The Periodic Tile Project: Exploring the Elements With Teacher Candidates Through Science and Art

by Franklin S. Allaire, University of Houston-Downtown
Abstract

Studies have shown that teacher candidates enrolled in teacher preparation programs, particularly those in early childhood and elementary certification tracks, do not feel comfortable with science content or feel confident in their ability to teach science effectively as they enter student teaching. The Periodic Tile Project is an interdisciplinary project and performance assessment that takes an essential component of the chemistry curriculum that is often treated as a static tool to be memorized and brings the dynamic facets of the elements to life through the integration of science and art. Integrating science and art in performance-based assessments has been shown to increase engagement, self-motivation, and sense of ownership and enhance expression and communication skills in K–12 students. It can provide the same benefits to science teacher candidates. This article describes the use of the Periodic Tile Project with teacher candidates to explore the elements in a fun, meaningful, and memorable way.

STEM Teacher Leader Collaborative: A Responsive Professional Learning Network With Radical Hope

by Alison Mercier, University of Wyoming
Abstract

Many elementary teachers in the United States receive little to no STEM-focused professional learning during an average school year. When elementary teachers do participate in professional learning opportunities focused solely on STEM teaching and learning, they are often positioned as novices in need of improvement or instruction rather than colearners and cocontributors to the learning community. In this article, I describe the STEM Teacher Leader Collaborative as one way to address current challenges in STEM-focused professional learning and as an infrastructure for responsive teacher learning. I highlight the STEM Teacher Leader Collaborative as a model of a responsive professional learning network with radical hope, describing its guiding principles and the meanings teachers make of their experience within the network.

A Sociotechnical Approach to Engineering Education: Engineering Social Justice for Elementary Preservice Teachers

by David Kimori, Minnesota State University, Mankato; & Charlene Ellingson, Minnesota State University, Mankato
Abstract

In this article, we describe an assignment that we have developed in our Engineering for Elementary Teachers course. The assignment was designed to address social justice within the engineering design process. In this course, preservice teachers (PSTs) develop an engineering project that integrates six criteria of engineering for social justice into their lesson plan as a way to make the social relevance of engineering more apparent. Beyond having teachers develop an engineering lesson plan, the goal is to increase awareness of the social justice dimension of engineering as a strategy for integrating culturally relevant pedagogies into engineering lessons. In this article, we share several lessons our PSTs have developed as well as insights that they gained about the relationship between engineering and social justice. We also share some of the challenges that the PSTs faced and the insights that we gained about integrating social justice criteria into engineering lessons.

Making It Personal: Focusing on Food and Using Concept Maps to Promote the Development of Environmental Identities Among Elementary Teacher Candidates

by Rachel E. Wilson, Appalachian State University
Abstract

This article explores the use of food as a focal topic in an environmentally focused curriculum course for elementary teacher candidates (ETCs) to help them personally connect to the content. Environmental topics are interdisciplinary; therefore, as we prepare ETCs to teach them, consideration of the social dimensions of science is imperative. This article discusses how the design and implementation of a unit on food allowed for exploration of elementary science and social studies environmental content with the goal of developing ETCs’ environmental identities. A focus unit on food as a daily practice that connects ETCs to the environment is described to highlight the personal salience of environmental issues and how ETCs impact and are dependent on the environment. Concept maps of daily activities that connect them to the environment were used as initial and final assessments for the course, along with an oral reflection with the instructor on their final maps. Examples of initial maps, final maps, and comments from students’ oral reflections show that ETCs deepened their understanding of how salient environmental issues were to their daily life activities, such as eating. Implications of the implementation on how to increase ETCs’ explicit connections with their identity positions relative to their experiences of and responses to environmental issues and proposed solutions are discussed.

NGSS Scientific Practices in an Elementary Science Methods Course: Preservice Teachers Doing Science

by Judith Morrison, Washington State University Tri-Cities
Abstract

To engage elementary preservice teachers enrolled in a science methods course in authentically doing science, I developed an assignment focused on the NGSS scientific practices. Unless preservice teachers engage in some type of authentic science, they will never understand the scientific practices and will be ill-equipped to communicate these practices to their future students or engage future students in authentic science. The two main objectives for this assignment were for the PSTs to gain a more realistic understanding of how science is done and gain confidence in conducting investigations incorporating the scientific practices to implement in their future classrooms. To obtain evidence about how these objectives were met, I posed the following questions: What do PSTs learn about using the practices of science from this experience, and what do they predict they will implement in their future teaching relevant to authentic investigations using the scientific practices? Quotes from preservice teachers demonstrating their (a) learning relevant to doing science, (b) their struggles doing this type of investigation, and (c) predictions of how they might incorporate the scientific practices in their future teaching are included. The assignment and the challenges encountered implementing this assignment in a science methods course are also described.

Experiential Learning in an Online Science Methods Course

by Danielle E. Dani, Ohio University; & Dave Donnelly, Ohio University
Abstract

Although demand for online courses and degree programs is high, trends in online instruction point to lecture- and discussion-heavy courses as well as a general wariness towards online science education. This article outlines the challenges of online teaching and describes a pedagogical model for e-learning that leverages multimedia to support experiential learning in science teacher education. End-of-course evaluations are used as data sources to inform reflections and conclusions about the affordances of the model. Examples of how the model is being used in an online science methods course are provided.

Eliciting and Refining Conceptions of STEM Education: A Series of Activities for Professional Development

by Emily A. Dare, Florida International University; & Elizabeth A. Ring-Whalen, St. Catherine University
Abstract

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education. These activities not only engage teachers in conversations with peers and colleagues in a professional development setting but also enable teachers to reflect on their learning related to STEM education in the context of creating lesson plans and considering future teaching. In addition to describing these activities, we share suggestions related to how these activities may be used in venues outside of professional development.

Reflection in Action: Environmental Education Professional Development with Two Cohorts

by Lauren Madden, The College of New Jersey; Louise Ammentorp, The College of New Jersey; Eileen Heddy, The College of New Jersey; Nicole Stanton, The College of New Jersey; & Suzanne McCotter, The College of New Jersey
Abstract

This article shares lessons learned from a 2-year environmental education professional development initiative with two cohorts. Each cohort consisted of school-based teams of elementary teachers. The professional development included a series of five workshops aimed at integrating environmental education across the curriculum, and each teacher team developed and implemented a school-based project to put these ideas into practice. The project team modified their approach between Cohorts 1 and 2 based on strengths and shortcomings of the first experience. Key takeaways to inform future professional development efforts include ensuring the timeframe of the project allows teachers to build momentum in their work, recruiting teams of teachers with diverse classroom experiences, and including presenters who can offer tangible and actionable ideas to use in the classroom.

Preservice Elementary Teachers Using Graphing as a Tool for Learning, Teaching, and Assessing Science

by Deena L. Gould, University of New Mexico; Rolando Robles, Arizona State University; & Peter Rillero, Arizona State University
Abstract

Graphing is an important tool for seeing patterns, analyzing data, and building models of scientific phenomena. Teachers of elementary school children use graphs to display data but rarely as tools for analyzing or making sense of data (Coleman, McTigue, & Smolkin, 2011). We provide a set of lessons that guide preservice elementary school teachers to analyze their conceptions about graphing and use graphing to (a) see patterns in data, (b) discuss and analyze data, (c) model scientific phenomena, and (d) teach and assess inquiry-based science. Examples are adduced for how we guided and supported preservice elementary teachers in their conceptual understanding and deeper use of graphing.

Supporting Schoolyard Pedagogy in Elementary Methods Courses

by Kelly Feille, University of Oklahoma; & Stephanie Hathcock, Oklahoma State University
Abstract

Schoolyard pedagogy illustrates the theories, methods, and practices of teaching that extend beyond the four walls of a classroom and capitalize on the teaching tools available in the surrounding schoolyard. In this article, we describe the schoolyard pedagogy framework, which includes intense pedagogical experiences, opportunities and frequent access, and continuous support. We then provide an overview of how we are intentionally working toward developing schoolyard pedagogy in elementary preservice teachers at two universities. This includes providing collaborative experiences in the university schoolyard and nearby schools, individual experiences in nature, opportunities to see the possibilities in local schoolyards, and lesson planning that utilizes the schoolyard. We also discuss potential barriers and catalysts for schoolyard pedagogy during the induction years, future needs, and potential for continuous support.