Harper: New York, NY.

Skamp, K., & Bergmann, I. (2001). Facilitating Learnscape Development, Maintenance and Use: Teachers’ Perceptions and Self-Reported Practices. Environmental Education Research, 7, 333-358.

Skelly, S. M., & Bradley, J. C. (2007). The growing phenomenon of school gardens: Measuring their variation and their affect on students’ sense of responsibility and attitudes toward science and the environment. Applied Environmental Education and Communication, 6, 97-104.

Sobel, D. (2002). Children’s special places: Exploring the role of forts, dens, and bush houses in middle childhood. Detroit, MI: Wayne State University Press.

Sobel, D. (2004). Place based education: Connecting classrooms & communities. Barrington, MA: The Orion Society.

Tal, T., & Morag, O. (2009). Reflective practice as a means for preparing to teach outdoors in an ecological garden. Journal of Science Teacher Education, 20, 245-262. doi:10.1007/s10972-009-9131-1

Thomas, J. A., Pedersen, J. E., & Finson, K. D. (2001). Validation of the draw-a-science-teacher-ckecklist (DASTT-C): Exploring mental models and teacher beliefs. Journal of Science Teacher Education, 12, 295-310. doi:10.1023%2FA%3A1014216328867

Wells, N. M., Myers, B. M., & Henderson, C. R. (2014). School gardens & physical activity: A randomized controlled trial of low income elementary schools. Preventative Medicine, 69, 527-533.

Wolf, Allan. (2003). Step outside. What do you see? In S. Vardell & J. Wong (Eds.), The poetry friday anthology for science (p. 13). Princeton, NJ: Pomelo.

Critical Response Protocol: Supporting Preservice Science Teachers in Facilitating Inclusive Whole-Class Discussions

Citation
Print Friendly, PDF & Email

Ellingson, C.L., Wieselmann, J.R., & Leammukda, F.D. (2021). Critical response protocol: Supporting preservice science teachers in facilitating inclusive whole-class discussions. Innovations in Science Teacher Education, 6(1). Retrieved from https://innovations.theaste.org/critical-response-protocol-supporting-preservice-science-teachers-in-facilitating-inclusive-whole-class-discussions/

by Charlene L. Ellingson, Minnesota State University, Mankato; Dr. Jeanna Wieselmann, Caruth Institute for Engineering Education; & Dr. Felicia Dawn Leammukda, Minnesota State University, St. Cloud

Abstract

Despite a large body of research on effective discussion in science classrooms, teachers continue to struggle to engage all students in such discussions. Whole-class discussions are particularly challenging to facilitate effectively and, therefore, often have a teacher-centered participation pattern. This article describes the Critical Response Protocol (CRP), a tool that disrupts teacher-centered discussion patterns in favor of a more student-centered structure that honors students’ science ideas. CRP originated in the arts community as a method for giving and receiving feedback to deepen critical dialog between artists and their audiences. In science classrooms, CRP can be used to elicit student ideas about scientific phenomena and invite wide participation while reducing the focus on “correct” responses. In this article, we describe our use of CRP with preservice science teachers. We first modeled the CRP process as it would be used with high school students in science classrooms, then discussed pedagogical considerations for implementing CRP within the preservice teachers’ classrooms. We conclude this article with a discussion of our insights about the opportunities and challenges of using CRP in science teacher education to support preservice teachers in leading effective whole-class discussion and attending to inclusive participation structures.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Barton, C. (2018). On formative assessment in math: How diagnostic questions can help. American Educator, 42(2), 33-39.

Beghetto, R. A. (2009). Correlates of intellectual risk taking in elementary school science. Journal of Research in Science Teaching, 46, 210-223. https://doi.org/10.1002/tea.20270

Cohen, E. G. (1990). Teaching in multiculturally heterogeneous classrooms: Findings from a model program. McGill Journal of Education, 26, 7-23.

Cohen, E. G., & Lotan, R. A. (1995). Producing equal-status interaction in the heterogeneous classroom. American Educational Research Journal, 32, 99-120. https://doi.org/10.3102%2F00028312032001099

Ellingson, C., Roehrig, G., Bakkum, K., & Dubinsky, J. M. (2016). Critical response protocol: A classroom tool for facilitating equitable critical discourse in science classrooms. The Science Teacher, 83(4), 51-54.

Evagorou, M., Erduran, S., & Mäntylä, T. (2015). The role of visual representations in scientific practices: from conceptual understanding and knowledge generation to ‘seeing’ how science works. International Journal of STEM Education, 2(11). doi:10.1186/s40594-015-0024-x

Gibson, J. D., Khanal, B. P., & Zubarev, E. R. (2007). Paclitaxel-functionalized gold nanoparticles. Journal of the American Chemical Society, 129, 11653–11661. https://doi.org/10.1021/ja075181k

Haverly, C., Barton, A. C., Schwarz, C. V., & Braaten, M. (2020). “Making space”: How novice teachers create opportunities for equitable sense-making in elementary science. Journal of Teacher Education, 71, 63–79. DOI://1d0o.i.1o1rg7/71/00.10127274/0807212148781010878006706

Hennessy, S. (2014). Bridging between research and practice: Supporting professional development through collaborative studies of classroom teaching with technology. Rotterdam, The Netherlands: Sense Publishers.

Lerman, L., & Borstel, J. (2003). Liz Lerman’s critical response process: A method for getting useful feedback on anything you make, from dance to dessert. Dance Exchange, Inc.

Lewis, B. P., & Linder, D. E. (1997). Thinking about choking? Attentional processes and paradoxical performance. Personality & Social Psychology Bulletin, 23, 937 – 944. https://doi.org/10.1177%2F0146167297239003

Mallow, J. V. (1978). A science anxiety program. American Journal of Physics, 46, 862. https://doi.org/10.1119/1.11409

Mallow, J. V. (2006). Science anxiety: Research and action. In J. J. Mintzes & W. H. Leonard (Eds.), Handbook of college science teaching (pp. 325-349). Arlington, VA: NSTA Press.

Mehan, H. (1979). Learning lessons: Social organization in the classroom. Cambridge: MA, Harvard University Press.

Meyer, D. K., & Smithenry, D. (2014). Scaffolding collective engagement. Teachers College Record, 116, 124.

Michaels, S., & O’Connor, C. (2012). Talk Science Primer. TERC, An Education Research and Development Organization, Cambridge: MA.

Mortimer, E. F., & Scott, P. H. (2003). Meaning making in secondary science classrooms. Berkshire, England: McGraw-Hill Education.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: National Academies Press.

Petkau, J. W. (2013). Critical response and pedagogic tensions in aesthetic space. Retrieved from ProQuest Dissertations & Theses Global (1322974486).

Vandenberg, P. (1999). Lessons of inscription: Tutor training and the “professional conversation.” Writing Center Journal, 19(2), 59-83.

WIDA Consortium. 2006a. Annual Technical Report No. 1-Volume 1 of 3: Description, Validity, and Student Results (2004-2005). Technical Reports and Technical Advisory Committee (TAC). Available: https://wida.wisc.edu. [December 2018].

Addressing Social Justice in the Science Methods Classroom through Critical Literacy: Engaging Preservice Teachers in Uncomfortable Discussions

Citation
Print Friendly, PDF & Email

Bautista, N.U., & Batchelor, K.E. (2020). Addressing social justice in the science methods classroom through critical literacy: Engaging preservice teachers in uncomfortable discussions. Innovations in Science Teacher Education, 5(4). Retrieved from https://innovations.theaste.org/addressing-social-justice-in-the-science-methods-classroom-through-critical-literacy-engaging-preservice-teachers-in-uncomfortable-discussions/

by Nazan U. Bautista, Miami University; & Katherine E. Batchelor, Miami University

Abstract

The purpose of this paper is to exemplify how teacher candidates can be engaged in discussions around social justice and equity in science methods courses while also learning about and practicing essential science teaching strategies and skills. Our aim is that science teacher educators who do not feel confident enough to explicitly address these important issues in methods courses are encouraged to think creatively about how they can modify or alter their current practices in a way to prepare science teachers for the changing demographics of science classrooms. We present an engineering design activity that is coupled with critical literacy skills, called ‘Build a Child.” Upon identifying the problem, we introduce the context of the preservice teachers’ science methods course and reason for this work, followed by defining critical literacy and how it pairs well in science education. We then share the “Build a Child” engineering project and how we asked preservice teachers to critique and reflect on their creations, thus bringing in a critical literacy framework to the curriculum. Next, we share three findings based on our data analysis, and we end with the importance of science methods courses implementing social justice education and suggestions on how to reexamine our science curriculum to make it more culturally relevant and equitable for all students.

Introduction

In 2016, a white, female, science teacher in an 8th grade classroom in Baltimore, Maryland grabbed a black male student by the hood of his jacket and told him he was a “punk a** n***** who is going to get shot” as she hauled him out of the classroom. She then turned to the rest of the students, most of whom were students of color, and called them “idiots” and “stupid” (Green, 2016). In March 2018, a white, female teacher in Crystal River, FL was fired after her white nationalist and racist podcast unearthed (Stevens, 2018). In December 2018, another white, female, science teacher in South Fresno, California was caught on camera forcibly cutting a student’s hair in front of his peers as she sang the U.S. national anthem loudly (Hutcherson, 2018). In March 2019, a white, male, science teacher was suspended after allegedly using the “n-word” during a science class in Pens Groove, New Jersey (Brown, 2019).

A quick Internet search will show that the aforementioned incidents are hardly unique. As science teacher educators we have seen more than a dozen of news stories like these in the media over the last decade. We could not believe that a teacher would behave in such a deplorable way and possibly blame them for not acquiring the required dispositions to teach, especially in a context that is racially, ethnically and linguistically diverse. What we ignore, however, is the role we, as science teacher educators, play in these teachers’ inability to understand and interact with students who are culturally different from them. It is about time we revisit our complicitness with teacher candidates’ stereotypes of people from other cultures and races different than their own.

Over the last three decades, science educators’ agendas have heavily focused on changing classroom science teaching practices from traditional lecture and cookbook labs format to constructivist and inquiry-oriented teaching and learning approaches. We have focused on developing teachers’ (both prospective and inservice) and students’ scientific argumentation skills and improving their understanding of scientific ways of knowing. While emphasizing these issues are important, teacher educators rarely, if at all, center instruction on social justice and equity, and thus, fall short in preparing teachers for the changing demographics and needs of their classrooms.

Teacher candidates’ perceptions of preparing to become a science teacher are not any different from ours. They come to our courses with the expectation that we will address the science content knowledge they need to know and teach the strategies and techniques necessary to “deliver” the content (Ball & McDiarmid, 1990; Feiman-Nemser, 2012). Rarely teacher candidates find concepts, such as understanding the needs of their culturally diverse students, practicing culturally relevant teaching practices, or learning to properly integrate reading and writing in science instruction to help their students develop their language literacy skills as important and relevant as learning to teach science (Silverman, 2010). The news stories we shared above provide evidence that science teacher preparation is and should be indeed more than just preparation of teachers for the content expertise.

Scholars (e.g., Gay, 2010; Ladson-Billings, 1995, 2014; Nieto, 2005; Sleeter, 2005) recommend increased emphasis on culturally relevant teaching pedagogy in teacher preparation courses. Preservice teachers are in need of preparation that places culturally relevant teaching at the forefront in order to prepare future teachers with issues that may arise regarding race, culture, and gender, for example, in their classrooms, and culturally relevant pedagogy provides ways of centering the cultures, languages, and experiences that diverse learners bring to classrooms (Villegas & Lucas, 2002). However, too often science teacher educators themselves are not knowledgeable about how to cater to the unique needs of culturally diverse students of science or what culturally relevant teaching approaches should look like in science classrooms. Considering the lack of science teacher educator knowledge and experience with culturally relevant teaching, our goal is to exemplify how teacher candidates can be engaged in discussions around social justice and equity in science methods courses while also learning about and practicing essential science teaching strategies and skills. Our hope with this article is that science educators like Nazan, who do not feel confident enough to explicitly address these important issues in methods courses are encouraged to think creatively about how they can modify or alter their practices in a way to prepare science teachers for the changing demographics of classrooms.

We want to clarify, however, that we do not claim that this single activity that spans over a couple of days makes big changes in the worldviews preservice teachers have developed over their lifetime. However, it is through engaging and thought-provoking activities such as the one we explain below that both science teacher educators and preservice teachers will engage in conversations that they may find difficult and uncomfortable. For real change to happen, more of these conversations and engagements must happen in the entire curriculum of a program.

We begin by introducing the context of the preservice teachers’ science methods course and reason for this work, followed by defining critical literacy and how it pairs well in science education. We then share an engineering design project and how we engaged preservice teachers in critical conversations by critiquing and reflecting on their creations. Next, we share conversations preservice teachers had among themselves and with us, and the themes that emerged from these audio-taped conversations. We end with the importance of science methods courses implementing social justice education and suggestions on how to reexamine our science curriculum to make it more culturally relevant and equitable for all students.

Context

In 2016, the Department of Teacher Education at this Midwestern university adopted a mission statement which highlighted our commitment to preparing teachers for confronting social injustices in all educational settings. This commitment required a shift in what was in the center of our curricula. As we revised our course curricula by centering it on learners and focusing on culturally relevant pedagogical approaches, it became obvious that Nazan’s lack of expertise and experiences in these approaches were obstacles in effective implementation.

Nazan is an international scholar who was born and raised in a non-English speaking and Muslim country. She was one of the eight female students out of 60 who studied and earned a bachelor’s degree in Physics prior to pursuing a graduate degree in the U.S. Her personal and academic experiences and worldviews have been shaped by her perceived minority identities (ethnic, religious, and gender).  While she could empathize with injustices that other minority groups (e.g., LGBTQ+ and people of color, or POC) faced with and became allied to related causes such as Black Lives Matter, she failed to recognize her dominant white identity and its impact on the communities in which she was engaged. Through the process of critical introspection in faculty meetings, learning communities, and audited courses with social justice foci, she started to acknowledge her white identity and the need to address issues of social justice in her science methods courses.

Sharing scholarship at the faculty meetings and ideas during hallway conversations enabled us to identify the exemplary work already been done by colleagues. Katherine, for example, had her English Language Arts education majors select print and nonprint linked texts, centering on a social justice theme (e.g., Black Lives Matter) and then critique their texts through a critical literacy lens to address their implicit biases (Batchelor, DeWater, & Thompson, 2019). What attracted Nazan to this work was that Katherine was able to meaningfully weave the new mission with the content of her course (ELA), which her students were expected to teach.

The question for Nazan was, How could the same be done in a science methods course? This is how the idea of integrating engineering design and critical literacy came to coexist for us. Early Childhood Education majors in Nazan’s science methods course had just learned engineering design principles as addressed in the Next Generation Science Standards (NGSS, NGSS Lead States, 2013). The critical literacy infused engineering design activity, called “Build a Child” mentioned below, would create a context for the preservice teachers to apply principles of engineering design they previously learned while enabling us to engage them in uncomfortable discussions and identify any implicit bias preservice teachers might have about their future students. In a study conducted with a comparable sample of preservice teachers, Bautista, Misco, and Quaye (2018) found that preservice teachers often “have submerged epistemologies (e.g., implicit biases) about the world that may or may not show themselves in teacher preparation classes and the schools in which they may teach” (p. 166). Batchelor (2019) research also revealed that preservice teachers’ sociocultural experiences and intersectionality awareness influenced their thinking about bias. Therefore, engaging preservice teachers in an explicit discussion about their child creations using a critical literacy lens would encourage this engineering design activity to become a platform for culturally relevant teaching.

Critical Literacy Paired with Science in Preservice Teacher Education

There is a disparity between children’s diversity and the standardizations and curricula associated with them (Genishi & Dyson, 2009). With 80% of teachers identifying as white, middle class, monolingual females, it’s not hard to see why (Nieto, 2000; Villegas & Lucas, 2002).  Children need to see themselves in the curriculum, but without the pedagogical backbone of culturally relevant teaching, this can become a roadblock to curricular choices for some teachers, especially future teachers. One way to combat this void is through the practice of critical literacy. Critical literacy provides pathways for teachers who are seeking to engage in culturally relevant teaching practices since it is rooted in democracy, injustice, and considered a lens of literacy as well as a practice engaged to encourage students to use language to question their everyday world experiences. In particular, it centers on the relationship dynamic between language and power, positing that text and education are never neutral. It is a sociopolitical system that either privileges or oppresses, especially regarding race, class, and gender. Critical literacy meshes social, cultural, and political worlds with how texts (in the broadest sense) work, in what context, and discusses who benefits and is marginalized within the boundaries of these text uses (Lewison, Leland, & Harste, 2014), which is one of the tenets of culturally relevant teaching: developing a critical consciousness (Gay, 2010; Ladson-Billings, 1995), meaning, students are able to critique cultural norms and values society has deemed worthy.

There is no set “how-to” on how to enact critical literacy in the classroom. This is because each experience is contingent upon the students’ and teachers’ power relations and the needs and inquiries of each child. However, the most commonly used practices that support critical literacy in the classroom include: reading supplementary texts; reading multiple texts; reading from a resistant perspective; producing counter-texts; having students conduct research about topics of personal interest; and challenging students to take social action (Behrman, 2006).

Critical literacy practices and inquiry-based science pair well since both encourage instructional strategies that build on students’ curiosities of the world around them and enhance literacy skills. Additionally, scientific literacy requires the ability to critique the quality of evidence when reading various media, including the Internet, magazines, and television. Moreover, providing opportunities for students to question and ponder what students find meaningful is important to promote an inquiry-based classroom, whether it be in science or language arts.

Both critical literacy and science education encourage students to meaningfully and actively participate with others in a global society. For example, DeBoer (2005) suggests, “Science education should develop citizens who are able to critically follow reports and discussions about science that appear in the media and who can take part in conversations about science and science related issues that are part of their daily experience” (p. 234). Therefore, the many benefits of including critical literacy practices in science education should be examined with preservice teachers as well as practicing teachers.

Preparing Preservice Teachers for the Critical Conversations

In the days leading to the engineering design and the critical conversations, preservice teachers read articles by Montgomery (2001), Moll et al. (1992) and Yosso (2005) focusing on creating culturally responsive and inclusive classrooms and students’ funds of knowledge. They conducted a diversity self-assessment adopted from Bromley (1998).  They shared their self-assessment responses in small groups and discussed the ideas that emerged from these small groups as a whole class. Perhaps the most important aspects of these discussions was that most preservice teachers initially shared their own stories of being stereotyped. For instance, identifying herself as feminine, Bekah expressed that people often assumed she could not use power tools, such as a drill press, or do physical hard work (e.g., putting up a drywall). Yufang, the only international student in the methods class, explained how she felt silenced and invisible in most of her college courses by peers and professors as she could not speak English fast enough during her freshman and sophomore years. Nazan, then guided preservice teachers to consider their future students experiencing similar or other biases (e.g., racial, religious, etc.) and what actions they might take to reach out to these students. Using Moll’s (1992) funds of knowledge and Yosso’s (2005) cultural wealth model, preservice teachers compiled ideas to make their future students feel included in their classrooms and were encouraged to add new ideas to the class list for the rest of the semester. These classroom discussions set the stage for the “Build a Child” engineering design activity, which they started in the following class meeting.

“Build a Child” Engineering Design Challenge

We called the activity, composed of three phases, “Build a Child” because of both its literal and symbolic meanings. While constructing a product using cardboards and Makedo tools as part of the engineering design process in the first phase, we asked preservice teachers to imagine who they were building and who the child was as a whole with his/her/their background, race, ethnicity, struggles, communities he/she/they lived, etc. (second phase). Through these reflective and critical discussions, preservice teachers would become more aware of the stories their future students would bring to their classrooms and the ways in which they needed to build strong relationships with these students (third phase).

Phase 1: Engineering Design

Preservice teachers first practiced engineering design principles as they built a child using cardboards and MakedoTM construction toolkit[1]. Engineering design is the method that engineers use to identify and solve problems.  What distinguishes engineering design from other types of problem solving is the nature of both the problem and the solution. The problems are open-ended in nature, which means there is no single correct solution. Engineers must produce solutions within the limitations of their context and choose solutions that include the most desired features. The solution is tested, revised, and re-tested until it is finalized, and different groups of engineers can end up with different valid solutions. See Figure 1 for the tasks and rules we provided to the preservice teachers to complete this task successfully.

Figure 1 (Click on image to enlarge)
Rules and Criteria Provided for the “Build a Child” Engineering Design Activity and Used to Evaluate Preservice Teachers’ Creations

Once the designs were ready, Nazan, as the instructor, tested each of them to verify whether the designs followed the rules provided in figure 1. Based on the results, preservice teachers either moved on to the next section or revised their design based on the feedback provided until their design was re-tested and approved.

Phase 2: Essays

In the next phase of the lesson, the cardboard children came alive. Preservice teachers individually wrote a background story about their children, detailed enough for the class to get to know each child well. We provided some questions to guide them as they wrote the stories (see figure 2). Since the class time was not long enough to finish these essays, they finalized them and submit them to the instructor prior to the next meeting, which would start with everyone presenting their stories.

Figure 2 (Click on image to enlarge)
Guiding Questions for the “Build a Child” Essays

Phase 3: Critical Conversations

The next phase, critical conversations, began when we asked preservice teachers to imagine that the children they built and narrated would be the children in their future classrooms. We provided the questions in figure 3 to engage them in the critical conservations. We reassured our students before discussion began that acknowledging our own privileges is never easy, and talking about them is even harder, especially when it comes to unpacking implicit biases we all hold. Tensions will arise, but it is through these tensions that we outgrow our thinking. Both Nazan and Katherine shared personal experiences with implicit biases they carried in order to build trust and share that even though they are “seasoned teachers,” they too were challenged with personal biases they carried. By revealing these moments and prefacing the conversation on tension producing reflection, preservice teachers were more willing to share beliefs about their children in small group settings.

Figure 3 (Click on image to enlarge)
Critical Conversation Questions Used to Guide Explicit Discussions

During these small group discussions, both authors sat in on conversations and listened. When conversations were in lull, they would pose questions to extend and nudge students to provide more thinking behind their decisions to create a child with a particular race or gender, for example, and ask them to delve deeper into their own experiences as a student and what they witnessed in school, and more importantly, build empathy toward their created child’s story.

Critical literacy and culturally relevant teaching empower students and teachers to be risk-takers, for voices to be shared and heard. Therefore, when small group discussions concluded, both authors gathered the class back as a whole and asked them to share the highlights of their conversations; question and critique who is in power in making curricular decisions, and generate ideas as to how they would address some of these issues as they make curricular decisions in the future.

Effectiveness of Preservice Teachers’ Critical Conversations

Following the tenets of culturally relevant teaching (Gay, 2010; Ladson-Billings, 2014; Nieto, 2005), modeling it with and for our students, we engaged in instructional conversations based on meaningful topics, such as systemic issues in education, making the conversation more student-based than teacher-based, and we used open-ended questions to elaborate meaningful discussion. Nieto (2005) discussed ways to support future and practicing teachers by assisting them to “reflect deeply on their beliefs and attitudes” (pp. 217-218), which will hopefully over time, provide opportunities to engage in sustainable culturally relevant pedagogy. We are fully aware that changing students’ beliefs or what Gay (2010) called “ ideological anchors” can be challenging at best, even recognizing that some of our preservice teachers will walk away with some of the same preconceived notions as when they started our courses. However, both authors assert that this doesn’t mean we stop trying. We work through the initial resistance, confusion, and assumptions with which students enter our courses, and offer opportunities to unpack them in a space that supports deconstructing implicit biases.

As stated in the introduction, our university division committed to teaching for social justice, thus providing numerous opportunities for guest speakers, professional development, and collaboration supporting this endeavor both for faculty and students. Because of this commitment, educators better prepare future teachers to talk about issues of race, privilege, and marginalization, for example, because they themselves are also practicing it in their courses. Preservice teachers in the program now experience the overarching theme of social justice woven into each of their courses through dialogic practice, readings, and modeling culturally relevant pedagogical tenets. It is because of this overarching thread that Katherine’s students were prepared and even eager to engage in complicated conversations centering on their created children.

For the purpose of this article, we gathered the “Build a Child” essays written by the 12 preservice teachers and the audiotaped small-group and whole-class conversations. These data sources allowed us to check how effective we were in bringing submerged beliefs to the surface for open dialogue and how well the instruction worked in engaging preservice teachers in meaningful conversations about social justice and equity issues.  Based on our analysis, the following three themes emerged from the thematic review of the data sources: 1) emerging awareness of various forms of diversity; 2) blindness to identity; and 3) stereotypes about gender and gender binary.

Emerging Awareness of Various Forms of Diversity

Overall, preservice teachers’ designs included children from different racial, ethnic, and socioeconomic groups, children with physical and learning disabilities, and children who were in different points of the gender spectrum. However, gender far outweighed the other forms of diversity represented. For example, six of the 12 designs were girls and five were boys. Katie initially described her design as a boy, but later in the essay identified him as non-binary gender queer and changed her gender identifier from “him” to “them.”

Regarding racial identity, one of the child designs was Black, one was multi-racial (Latina and White), and one was an immigrant (born in China), while the rest were White. Not surprisingly, the Black, female child was built by a Black, female preservice teacher, Brianna, and the Chinese child (boy) was built by a Chinese preservice teacher, Yufang. Children designed by Debi and Yufang were bilingual.

Looking at living situations, the cardboard children had very supportive families and communities, with the exception of one child who “came from an abusive family.” All children were identified as living in middle class neighborhoods, while one lived in an upper, middle class town with a low unemployment rate.  Two were in lower, middle class communities with both parents working or a single parent working multiple jobs. Only one preservice teacher, Brianna, mentioned that their cardboard child attended a “diverse school.” Three of the children lived with only one parent along with their siblings and grandparents, and only one preservice teacher mentioned divorce as part of their child’s family situation.

As for physical and mental disabilities, one child was identified as a “struggling student,” “having ADD” and another child had an amputated leg. Maddie’s child had an illness called “cardboard-itis,” which affected his ability to memorize, and Luna’s child had severe allergies, which prevented him from attending school. One child struggled with social and emotional needs and was labeled as “Gifted.”

We asked students to assume that the 12 children they created were in their classroom and to reflect on how the created classroom demographics looked similar or different from our current class group. Regarding gender identity (9 female, 1 male, and 2 non-binary gender queer in the classroom versus 6 female, 5 male, and 1 non-binary gender queer with the cardboard child creations), the cardboard children leaned more toward a “traditional” elementary science classroom and less resembled the preservice teachers’ class.  However, regarding racial identity (10 White preservice teachers, 1 Black preservice teacher, and 1 Chinese preservice teacher versus 9 White cardboard children, 1 Black cardboard child, 1 Chinese cardboard child, and 1 multiracial cardboard child), the resemblance was almost identical and is also reflective of the teacher population in the United States currently with 80% White teachers.

Blindness to Identity

Classroom conversations revealed that preservice teachers’ awareness of forms of diversity did not mean that they had an informed understanding of how to interact with or approach students with these identities. They expressed the desire to learn about the differing needs of students in order to provide appropriate support and opportunities; yet, they stated they would treat all students the same regardless of differing needs and opportunities. Identified by the authors as problematic, the conversations among preservice teachers eluded to how their future students are equal no matter their identity, which led to the naive notion of “colorblindness.”

Specifically, we called out the students’ misconception that it is not appropriate to acknowledge differences, especially regarding race. We shared with them our noticings of how each preservice teacher when sharing their child’s background did not identify the child’s race, with the exception of Brianna, the single Black preservice teacher in the course. It was only when asked specifically what the child’s race was that they addressed it. This viewpoint combined with an attitude of “everyone is equal” is problematic since race provides meaning, context, and history, just to name a few (Sensoy & DiAngelo, 2012).

Stereotypes About Gender and Gender Binary

Interestingly, preservice teachers felt comfortable enough to construct a child representing the opposite sex (e.g., male student built a female child or vice versa) but those who considered themselves straight were not comfortable in building a child who identified on the LGBTQ spectrum. Additionally, regarding gender equity in science education, it was refreshing to witness how evenly distributed the children’s gender was in the science classroom, especially regarding their cardboard children’s attitudes and proclivity toward science. For example, one preservice teacher stated their child wanted to be an astronaut when he grew up (albeit a male child), and another preservice teacher’s female child claimed to be “good at math and science,” while a third, female, cardboard child stated math was her favorite subject.

However, conversations also revealed additional stereotypes about gender roles. For instance, when asked why she built a boy, Kim said her child had short hair and as a result, she imagined the child being a boy. She then turned to Luna who had short hair and identified as gender fluid and apologized. Similarly, the cardboard male students built by Jackie and Kim assumed traditional male roles in their essays. Jackie, stated that her cardboard child was the only boy in the family and he got to be the king while his three older sisters were princesses. Kim stated that her cardboard child had to “step up for his mother and younger sisters after their father walked out on them.”

Discussion

The ultimate goal of this three phase instruction was to push preservice teachers out of their comfort zones by engaging them in critical conversations around issues of social justice. Although the results may not have produced any unordinary instances, we believe that we were able to achieve this goal. Overall, our findings revealed that preservice teachers who state they have the best interests in their future students’ education while appreciating the diversity students bring to their future classrooms have biases about students who have identities that differ from their own. Furthermore, considering societal norms and expectations as “normal” (e.g., heterosexuality), some expressed feeling uncomfortable to openly talk about their students’ gender and racial identity when the students do not exhibit the identities that are “normal.”

Science methods courses provide the necessary context and the opportunity to address preservice teachers’ implicit biases about their students and the communities these students belong to. Science teacher educators must explicitly address that teachers’ values and beliefs influence the way they teach content and curriculum and how they interact with their students. Content mastery cannot be ensured without “seeing” and “understanding” the whole child, which is more than knowing his or her favorite color, game, or animal. It is, in fact, part of their “job” to understand how to effectively teach the content by making it culturally relevant to their students.

To start, science teachers can examine their curriculum through a critical literacy lens, noting whose voices are marginalized and left out of the science conversation. This includes providing a variety of role models in science who represent diversity in all its senses: gender, race, sexuality, ability, age, etc. For example, if examining a unit on inventors and inventions, use Alan Turing’s computer responsible for breaking the Nazi Enigma code during World War II, and provide his background and how he identified as gay. When studying space exploration, mention Sally Ride’s, the first American woman in space, female life partner. Look at how diverse (or nondiverse) the scientists represented in the science textbook or supplementary texts are and provide numerous non-White, examples. For example, show clips of the Oscar-winning movie Hidden Figures (2017), to showcase the life work of four, Black, female pioneer NASA scientists. Promote Indigenous science role models by reading The Girl Who Could Rock the Moon (Cointreau, 2019), an inspirational story of the first Native American female scientist, Mary Golda Ross. Talk about the possible barriers and tensions these scientists overcame in order to open the doors for conversations surrounding social justice in science.

Our first implementation of this activity was toward the end of the semester.  These conversations were extended into their final project, titled Community Asset Map for Science Teaching and Learning. Preservice teachers were encouraged to consider ideas generated from these conversations as they developed the asset maps for the partner schools where they completed their clinical experiences. However, Nazan has now altered the course curriculum to include this activity at the beginning of the semester so continued conversations can unpack preservice teachers’ implicit biases surrounding their created children as well as use this experience as an “A-ha!” moment for students to return to throughout the semester, connecting it to future readings and discussions. We have also thought about pairing this activity with students taking an implicit association test (IAT) (see Greenwald, McGhee, & Schwartz, 1998) to acknowledge various biases, such as gender and race. We could then have students match their implicit bias test results to their created-child’s story, thus, making a deeper connection.

Most importantly, we believe our future teachers need to have continued support throughout the rest of their program and into their beginning years of teaching in order to make culturally relevant teaching a realization in their future science classrooms. We need to ask repeatedly, “What does culturally relevant teaching look like and feel like in the science classroom?”

Conclusion

Our research revealed that more needs to be done regarding preparing future science teachers to be culturally relevant practitioners. Science education must address social justice, which means, science teachers must learn how to disrupt the current curriculum, create nurturing and supportive learning environments that are conducive to all children, and how to engage in critical conversations. This effort starts with the future of education: Preservice teachers. Teacher educators must teach them to question and examine their preconceived notions of gender, race, sexuality, able-ism, etc. Moreover, there is a need for more research to examine power relations and how culturally relevant practices are enacted in the classroom, especially science classrooms.

Overall, children need to see themselves in the curriculum, and when practicing teachers as well as future teachers are given the opportunity to examine curriculum in this manner, more voices can be included. Modeling culturally relevant science teaching approaches for future teachers as well as engaging them in “difficult” conversations about race, ethnicity, sexuality, and gender in the context of science teaching are first steps toward proper preparation of teachers for the increasingly diverse classrooms.

Notes

[1] Makedo Tools are child-friendly (3 years and up) tools specifically designed so as to not cut or punch skin (as described at https://www.make.do/).

Supplemental Files

APPENDIX-A.docx

References

Batchelor, K.E., DeWater, K., & Thompson, K. (2019). Pre-service teachers’ implicit bias: Impacts of confrontation, reflection, and discussion. Journal of Educational Research and Innovation, 7(1), 1-18.

Batchelor, K.E. (2019). Using linked text sets to promote advocacy and agency through a critical lens. Journal of Adolescent and Adult Literacy, 62, 379-386.

Bautista, N.U., Misco, T., & Quaye, S. (2017). Early childhood open-mindedness: An investigation into preservice teachers’ capacity to address controversial issues. Journal of Teacher Education, 1-15.

Ball, D. L., & McDiarmid, G. W. (1990). The subject-matter preparation of teachers. In W. R. Houston & M. H. J. Sikula (Eds.), Handbook of research on teacher education (pp. 437-449). New York: Macmillan.

Behrman, E. H. (2006). Teaching about language, power, and text: A review of classroom practices that support critical literacy. Journal of Adolescent & Adult Literacy, 49, 490-498.

Bromley, K. D. (1998). Language art: Exploring connections. Needham Heights, MA: Allyn & Bacon.

Brown, S. (2019, March 15). NJ middle school teacher calls students ‘N word.’ The Charleston Chronicle. Retrieved from https://www.charlestonchronicle.net/2019/03/15/nj-middle-school-teacher-calls-students-n-word/

DeBoer, G. E. (2005). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. In J. K. Gilbert (Ed.), Science education: Major themes in education, (pp. 220-245). New York: Routledge.

Feiman-Nemser, S. (2012). Teachers as learners. Cambridge, MA: Harvard Education Press.

Gay, G. (2010). Acting on beliefs in teacher education for cultural diversity. Journal of Teacher Education, 61(1), 143-152.

Genishi, C., & Dyson, A. H. (2009). Children, language, and literacy: Diverse learners in diverse times. New York, NY: Teachers College Press.

Green, E. (2016, November 17). Baltimore teacher caught on video using ‘N’ word as she berates black students. The Baltimore Sun. Retrieved from https://www.baltimoresun.com/education/bs-md-ci-teacher-video-20161117-story.html

Greenwald, A. G., McGhee, D. E., & Schwartz, J. L. K. (1998). Measuring individual differences in implicit cognition: The implicit association test. Journal of Personality and Social Psychology, 74, 1464–1480.

Hutcherson, K. (2018, December 10). California teacher faces charges after forcibly cutting a student’s hair while singing anthem. Retrieved from https://www.cnn.com/2018/12/08/us/california-haircut-teacher/index.html

Ladson-Billings, G. (2014). Culturally relevant pedagogy 2.0: A.K.A. the remix. Harvard Educational Review, 84(1), 74-84.

Ladson-Billings, G. (1995). But that’s just good teaching! The case for culturally relevant pedagogy. Theory into Practice, 34, 159-165.

Lewison, M., Leland, C., & Harste, J. (2014). Creating critical classrooms: Reading and writing with an edge (2nd ed.). Hoboken, NJ: Taylor & Francis.

Melfi, T., Gigliotti, D., Chernin, P., Topping, J., Williams, P., Schroeder, A., Walker, M., … Twentieth Century Fox Home Entertainment, Inc.,. (2017). Hidden figures.

Moll, L., Amanti, C., Neff, D., & González, N. (1992). Funds of knowledge for teaching: Using a qualitative approach to connect homes and classrooms. Theory into practice, 31, 132-141.

Montgomery, W. (2001).  Creating culturally responsive, inclusive classrooms. Teaching Exceptional Children, 33(4), 4-9.

NGSS Lead States (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.

Nieto, S. (2000). Affirming diversity: The sociopolitical context of multicultural education (3rd ed.). New York: Longman.

Nieto, S. (Ed.) (2005). Why we teach. New York, NY: Teachers College Press.

Sensoy, Ö., & DiAngelo, R. J. (2012). Is everyone really equal?: An introduction to key concepts in social justice education. New York: Teachers College Press.

Silverman, S. K. (2010). What is diversity? An inquiry into preservice teacher beliefs. American Educational Research Journal, 47, 292-329.

Sleeter, C. E. (2005). Un-standardizing curriculum: Multicultural teaching in the standards-based classroom. New York: Teachers College Press.

Stevens, M. (2018, March 7). Florida teacher says her racist podcast was ‘satire.’ The New York Times. retrieved from https://www.nytimes.com/2018/03/07/us/florida-teacher-racism.html

Villegas, A. M., & Lucas, T. (2002). Educating culturally responsive teachers: A coherent approach. Albany: State University of New York Press.

Yosso, T.J. (2005). Whose culture has capital? Race, Ethnicity and Education, 8(1), 69–91.

The Framework for Analyzing Video in Science Teacher Education and Examples of its Broad Applicability

Citation
Print Friendly, PDF & Email

Arias, A., Criswell, B., Ellis, J.A., Escalada, L., Forsythe, M., Johnson, H., Mahar, D., Palmeri, A., Parker, M., & Riccio, J. (2020). The framework for analyzing video in science teacher education and examples of its broad applicability. Innovations in Science Teacher Education, 5(4). Retrieved from https://innovations.theaste.org/the-framework-for-analyzing-video-in-science-teacher-education-and-examples-of-its-broad-applicability/

by Anna Arias, Kennesaw State University; Brett Criswell, West Chester University; Josh A. Ellis, Florida International University; Lawrence Escalada, University of Northern Iowa; Michelle Forsythe, Texas State University; Heather Johnson, Vanderbilt University; Donna Mahar, SUNY Empire State College; Amy Palmeri, Vanderbilt University; Margaret Parker, Illinois State University; & Jessica Riccio, Columbia University

Abstract

There appears to be consensus that the use of video in science teacher education can support the pedagogical development of science teacher candidates. However, in a comprehensive review, Gaudin and Chaliès (2015) identified critical questions about video use that remain unanswered and need to be explored through research in teacher education. A critical question they ask is, “How can teaching teachers to identify and interpret relevant classroom events on video clips improve their capacity to perform the same activities in the classroom?” (p. 57). This paper shares the efforts of a collaborative of science teacher educators from nine teacher preparation programs working to answer this question. In particular, we provide an overview of a theoretically-constructed video analysis framework and demonstrate how that framework has guided the design of pedagogical tools and video-based learning experiences both within and across a variety of contexts. These contexts include both undergraduate and graduate science teacher preparation programs, as well as elementary and secondary science methods and content courses. Readers will be provided a window into the planning and enactment of video analyses in these different contexts, as well as insights from the assessment and research efforts that are exploring the impact of the integration of video analysis in each context.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Abell, S.K. & Cennamo, K.S. (2003). Videocases in elementary science teacher preparation. In J. Brophy (Ed.), Using Video in Teacher Preparation (pp. 103-130). Bingley, UK: Emerald Group Publishing Limited.

Abell, S. K., & Bryan, L. A. (1997). Reconceptualizing the elementary science methods course using a reflection orientation. Journal of Science Teacher Education, 8, 153-166.

Barnhart, T., & van Es, E. (2015). Studying teacher noticing: Examining the relationship among pre-service science teachers’ ability to attend, analyze and respond to student thinking. Teaching and Teacher Education, 45, 83-93.

Barth-Cohen, L. A., Little, A. J., & Abrahamson, D. (2018). Building reflective practices in a pre-service math and science teacher education course that focuses on qualitative video analysis. Journal of Science Teacher Education, 29, 83-101.

Benedict-Chambers, A. (2016). Using tools to promote novice teacher noticing of science teaching practices in post-rehearsal discussions. Teaching and Teacher Education, 59, 28-44.

Bybee, R. W. (2014). The BSCS 5E instructional model: Personal reflections and contemporary implications. Science and Children, 51(8), 10–13.

Calandra, B., Brantley-Dias, L., Lee, J. K., & Fox, D. L. (2009). Using video editing to cultivate novice teachers’ practice. Journal of research on technology in education, 42(1), 73-94.

Chan, P.Y.K. & Harris, R.C. (2005). Video ethnography and teachers’ cognitive activities. In J. Brophy & S. Pinnegar (Eds.), Learning from research on teaching: Perspective, methodology and representation. Advances in research on teaching, volume 11 (pp. 337-375). Amsterdam: Elsevier JA1.

Feiman-Nemser, S. (2001). From preparation to practice: Designing a continuum to strengthen and sustain teaching. Teachers College Record, 103, 1013-1055.

Gaudin, C., & Chaliès, S. (2015). Video viewing in teacher education and professional development: A literature review. Educational Research Review, 16, 41-67.

Gelfuso, A. (2016). A framework for facilitating video-mediated reflection: Supporting preservice teachers as they create ‘warranted assertabilities’ about literacy teaching and learning. Teaching and Teacher Education, 58, 68-79.

Gibson, S. A., & Ross, P. (2016). Teachers’ professional noticing. Theory Into Practice, 55, 180-188.

Hawkins, S., & Park Rogers, M. (2016). Tools for reflection: Video-based reflection within a preservice community of practice. Journal of Science Teacher Education, 27, 415-437.

Hundley, M., Palmeri, A., Hostetler, A., Johnson, H., Dunleavy, T.K., & Self, E.A. (2018). Developmental trajectories, disciplinary practices, and sites of practice in novice teacher learning: A thing to be learned. In D. Polly, M. Putman, T.M. Petty, & A.J. Good (Eds.), Innovative Practices in Teacher Preparation and Graduate-Level Teacher Education Programs. (pp. 153-180). Hershey, PA: IGI Global.

Jacobs, V. R., Lamb, L. L., & Philipp, R. A. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169-202.

Jay, J. K., & Johnson, K. L. (2002). Capturing complexity: A typology of reflective practice for teacher education. Teaching and Teacher Education, 18(1), 73-85.

Kang, H., & van Es, E. A. (2018). Articulating design principles for productive use of video in preservice education. Journal of Teacher Education, 0022487118778549.

Kearney, M., Pressick-Kilborn, K., & Aubusson, P. (2015). Students’ use of digital video in contemporary science teacher education. In G. Hoban, W. Nielson & A. Shephard (Eds.), Student-generated digital media in science education: Learning, explaining and communicating content, (pp. 136-148).

Knight, S.L., Lloyd, G.M., Arbaugh, F., Gamson, D., McDonald, S., Nolan Jr., J., Whitney, A.E. (2015). Reconceptualizing teacher quality to inform preservice and inservice professional development. Journal of Teacher Education, 66, 105-108.

Luft, J. (2007). Minding the gap: Needed research on beginning/newly qualified science teachers. Journal of Research in Science Teaching44, 532-537.

Luft, J.A., Roehrig, G.H., & Patterson, N.C. (2003). Contrasting landscape: A comparison of the impact of different induction programs on beginning secondary science teachers’ practices, beliefs, and experiences. Journal of Research in Science Teaching, 40, 77-97.

Luft, J.A., & Hewson, P.W. (2014). Research on teacher professional development programs in science. In S.K. Abell & N.G. Lederman (Eds.), Handbook of Research on Science Education (pp. 889- 909). Mahwah, NJ: Lawrence Erlbaum Associates.

Martin, S. N., & Siry, C. (2012). Using video in science teacher education: An analysis of the utilization of video-based media by teacher educators and researchers. In B.J. Fraser, K. Tobin, C.J. McRobbie (Eds.), Second international handbook of science education (pp. 417-433). Dordrecht, the Netherlands: Springer.

Stanford Center for Assessment, Learning, and Equity. (2013). edTPA Field Test: Summary Report. Stanford, CA: Stanford University. Retrieved from http://edtpa.aacte.org/news-area/announcements/edtpa-summary-report-is-now-available.html

Tripp, T. R., & Rich, P. J. (2012). The influence of video analysis on the process of teacher change. Teaching and Teacher Education, 28, 728-739.

van Es, E. A., Tunney, J., Goldsmith, L. T., & Seago, N. (2014). A framework for the facilitation of teachers’ analysis of video. Journal of Teacher Education, 65, 340-356.

van Es, E. A., & Sherin, M. G. (2002). Learning to notice: Scaffolding new teachers’ interpretations of classroom interaction. Journal of Technology and Teacher Education10, 571-596.

A 20-year Journey in Elementary and Early Childhood Science and Engineering Education: A Cycle of Reflection, Refinement, and Redesign

Citation
Print Friendly, PDF & Email

Sandifer, C., Lottero-Perdue, P., & Miranda, R.J. (2020). A 20-year journey in elementary and early childhood science and engineering education: A cycle of reflection, refinement, and redesign. Innovations in Science Teacher Education, 5(4). Retrieved from https://innovations.theaste.org/a-20-year-journey-in-elementary-and-early-childhood-science-and-engineering-education-a-cycle-of-reflection-refinement-and-redesign/

by Cody Sandifer, Towson University; Pamela S. Lottero-Perdue, Towson University; & Rommel J. Miranda, Towson University

Abstract

Over the past two decades, science and engineering education faculty at Towson University have implemented a number of course innovations in our elementary and early childhood education content, internship, and methods courses. The purposes of this paper are to: (1) describe these innovations so that faculty looking to make similar changes might discover activities or instructional approaches to adapt for use at their own institutions and (2) provide a comprehensive list of lessons learned so that others can share in our successes and avoid our mistakes. The innovations in our content courses can be categorized as changes to our inquiry approach, the addition of new out-of-class activities and projects, and the introduction of engineering design challenges. The innovations in our internship and methods courses consist of a broad array of improvements, including supporting consistency across course sections, having current interns generate advice documents for future interns, switching focus to the NGSS science and engineering practices (and modifying them, if necessary, for early childhood), and creating new field placement lessons.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Banchi, H., & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26-29.

Center for Educational Research. (1967). Conceptually Oriented Program in Elementary Science.  New York, NY: New York Center for Field Research and School Services, New York University.

Cunningham, C. M., & Kelly, G. J. (2017). Epistemic practices of engineering for education. Science Education, 101(3), 486-505. doi:10.1002/sce.21271

Elementary School Science Project. (1966). Elementary Science Study. Berkeley, CA: University of California, Berkeley.

Engineering is Elementary (EiE). (2011b). A stick in the mud: Evaluating a landscape. Boston, MA: Museum of Science.

Engineering is Elementary (EiE). (2011b). A sticky situation: Designing walls. Boston, MA: Museum of Science.

Engineering is Elementary (EiE). (2011c). The best of bugs: Designing hand pollinators. Boston, MA: Museum of Science.

Engineering is Elementary (EiE). (2011d). Lighten up: Designing lighting systems. Boston, MA: Museum of Science.

Engineering is Elementary (EiE). (2019). The engineering design process: A five-step process Retrieved January 28, 2019 from https://eie.org/overview/engineering-design-process

Goldberg, F., Robinson, S., Price, E., Harlow, D., Andrew, J., & McKean, M. (2018).  Next Generation Physical Science and Everyday Thinking.  Greenwich, CT: Activate Learning

Karplus, R. (1964). Science Curriculum Improvement Study. Journal of Research in Science Teaching, 2(4), 293-303.

Lave, J. & Wegner, E. (1991). Situated learning: Legitimate peripheral practice. New York: Cambridge University Press.

Lottero-Perdue, P.S. (2017a). Engineering design into science classrooms. In Settlage, J., Southerland, S., Smetana, L., & Lottero-Perdue, P.S. Teaching Science to Every Child: Using Culture as a Starting Point. (Third Edition). (pp. 207-266). New York, NY: Routledge.

Lottero-Perdue, P.S. (2017b). Pre-service elementary teachers learning to teach science-integrated engineering design PBL. In Saye, J. & Brush, T. (Eds.), Developing and supporting PBL practice: Research in K-12 and teacher education settings. (pp. 105-131). West Lafayette, IN: Purdue University Press.

Lottero-Perdue, P.S., Bolotin, S., Benyameen, R., Brock, E., and Metzger, E. (September 2015). The EDP-5E: A rethinking of the 5E replaces exploration with engineering design. Science and Children 53(1), 60-66.

Lottero-Perdue, P.S., Bowditch, M. Kagan, M. Robinson-Cheek, L., Webb, T., Meller, M. & Nosek, T. (November, 2016) An engineering design process for early childhood: Trying (again) to engineer an egg package. Science and Children, 54(3), 70-76.

Lottero-Perdue P.S., Haines, S., Baranowski, A. & Kenny, P. (2020). Designing a model shoreline: Creating habitat for terrapins and reducing erosion into the bay. Science and Children, 57 (7), 40-45.

Lottero-Perdue, P.S. & Parry, E. (2019, March). Scaffolding for failure: Upper elementary students navigate engineering design failure. Science and Children, 56(7), 86-89.

Lottero-Perdue, P. & Sandifer, C. (in press). Using engineering to explore the Moon’s height in the sky with future teachers. Science & Children.

Lottero-Perdue, P.S., Sandifer, C. & Grabia, K. (2017, December) “Oh No! Henrietta got out! Kindergarteners investigate forces and use engineering to corral an unpredictable robot.” Science and Children, 55(4), 46-53.

Michaels, S., Shouse, A.W., & Schweingruber, H. A. (2008). Ready, Set, Science. Washington, D.C.: National Academies Press.

National Governors Association Center for Best Practices and Council of Chief State School Officers (NGAC and CCSSO). 2010. Common core state standards. Washington, DC: NGAC and CCSSO.

National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.

National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academy Press.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, D.C.: The National Academies Press.

NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.

Sandifer, C. (2010, January).  Interns helping interns: Advice documents as meaningful authentic assessments. Talk presented at the meeting of the Association for Science Teacher Education, Sacramento, CA.

Sandifer, C. (2018). Activities in physical science. Unpublished course text.

Sandifer, C., Hermann, R. S., Cimino, K., & Selway, J. (2015). Early teaching experiences at Towson University: Challenges, lessons, and innovations. In C. Sandifer & E. Brewe (Eds.), Recruiting and Educating Future Physics Teachers: Case Studies and Effective Practices (pp. 129-145). College Park, MD: American Physical Society.

Sandifer, C., Lising, L., & Renwick, E.  (2007). Towson’s PhysTEC course improvement project, Years 1 and 2: Results and lessons learned. 2007 Conference Proceedings of the Association for Science Teacher Education.

Sandifer, C., Lising, L., & Tirocchi, L.  (2006). Our PhysTEC project:  Collaborating with a classroom teacher to improve an elementary science practicum.  2006 Conference Proceedings of the Association for Science Teacher Education.

Sandifer, C., Lising, L., Tirocchi, L, & Renwick, E.  (2019, February 28). Towson University’s Elementary PhysTEC project: Final report. Retrieved from https://www.phystec.org/institutions/Institution.cfm?ID=1275

Sandifer, C., & Lottero-Perdue, P.  (2014, April). When practice doesn’t make perfect: Common misunderstandings of the NGSS scientific practices. Workshop presented at the meeting of the National Science Teachers Association, Boston, MA.

Sandifer, C., & Lottero-Perdue, P. S.  (2019). Activities in Earth and space science and integrated engineering (2nd ed.). Unpublished course text.

 

 

Student-Generated Photography as a Tool for Teaching Science

Citation
Print Friendly, PDF & Email

Bradbury, L., Goodman, J., & Wilson, R.E. (2020). Student-generated photography as a tool for teaching science. Innovations in Science Teacher Education, 5(4). Retrieved from https://innovations.theaste.org/student-generated-photography-as-a-tool-for-teaching-science/

by Leslie Bradbury, Appalachian State University; Jeff Goodman, Appalachian State University; & Rachel E. Wilson, Appalachian State University

Abstract

This paper describes the experiences of three science educators who used student-generated photographs in their methods classes. The paper explains the impetus for the idea and includes a summary of the literature that supports the use of photographs to teach science. The authors explain the process that they used in their classes and share examples of student-generated photographs. The paper concludes with a summary of the benefits that the authors felt occurred through the use of the photographs including the building of community within the classes and the encouragement of the preservice teachers’ identity as science learners and future science teachers.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Arnheim, R. (1980). A plea for visual thinking. Critical Inquiry, 6, 489-497.

Britsch, S. (2019). Exploring science visually: Science and photography with pre-kindergarten children. Journal of Early Childhood Literacy, 19(1), 55-81.

Byrnes, J., & Wasik, B.A. (2009). Picture this: Using photography as a learning tool in early childhood classrooms. Childhood Education, 85, 243-248.

Cappello, M., & Lafferty, K. E. (2015). The roles of photography for developing literacy across the disciplines. The Reading Teacher, 69, 287-295.

Cook, K., & Quigley, C. (2013) Connecting to our community: Utilizing photovoice as a pedagogical tool to connect college students to science. International Journal of Environmental & Science Education, 8, 339-357.

Eschach, H. (2010). Using photographs to probe students’ understanding of physical concepts: the case of Newton’s 3rd law. Research in Science Education, 40, 589-603.

Good, L. (2005/2006). Snap it up: Using digital photography in early childhood. Childhood Education, 82, 79-85.

Hoisington, C. (2002). Using photographs to support children’s science inquiry. Young Children, 57(5), 26-30, 32.

Jones, A.D. (2010). Science via photography. Science and Children, 47(5), 26-30.

Katz, P. (2011) A case study of the use of internet photobook technology to enhance early childhood “scientist” identity. Journal of  Science Education and Technology, 20, 525-536.

Krauss, D.A., Salame, I.I., & Goodwyn, L.N. (2010). Using photographs as case studies to promote active learning in biology. Journal of College Science Teaching, 40(1), 72-76.

Lee. H., & Feldman, A. (2015). Photographs and classroom response systems in middle school astronomy classes.  Journal of Science Education and Technology, 24, 496-508.

McConnell, H. P. (1952). Photography as a teaching tool and student activity in general science. School Science & Mathematics, 52, 404–407.

Next Generation Science Standards (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.

A District-University Partnership to Support Teacher Development

Citation
Print Friendly, PDF & Email

Wade-Jaimes, K., Counsell, S., Caldwell, L., & Askew, R. (2020). A district-university partnership to support teacher development. Innovations in Science Teacher Education, 5(4). Retrieved from https://innovations.theaste.org/a-district-university-partnership-to-support-teacher-development/

by Katherine Wade-Jaimes, University of Memphis; Shelly Counsell, University of Memphis; Logan Caldwell, University of Memphis; & Rachel Askew, Vanderbilt University

Abstract

With the shifts in science teaching and learning suggested by the Framework for K-12 Science Education, in-service science teachers are being asked to re-envision their classroom practices, often with little support. This paper describes a unique partnership between a school district and a university College of Education, This partnership began as an effort to support in-service science teachers of all levels in the adoption of new science standards and shifts towards 3-dimensional science teaching. Through this partnership, we have implemented regular "Share-A-Thons," or professional development workshops for in-service science teachers. We present here the Share-A-Thons as a model for science teacher professional development as a partnership between schools, teachers, and university faculty. We discuss the logistics of running the Share-A-Thons, including challenges and next steps, provide teacher feedback, and include suggestions for implementation.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Counsell, S. (2011). GRADES K-6-Becoming Science” Experi-mentors”-Tenets of quality professional development and how they can reinvent early science learning experiences. Science and Children49(2), 52.

Ingersoll, R. E. (2004). Who controls teachers’ work? Power and accountability in America’s schools. Cambridge, MA: Harvard University Press.

Kennedy, M. M. (1999). Form and Substance in Mathematics and Science Professional Development. NISE brief3(2), n2.

Luft, J. A., & Hewson, P. W. (2014). Research on teacher professional development programs in science. Handbook of research on science education2, 889-909.

National Research Council (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academy Press.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.

NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

Opfer, V. D., & Pedder, D. (2011). Conceptualizing teacher professional learning. Review of educational research81, 376-407.

Palmer, D. (2004). Situational interest and the attitudes towards science of primary teacher education students. International Journal of Science Education26, 895-908.

Shapiro, B., & Last, S. (2002). Starting points for transformation resources to craft a philosophy to guide professional development in elementary science. Professional development of science teachers: Local insights with lessons for the global community, 1-20.

Supovitz, J. A., & Turner, H. M. (2000). The effects of professional development on science teaching practices and classroom culture. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching37, 963-980.

Tennessee State Board of Education. (n.d.). Science. Retrieved from https://www.tn.gov/sbe/committees-and-initiatives/standards-review/science.html

Wilson, S. M., & Berne, J. (1999). Chapter 6: Teacher Learning and the Acquisition of Professional Knowledge: An Examination of Research on Contemporary Professlonal Development. Review of research in education24(1), 173-209