Theory to Process to Practice: A Collaborative, Reflective, Practical Strategy Supporting Inservice Teacher Growth

Introduction

Science and engineering influence and are, in turn, influenced by much of modern life, and as such, it is important that students possess sufficient knowledge in these fields to be successful in their daily lives and in the workforce. Yet, many people lack basic knowledge in these fields upon graduating from K-12 schools (NRC, 2012). The National Research Council (NRC) and the National Academies Press (NAP) each developed documents to improve K-12 science education, A Framework for K-12 Science Education (NRC, 2012) and the Next Generation Science Standards (NGSS Lead States, 2013), respectively. The vision set forth by the Framework is “to help realize a vision for education in the sciences and engineering in which students, over multiple years of school, actively engage in scientific and engineering practices and apply crosscutting concepts to deepen their understanding of the core ideas in these fields” (NRC, 2012, p.10). This vision “takes into account two major goals for K-12 science education: (1) educating all students in science and engineering and (2) providing the foundational knowledge for those who will become the scientists, engineers, technologists, and technicians of the future.” (NRC, 2012, p.10).

The Next Generation Science Standards (NGSS) are based on this vision, representing the most recent effort to improve science education and a “significant departure from past approaches to science education” (Bybee, 2014, p. 213). The NGSS necessitate that teachers integrate a three-dimensional approach to learning, such that students use science and engineering practices to gain a deeper understanding of core science ideas as they apply overarching big ideas to and between content.

Some instructional implications of this shift can be found in the first two columns of Table 1 (NRC, 2015), which juxtaposes current classroom practices with the shifts needed to support the standards. As indicated, content knowledge acquisition should involve less direct transfer of information from teachers to students. Rather, this learning should involve more connected and contextualized experiences facilitated by teachers. These changes will require many in-service teachers to modify how they teach science (refer to column three in Table 1) and challenge some of the ways in which students have come to learn. Teachers will need to shift their instruction from “front-loading” disciplinary vocabulary and explaining concepts to providing information and experiences that students can use to make sense of natural phenomena and solve problems of human importance. The role of the teacher within the classroom becomes one that focuses more on asking questions and prompting students to make evidence-supported claims than for the teachers to do the heavy lifting for students by explaining the connections to them. For some, this will require a dramatic shift in their overall approach to teaching (National Academies of Science, Engineering, and Medicine (NASEM), 2015). Although making such a shift will be a challenge, it is also an opportunity for the nation to address gaps in scientific and engineering literacy and change the direction of teaching and learning in science.

Table 1 (Click on image to enlarge)
Implications of the Vision of the Framework and the NGSS

Success in meeting this challenge, and opportunity, is largely dependent upon teachers, since they are the most direct link between students and their exposure to the standards (Borko, 2004; Fullan, Hill, & Crevola, 2006; NASEM, 2015). Despite what is known about effective professional learning (PL), a multi-year research initiative examining the state of PL in the United States found that by 2008, teachers had fewer opportunities to participate in sustained, collegial workshops (those that lasted longer than eight hours). In addition, the U.S. invested more funds for teacher learning that focused increasingly on short-term workshops — the least effective models of professional learning (Wei, Darling-Hammond, Adamson, 2010). Additionally, few teachers received more than 35 hours of PL over a three-year period (Banilower, et al., 2013). Moreover, collaborative planning among teachers was found to be limited (about 2.7 hours per week) and ineffective at creating a cooperative school climate for instructional growth and increased student achievement (Wei et al., 2010).  As such, it is imperative that the format of continuing professional learning for in-service teachers be re-thought if they are to adopt practices that support integration of the NGSS, or any other K-12 reform effort.

In addition to a shift toward less effective teacher learning experience formats, Schools and Staffing Survey (SASS) data from 2008 reveal that secondary and rural teachers specifically, receive inequitable access to PL opportunities, as compared to their elementary and urban or suburban school counterparts. In contrast, Banilower et al. (2013) found that elementary, rather than secondary teachers, were less likely to have participated in recent professional learning opportunities and far less likely to have received feedback on their instruction. Thus, it appears there is a need for expanding professional learning for all of these educators and identifying what methods are effective in these settings and for these populations. This article presents an alternative and seeks to address the following question: What support is effective in helping improve teacher instruction for all teachers, but especially for those who receive inequitable access (i.e., secondary, rural teachers)?

Contextualizing the Strategy

The NGSS outline what students should know and be able to do in science after having completed their K-12 education. They formulate science as three dimensional, delineating the (a) practices, (science and engineering practices), (b) core content (disciplinary core ideas), and (c) big ideas (crosscutting concepts) and thus, imply that science should be taught in this manner. In past decades, the main emphasis in K-12 science education has focused on only one of these dimensions – the disciplinary core ideas – while the science and engineering practices and crosscutting concepts have been absent from, decontextualized, or isolated in many classrooms.  As such, classroom strategies designed for targeting these other two dimensions of science may be new for many current in-service teachers. Additionally, making these connections explicit is important for increasing efficacy of teacher instruction.

With a need to incorporate all three dimensions into the classroom, which is referred to in the literature as three-dimensional science learning or 3D learning (e.g. Krajcik, 2015), teachers will need to gain new knowledge of science practices and ideas, a better understanding of instructional strategies consistent with NGSS, and the skills to implement these strategies (NASEM, 2015). It is also important to consider that, according to Guskey (2002), the biggest struggle for integrating an innovation is not in understanding but in implementing it. Thus, supports are needed not only to help teachers understand NGSS and appropriate instructional strategies, but also to become comfortable with strategies that will promote 3D learning.

While recognizing that teachers will need support to understand and implement the NGSS vision, there are a variety of ways in which this support may be provided. Science Teacher’s Learning: Enhancing Opportunities, Creating Supportive Contexts (NASEM, 2015) indicates the importance of building collective capacity within schools and districts for science teaching and providing opportunities that support cumulative learning over time and target teachers’ specific needs. Despite their potential benefits, these types of PL have received little attention (NASEM, 2015). Therefore, this article provides one professional learning strategy for supporting teachers in changing instructional practices to support the NGSS that involved developing collective capacity while attending to teachers’ specific needs over time.

The PL strategy (Pick-Do-Share-Repeat) comes from a multi-year, district-wide professional development grant conducted with 7-12th grade science teachers from a small, rural district in the intermountain West. The state in which the district resides was in the process of adopting standards based on and closely aligned with the NGSS. Specifically, this strategy was employed with its secondary teachers in earth science, biology, chemistry, and physics who voluntarily elected to participate in the grant. Approximately 15 of the secondary teachers in the district (grades 7-12), ranging in experience from a second-year teacher to veteran teachers with decades of experience, met for a full day every six weeks during the academic year to gain a deeper understanding of the NGSS and its implications for classroom instruction. A goal of the grant, set forth by the district, was for teachers to identify ways in which students’ thinking could be made visible. In an attempt to align our PL with the district-wide initiative, we connected the notion of making student thinking visible to strategies that were consistent with the NGSS vision.

Given the complexity of these standards, we recognized the importance of supporting teachers through structured workshops with clear goals and opportunities for both understanding the standards as well as identifying ways to integrate them. Thus, the workshops followed a basic format of building understanding, exploring examples, selecting a new strategy to implement, giving teacher time to implementing it, and debriefing the experience in a subsequent workshop. Throughout the planning process, we referenced the effective PL characteristics listed above in order to ensure the workshops aligned.

What is “Effective” Professional Learning?

A growing body of research has identified characteristics that lead to high-quality, effective professional learning for K-12 science educators. In 2007, Cormas and Barufaldi (2011) conducted a comparative analysis of over 20 works published between 1995 and 2006, in which they identified 16 effective research-based characteristics of PL (refer to Table 2). Additionally, more recent studies have found importance in teacher collaboration, the presentation of material via active learning and modeling of content/strategies/activities, and integrated or interdisciplinary approaches to teaching (Beaudoin et al., 2013; Hestness et al., 2014; Houseal, A. K., Abd El Khalick, F., & Destefano, L., 2014; Miller et al., 2014; Nagle, 2013; NASEM, 2015; Reiser, 2013).

In a secondary level (7-12) professional learning program supported by a district-wide grant, the authors as facilitators, used a video analysis strategy that incorporates the characteristics identified by Cormas and Barufaldi (2011) and more recent studies mentioned above. Table 2 provides descriptions of how the video analysis strategy we employed aligns with Cormas and Barufaldi’s (2011) characteristics. Our strategy involved teachers iteratively exploring instructional strategies through vignettes, case studies, or other examples in the context of their classrooms and reflecting upon attempts to implement a strategy. Additionally, we incorporated into our PL, through modeling, the three identified effective characteristics described in more recent studies by bringing teachers together to collaboratively explore new strategies, learn actively, and debrief the experience through video analysis with colleagues. This PL strategy has been coined Pick-Do-Share-Repeat and was used by rural, secondary, in-service teachers as they worked toward full implementation of the NGSS.

Table 2 (Click on image to enlarge)
Alignment of Effective PD Characteristics with Video Analysis Strategy

Pick–Do–Share–Repeat: Changing Practice while Making Student Thinking Visible

The implementation struggle that Guskey (2002) noted has an effect on the number of teachers who actually implement a new strategies after they learn it. This is further complicated by evidence that teachers only change their beliefs after seeing success with students and that they tend to abandon the practice of a new skill if they do not see immediate success (e.g., Guskey, 1984). Thus, a pivotal component of our in-service teacher professional learning was to have teachers incorporate the use of a new strategy into classroom instruction iteratively throughout the year with the added accountability to share their implementation with others via a video at a subsequent workshop.

Even with structural supports, the decision to redefine one’s pedagogical role in the classroom can be a daunting task; it often requires changes in beliefs and current practice. Thus, without space for posing questions and resolving dissonance, teachers are unlikely to abandon current teaching practices for new strategies that often appear uncomfortable or at odds with their beliefs (Guskey, 2002). Critical reflection can assist in this redefinition (Mezirow, 1990). In this PL, we sought to help teachers incorporate classroom strategies that support the NGSS by giving them time to read about, discuss, and participate in model examples of new teaching strategies before they attempted their own implementation, and to further reflect upon their experience after they tried it.

The specific format of Pick-Do-Share-Repeat was facilitated as follows:

  • Teachers were exposed to a number of teaching strategies
  • They selected one strategy to incorporate into their instruction
  • Teachers video-recorded their attempt, and then
  • They reflected upon that attempt both independently and collaboratively.

Teachers had been exposed to many of the strategies through modeling. For example, facilitators elicited prior knowledge and strategies already used by these teachers in their classrooms. We approach PL with the stance that teachers are professionals in their fields and bring expertise to the table; therefore, it is important to value their ideas and successes. Here, we present one possible format for introducing strategies for the purposes of video analysis. After identifying the strategies, teachers might be given time to explore several resources and note which strategies they thought would align with their classroom setting or target various dimensions of the NGSS. A silent conversation on butcher paper followed by a group discussion might be used to share their findings and discuss the effectiveness of each strategy. A session might end with teachers considering their current classes, identifying a strategy, and planning out how to implement that strategy.

As stated earlier, the shifts required of teachers to successfully implement NGSS are large (Bybee, 2014) and include content knowledge, instructional strategies, and the skills to implement those strategies (NASEM, 2015). Further, these are often new ideas for early career teachers who may have limited exposure as a student or a teacher (Inouye & Houseal, 2018). Thus, PL opportunities should attempt to support teachers on all fronts through the use of modeling good science teaching while helping them to understanding what is good science teaching. Other formats besides that listed above could be used, as long as they were supportive of the NGSS and helped to model the strategies with which we hope to instill in teachers’ repertoire of instruction.

Since the video analysis protocol and the NGSS were new for the teachers, we decided to focus primarily on the science and engineering practice of engaging in argumentation with evidence-based claims, as it tied to the district initiative of making thinking visible. In addition, other formative assessment strategies (e.g., Harvard’s Project Zero’s (2016) thinking routines, Formative Assessment Classroom Techniques (Keeley, 2008) such as, “I used to think…, but now I know…” with an added explanation of “because”) and more traditional and well-known instructional strategies including think-pair-share and gallery walks were also used.

Following the introduction of several instructional strategies, teachers were given time to select a strategy and discuss how they would implement it (Pick-). After the workshop, they returned to their classrooms and video-recorded the strategy before the next workshop (-Do-). We left the selection of the clip to the discretion of the teachers and what they thought most adequately demonstrated their implementation attempt. During each subsequent workshop, all teachers showed a 5-minute segment of their instruction, reflected upon their experience, and received feedback from their peers on the effectiveness of their chosen strategy (-Share-) before repeating the process (-Repeat).

The frequent meetings allowed teachers to cyclically identify new needs and repeat the process multiple times. The use of video analysis was especially important during reflection and teacher discourse because it provided a common reference point (Ball & Cohen, 1999) and challenged teachers to use evidence from the videos to support their claims (Roth, Garnier, Chen, Lemmens, Schwille, & Wickler, 2011). Thus, it served a dual purpose by encouraging teachers to use some of the skills they were asking of their students while building a catalog of common visual examples of each strategy.

Embedded in this particular video analysis debrief was a discussion of how the lesson aligned with three-dimensional learning (described above) and how it elicited student thinking; however, the debrief format can be customized to teacher need, content, and goals. In our case, we chose to provide an opportunity for teachers to (a) reflect on the strategy itself (execution and effectiveness), (b) practice identifying which NGSS dimensions were present, (c) analyze evidence of student learning, (d) receive peer feedback, and (e) ask and respond to questions. Refer to Appendix A for the debrief form that guided the discussions. The format of the debrief followed a structure similar to the critical friends reflection protocol (refer to Table 3), which was first developed by the Annenberg Institute for School Reform (Appleby, 1998). During the presentation, one teacher would frame his/her video clip by describing the lesson, its goals, and why he/she chose the strategy. Colleagues were provided an opportunity to ask any clarifying questions before the video was played. The quiet response occurred as colleagues watched the video and wrote down notes on the debrief form (refer to Appendix A). After watching the video, colleagues would provide suggestions after sharing what they noticed and liked about the teacher’s facilitation of their chosen instructional strategy. Questions on the second side of the debrief form guided this section of the protocol. PL facilitators ensured that colleagues used evidence from the clip to provide feedback based on each section of the debrief form. The debrief ended with the presenter (and colleagues) concluding what was useful and what he/she would take away from the experience.

Table 3 (Click on image to enlarge)
Critical Friends Protocol

Case study of Brent A

As an example, we will look at a second-year middle school teacher whose instructional practice changed during his participation in the program. In October of 2017, during the second workshop session of the year, Brent showed his peers a video in which his students were to brainstorm scientific questions related to a video on water quality. He stated that he was attempting to have students make their thinking visible and build critical thinking skills. The classroom was arranged as single tables, facing forward with one or two students at each table.

TEACHER: “What I want you to do is pay attention to the video that you’re about to see. These are the creatures inside pond water.”

[Class watches video.]

TEACHER: “…Based on what you have seen, what kinds of questions do you think scientists would have that they could test?”

STUDENTS: [Quietly writing. No discussion. One student raises hand, and teacher responds by saying “Answer on a piece of paper.”]

TEACHER: “Everyone needs to have at least two answers on their paper.”

STUDENTS: [Silent. Some writing on papers.]

TEACHER: “Now that you have something written down, I want you to brainstorm at least one more with your partner.”

STUDENTS: [Students quietly talk in pairs. Conversations are short.]

[The lesson proceeds with the teacher asking each group to share a question with the entire class, which he writes on the board. Teacher writes all questions on board; does not ask why they would want to know the answer or how an answer to a question might help scientists.]

TEACHER: “Now, let’s look to see if they are testable questions. (Reads the first). Can we determine this today?”

STUDENTS B&C: “No”

TEACHER: “Why?”

STUDENTS B&C: [Respond; teacher evaluates their response.]

In Brent’s first engagement with video analysis, he tried to use a think-pair-share strategy to help students critically think about feasible scientific questions. However, students did not respond to or critique each other’s ideas, nor did he, their questions. There was no discussion or building on one another’s ideas during the share portion of the strategy. Another strategy used by Brent was first identified by Meham (1979) and termed Initiate-Respond-Evaluate (I-R-E) and was very teacher-centered. Brent had students come up with their own questions, but rarely pushed them to think about why they want to know the answer to their questions or what observation resulted in that question. In the debrief, Brent was able to articulate to an audience of peers how he had tried to make student thinking visible. He also received feedback from his colleagues about successful intentions (e.g., getting students to ask questions) and suggestions for improvement (e.g., asking students why they want to know that question or how that would help the scientific enterprise). During this discussion, another colleague also shared a video in which students were developing questions for further study based on a reading. Here, she invited students to engage in discussion about the students’ thinking that led them to their questions, which provided an example of how Brent might further refine the think-pair-share strategy.

In February 2018, Brent brought a video in which he tried to capture his most recent attempts to make student thinking visible and build their critical thinking skills. The video showed a classroom with pods of tables with three to five students sitting at each pod. It began with the teacher having students think individually, similar to the first video. From there, the implementation of the strategy diverges significantly.

TEACHER: “You all just finished a writing prompt on: What is the worst natural disaster that there could be? In groups, share your response and decide what is the worst and why.”

[Students sharing ideas – lots of talk among all groups, students are arguing, engaged, smiling; Some students reference statistics; some students only use opinions]

TEACHER: [brings students back together to share their claims]

STUDENTS: [Student groups share their claims and evidence with the entire class.]

TEACHER: “We have two tables that think hurricanes are worst, one tornado, and one earthquake. Discuss why [your claim is better supported].”

[After another round of argumentation in small groups, students share reasoning of “the worst natural disaster” to the entire class. There are several instances in which student groups respond to each other.]

From the set-up of the room to the framing of the lesson and the teacher’s role as a facilitator, it was a different classroom. The pod arrangement of the tables promoted group work and student-to-student interaction. Interactions within the classroom were mostly student-to-student with the teacher occasionally helping to direct rather than engaging in teacher-led I-R-E. The enthusiasm and noise level present during student discussions was also testament to the increase in students sharing their thinking and reasoning with each other compared to quiet classroom in the first video. Lastly, in terms of making student thinking visible, Brent posed a larger question (“Which natural disaster is the worst and why?”) to small groups of students and explicitly reminded (e.g., “Remember to use your resources to support your answer”) and prompted (e.g., “What is your evidence?”) them that they needed empirical evidence to support their claims. After being given time to independently collect their thoughts, these students used their resources to create an evidence-supported claim (e.g., “Earthquakes killed almost 750,000 people between 1994 and 2013, and this was more than all other disasters put together.”; “Droughts are the worst because they were only 5% of the events but hurt more than one billion people. This is like 25% of the total.”). This was very different from his first attempt to get students thinking by independently brainstorming and sharing their questions aloud with little interaction between students, few resources from which to draw, and infrequent opportunities to explain their observations or thoughts. In the second attempt, Brent still used I-R-E, but students shared their claims and evidence and then returned to their groups to discuss their claims in light of the other groups’ claims.

During the debrief, Brent’s colleagues and facilitators were able to direct his attention to how his lesson facilitation allowed for more complex and engaging student discourse that promoted the use of data to support their claims. Using the debrief form mentioned above, colleagues watched Brent’s video through the lens of evidence of 3D learning, his use of his selected strategy, and evidence of student learning. After Brent was given five minutes to describe his planning and how he thought the lesson went, his colleagues gave feedback. To help teachers provide objective and meaningful feedback, facilitators prompted them to support their claims with specific evidence from the video or to ask a question that would provide evidence for their claims.

Through this process, Brent received positive feedback from veteran teachers as they helped to support his growth. One of his colleagues made the connection between his and others’ videos to his own instruction:

The…examples of others’ classes and our discussions make me realize that what we have been learning in [these workshops] is very doable for me and all other science teachers that put in a bit of effort.

Brent selected both of those videos, in an attempt to demonstrate his integration of strategies to elicit student thinking and build critical thinking skills. Initially, he struggled with both the idea of making student thinking visible and the selection of an example from his practice that exemplified the process. Given the difference in his selections between workshop #2 and #4, and the debrief conversations, Brent demonstrated that he had shifted his mindset and practice to some extent. This suggests that there were influential factors during this time that contributed to his change in conception of what it means for (a) students to show their thinking and (b) build critical thinking skills. Although we cannot definitively say that the debrief discussions, viewing of their own and others’ videos, and the workshops themselves resulted in Brent’s shift in instruction, the changes seen through this teacher’s videos occurred during the time frame in which this PL occurred.

Benefits of this PL Strategy

To obtain a measure of efficacy for this PL strategy, teacher participants completed a short questionnaire asking them to rate and comment on their self-perceived concerns, confidence, and commitment to the materials and activities presented. These parameters were measured with a 10-point Likert scale and open-ended responses. Quantitative analysis from the Likert-scale questions (Cronbach’s alpha of 0.74) suggested an increase in confidence and commitment and a decrease in teachers’ levels of concern associated with strategy implementation and change in classroom instruction. Results from teachers’ open-response comments revealed that teachers experienced several key benefits from this collaborative, observational, and reflective strategy. Primarily, the video analysis allowed teachers to identify more successes in their implementation, realize the potential of these changes in practice, and gain the confidence and collective commitment needed to continue such practices. Below are several quotes that exemplify these benefits and are indicative of the group’s sentiments:

  • “Watching the video’s this last session increased my confidence.” – 10th grade teacher
  • “I am not feeling as badly about my teaching after our meeting today. It is so nice to have other teachers’ feedback on my teaching habits and their support.” – 9th grade teacher
  • “I can see a difference in my students’ engagement and overall learning with greater incorporation of the strategies.”  – 9th grade teacher

Through this process, teachers built a learning community with common goals among peers as they met to explore new strategies, returned to the classroom to implement a strategy, and reconvened to share the classroom experience. By watching each other’s videos, teachers were able to provide supportive feedback and identify successes missed by independent reflection but celebrated through collective reflection. Thus, another benefit of collaborative reflection is that questions or actions unnoticed by the instructing teacher may be identified by his/her peers and boost that teacher’s confidence as their effective instruction is recognized.

Additionally, we found that teachers not only reflected on their own practice by analyzing their own videos, but they also reflected on their practice through the analysis of other’s videos. By watching their peers try a new strategy, which resulted in high student engagement or teacher excitement, they could envision that scenario in their own classroom and noted increased desires to try new strategies.

Brent is one example of many that occurred during this time period. We have found that this versatile PL strategy was useful in our context at many levels of educational support and across a wide range of content areas and instructional strategies to help change teacher practice in sustainable ways. Therefore, we suggest that the use of video analysis is helpful in changing teacher practice. We found this to be true in specific areas, such as in Brent’s case and more broadly, in terms of promoting three-dimensional learning within classrooms.

One limitation that emerged throughout the PL series was the extent to which teacher could provide feedback on strategies or content with which they had varying levels of expertise and exposure. To provide meaningful feedback, one must understand that which they are observing. As teachers gained deeper understanding of the NGSS and supportive strategies, their feedback got more targeted. Facilitators assisted with this by modeling feedback, asking clarifying questions, and support teachers personal growth on the standards and the strategies involved in the workshop series.

Given the potential vulnerability that a teacher might feel with colleagues critiquing their teaching, it was important that a strong culture be established with clear expectations around the goals and purpose of the workshop series. Unclear goals and/or a lack of trust could be a limitation of this type of PL, but this particular workshops series did not experience difficulties because of these factors.

Final Thoughts

The journey toward full implementation of the NGSS will take time, support, and continuous reflection. Thus, identifying strategies that move teacher instruction toward this vision are worthwhile. Here, we have identified one PL strategy for supporting best practice in the classroom and shifting teacher instruction to mirror it. The Pick-Do-Share-Repeat video analysis strategy served the dual purpose of having teachers use skills they were promoting among their students (e.g., evidence-based claims, reflection, common experience from which to discuss and draw) while building a catalog of enacted strategy examples (their video library).

This paper is intended to offer guidance for professional learning facilitators and school administrators and we believe that the ideas presented can be incorporated at many levels (PLCs, school initiatives, district-wide professional learning, etc.) in an authentic and instructionally relevant manner. Though the process takes time and iteration, the resulting teacher growth proved meaningful and worth the time investment. One 7thth grade teacher supported this supposition stating that “practice and analysis of effectiveness, followed by more practice and analysis of effectiveness” (in reference to Pick-Do-Share-Repeat) would continue to build his confidence and incorporation of the strategies. Thus, the collaborative, reflective, and skill-based emphasis of this strategy provided benefits for teachers through growth in practice, increased confidence, improved instruction, and a network of peer support. We note that this strategy, like any educational strategy or innovation, will never serve as a panacea. Nevertheless, it can provide teachers with instructional support in some very important ways.

An Integrated Project-Based Methods Course: Access Points and Challenges for Preservice Science and Mathematics Teachers

Introduction

It has long been understood that our abilities to transfer knowledge to new situations depend on the context in which the knowledge was acquired (Barab, 1999; Boaler, 2002b, 2016; Dewey, 1939). As the nature of jobs continue to change, there is a greater recognition that educational systems must also adapt to keep pace with shifting job markets (Markham, Larmer, & Ravitz, 2003; Pink, 2005) and changing understandings of the skills that will be required by the demands of the 21st century (Bell, 2010; Partnership for 21st Century Learning (P21), 2009; Pink, 2005). Recently, reform efforts have responded to this shift by redesigning the school experience around learning contexts that promote 21st century skills (Partnership for 21st Century Learning (P21), 2009). As state and national organizations continue to advocate for instruction that emphasizes conceptual understandings, connections, and problem solving (Berlin & Lee, 2005; National Council of Teachers of Mathematics (NCTM), 2000, 2014; NGSS Lead States, 2013; Virginia Department of Education (VDOE), 2016, 2017)—particularly in mathematics and science—it is becoming even more essential that teacher preparation programs reconsider how they are preparing graduates to teach within this new educational landscape.

Interdisciplinary science and mathematics education may support calls for preparing students for a workforce that demands the application of diverse content and skills to solve challenging problems and design innovations (McDonald & Czerniak, 1994). These transferable connections between disciplines allow for real-world applications and transcend the fragmentation that occurs when subjects are taught in isolation (Hough & St. Clair, 1995; NCTM, 2014). Learning in this manner may simultaneously increase student achievement, autonomy, and motivation—and result in deeper, more connected learning (Barab, 1999; Berlin & White, 1994; Hough & St. Clair, 1995; Huntley, 1998; McGehee, 2001). Researchers have found that interdisciplinary STEM teaching has been shown to positively affect student attitudes and interests in these subjects (Berlin & White, 1994; Yasar, Maliekal, Little, & Veronesi, 2014).

Despite benefits for K-12 students, many teachers experience apprehension when being tasked with connecting mathematics with science in interdisciplinary teaching due to little to no experience with this type of learning (Frykholm & Glasson, 2005). Research suggests that when preservice teachers (PSTs) are prepared within mathematics and science interdisciplinary collegiate teaching methods course(s), they value interdisciplinary teaching and are more likely to emphasize content integration (Frykholm & Glasson, 2005; Koirala & Bowman, 2003). Thoroughly integrating science and mathematics education is challenging (Huntley, 1998), but can be paired with inquiry-based methodologies—such as project-based learning (PBL)—to foster sustained integration.

PBL has been defined in a myriad of ways (e.g., Blumenfeld et al., 1991; Krajcik & Blumenfeld, 2006; Markham, Larmer, & Ravitz, 2003; Moursund, 1999; Thomas, 2000). For the purpose of this article, PBL will be defined as “a teaching method in which students gain knowledge and skills by working for an extended period of time to investigate and respond to an authentic, engaging and complex question, problem, or challenge” (Buck Institute for Education (BIE), 2018d, para. 1). Utilizing PBL as an instructional framework may reinforce content integration as it highlights the partnership between knowledge and its application (Markham, Larmer, & Ravitz, 2003). Students who learn through PBL approaches are found to efficiently construct and connect knowledge concepts (Blumenfeld et al., 1991; Boaler, 2001; Braden, 2002; Larmer, Mergendoller, & Boss, 2015) which can then be transferred outside of the classroom (Boaler, 2002b; Krajcik & Blumenfeld, 2006).

Moreover, PBL has been shown to provide more equitable instruction to students across socio-economic classes (Boaler, 2002a), and to lower-achieving students (Han, Capraro, & Capraro, 2014). Secondary students who learned through project-based methodologies demonstrated increased engagement (Braden, 2002; Merlo, 2011), motivation (Bell, 2010; Boaler, 2002b; Krajcik & Blumenfeld, 2006), independence (Yancy, 2012), and an awareness of educational purpose (Larmer et al., 2015) compared to those who learn subjects independently. For example, longitudinal comparative studies find that high school students who learned through PBL had higher mathematics and science gain scores, increased problem solving abilities, had higher levels of enjoyment of mathematics, and completed more advanced mathematics courses than students learning through non-PBL approaches (Baran & Maskan, 2010; Boaler, 2002b; Boaler & Staples, 2008).

Although PBL does not require the use of interdisciplinary partnerships, researchers find that mathematics and science PSTs who are trained to teach through interdisciplinary PBL approaches are able to communicate real-life applications to students (see Wilhem, Sherrod, & Walters, 2008). Further, interdisciplinary PBL training of PSTs increase efficacy in content and pedagogy (Frank & Barzilai, 2004). While more research is needed on the effect size of PBL as an instructional approach, Hattie, Fisher, and Frey (2017) found that numerous components of interdisciplinary PBL instruction (e.g., formative evaluation, feedback, goals, concentration, persistence, engagement, second/third chance programs, cooperative learning, integrated curricula programs, inquiry-based teaching) have positive effect sizes in relation to their impact on student achievement. Given the research-based support and positive outcomes of both interdisciplinary STEM teaching and PBL, we merged these two approaches to implement an interdisciplinary mathematics and science methods course for secondary PSTs that utilized the PBL framework described above. This work describes the outcomes of its pilot implementation.

Context

This instructional methods course was part of a one-year teacher preparation program at a liberal arts university in the mid-Atlantic region. Prior to this pilot study, there were two sections for secondary mathematics and science PSTs, respectively, in which PSTs engaged in aligning national and state standards with instructional strategies and appropriate assessments. In the mathematics course, PSTs planned and implemented lessons aligned to state standards as well as those put forth by the National Council of Teachers of Mathematics (NCTM, 2000) while learning about various instructional theories, manipulatives, and instructional models. Similarly, the science planning course required science PSTs to develop 3-dimensional (NGSS, 2013), 5-E lessons (Bybee, 2009) that utilized the NGSS science and engineering practices in relation to disciplinary core ideas and performance expectations. The respective courses were required for science and mathematics majors who were pursuing licensure in secondary science or mathematics teaching and occurred before a 10-week, full-time clinical field experience (e.g., student teaching). This study describes how an interdisciplinary planning course was designed, the initial implementation of this course, and how PSTs utilized and perceived this experience. Prior to this experience, the mathematics and science PSTs had few opportunities to plan and teach together.

The interdisciplinary course was developed as part of a university teaching fellowship that the science educator participated in to diversify innovative experiences and non-traditional teaching approaches for university students. The science educator collaborated with the math educator to co-construct an opportunity for preservice math and science teachers to reflectively apply their skills and knowledge about co-teaching science and math in a PBL course. The instructors designed the course to build on the aforementioned students’ knowledge and experiences in their disciplinary-specific methods course that they had completed the previous semester.

The interdisciplinary course was designed to build on these understandings and refine PSTs’ ideas about teaching, co-designing math and science curriculum using technology and engineering design for students to investigate science and math problems, adapting instruction for the diverse needs of learners, developing inquiry-based lesson plans, working collaboratively, and engaging in sustained reflection throughout the course. Further, the instructors aimed to facilitate horizontal alignment and instructional collaboration between future teachers in science and mathematics. This goal is in accordance with the Virginia Mathematics Standards of Learning Framework (2009) which states that “science and mathematics teachers and curriculum writers are encouraged to develop mathematics and science curricula that reinforce each other” (p. v). Related to these goals, the instructors required preservice teachers to co-design an integrated science and mathematics unit that incorporated technology and adaptations for diverse learners.

Participants

A total of nine secondary PSTs participated in the interdisciplinary mathematics and science planning course, seven of whom would receive a license in a science teaching discipline, one who would receive a mathematics teaching license, and one who intended to be certified in both disciplines. Seven of the PSTs were pursuing their master’s degree in secondary education, and two undergraduates were working towards their secondary teaching license. The instructors of the course were the co-authors, one a math specialist and a Ph.D. student in Educational Policy, Planning, and Leadership, with vast experiences in project-based and inquiry-based curriculum design and implementation, and the other a professor of science education within the university with over a decade of experience supporting inservice STEM teachers and working on interdisciplinary and culturally responsive engineering designs that are used to inform teacher practice.

Description of Participant Experiences

In an effort to introduce the students to PBL and provide them with a foundational understanding of how PBL can be integrated into classrooms, PSTs observed PBL in action during their discipline-specific methods course the previous semester. These observations took place in a local high school that has partnered with the university. University faculty, including the science educator, worked closely with teachers in the local school to design and implement best practices in interdisciplinary teaching and PBL. Thus, the teachers that PSTs observed were innovative, vetted, and thoroughly immersed in professional development being delivered by institutional faculty. All students observed an interdisciplinary PBL-based physics and algebra class as well as a ninth-grade history-english class. These observations were arranged by the instructors, who accompanied the PSTs during the observations, and were followed up with classroom discussions to ensure that all PSTs had a chance to critically analyze and reflect on both the successes and challenges of PBL. As these observations preceded our instructional planning course, students entered the course with an understanding of how interdisciplinary PBL differed from traditional projects—a distinction we were keen to highlight from the start. Moreover, the PSTs came in with an understanding of how the shift to inquiry-based learning can transform classroom climate and classroom dynamics. Finally, the PSTs entered with an understanding of some of the struggles related to the implementation of PBL and were, therefore, expected to address many of these through the use of rubrics and standards-based intended learning outcomes.

The expectation of the instructional planning course was that the PSTs would work in interdisciplinary teams to develop projects that would engage secondary students in authentic learning (e.g., projects analyzing the impacts of real-world problems such as sea level rise in the local community). Three teams were created around areas of common interest. The first team included two PSTs who had backgrounds in chemistry, one of whom was seeking dual certification in mathematics. The second group included four PSTs—one PST with a mathematics background and three of whom had completed their major in environmental studies. The third group included three PSTs, all of whom had chemistry backgrounds and one of whom had a background in biochemistry as well. Ideally, we would have had more math PSTs in the course, which would have allowed us to make the groups more interdisciplinary. However, as that was not the case, we mitigated the problem by providing all groups numerous opportunities to consult with the instructors and other mathematics and mathematics education faculty members (as discussed later in the manuscript).

The instructors began the course by providing PSTs with a background into the research and history of PBL in order to allow them to ground their aforementioned observations in context and research. This was accomplished by incorporating selected readings (see Appendix A), presentations, and discussions—such as one focusing on the benefits and challenges of PBL-into the course. The instructors also required PSTs to read Setting the standard for project based learning, by Larmer, Mergendoller and Boss (2015), and engage with curriculum, resources, planning guides, and the “gold standard” PBL framework put forth by the Buck Institute. “Gold standard” PBL is a term coined by Larmer et al. (2015), and is comprised of eight research-based characteristics that support high-quality PBL: A focus on standards-based content and success skills, a challenging problem or question, sustained inquiry, authenticity, student voice and choice, reflection, critique and revision, and a public product. This framework scaffolded the design process for the PSTs and provided them with a common understanding of what high quality PBL is, and how to plan and structure effective PBL units. These resources were then supplemented with several banks of curated articles and support documents related to interdisciplinary education, project-based learning, collaboration, and on the effective use of rubrics in assessing student collaboration, communication, and learning (see Appendix A). These resource libraries were designed to allow PSTs to access resources as needed for support during the planning process.

After establishing a common understanding of the necessary components of high-quality PBL, PSTs were assigned the task of designing a PBL unit within their interdisciplinary teams. Due to the daunting nature of this task for those inexperienced with PBL, the instructors provided scaffolds by breaking the process up into smaller chunks—as described below—and by providing all groups with the project design template from the Buck Institute (BIE, 2018b). Furthermore, the instructors created a timeline of suggested due dates to allow groups to assess their progress throughout the course. The instructors met regularly with each group to provide feedback on their progress and formatively assessed PSTs throughout the course. These formative assessments were structured to provide feedback to both instructors and students by requiring various components of their units (e.g., driving questions and entry events), to be presented to the course. These presentations utilized the critical friends protocol (Bambino, 2002), thereby allowing PSTs to receive valuable critique from both peers and instructors within a safe environment.

The first task for each group was to create an authentic driving question and entry event that would engage future middle and high school students in the learning process. Our class used the definition of a driving question from Larmer et al. (2015) of “a statement in student-friendly language of the challenging problem or question at the heart of the project” (p. 92). We also defined an entry event as an intentional event planned by the teacher to stimulate student curiosity and engagement about the project topic (Boss, 2011). After receiving feedback from the instructors and peers, the PSTs used these driving questions to develop content-based and skill-based objectives for their future students that would be necessary to understand the driving question and develop well-articulated projects.

PSTs used blank calendars to align objectives to state mathematics and science standards and to include brief daily pedagogical plans for facilitating instruction. This activity was intended to have PSTs consider the pacing of their units. PSTs also included objectives to intentionally teach critical skills for PBL such as collaboration, critical thinking, communication, and citizenship (P21, 2009; VDOE, 2016) which were discussed and modeled in class and supported by providing the PSTs with copies of the rubrics from the Buck Institute (BIE, 2018e). The students created their calendars on Google Docs and instructors gave iterative feedback to support students in refining their ideas. These calendars provided an overview of their units and allowed the instructors to ensure that all intended learning outcomes were being met within a realistic pacing structure. A sample calendar from one PST group has been included in Appendix B as an exemplar of this process.

The instructors invited additional content experts to class to review entry events, driving questions, real-world connections, and to probe the PSTs to consider or reconsider strategies for building students’ skills. For example, a former practicing engineer and a multi-certified STEM educator came to support students in more thoroughly integrating mathematics in science-driven units. PSTs additionally connected with mathematics educators at the university. Additionally, at the midpoint of the course, the class virtually connected with two PBL experts via video conference to provide feedback on project ideas and driving questions—one of whom was an author of their textbook. The experts were provided with copies of their project ideas and driving questions in advance of the meeting, and spent an hour providing feedback, answering questions, and sharing experiential advice. The instructors facilitated this by reaching out to the author via E-mail, who then invited a second expert to the video conference. These experts drew on their own experiences with PBL to share key insights into designing effective PBL units and one expert even video conferenced in from a tiny-house that his students had built for him—thus making the experience more meaningful for PSTs by providing them with a vision of what is possible. Following this experience, the groups fine-tuned their questions and projects based on their new insights. Finally, PSTs also sought input from the teachers with whom they were working within the field to understand more about pacing and best practices to develop students understanding of selected science and mathematics content and skills.

In addition to unit planning, each peer group had to teach 30-45 minutes of an inquiry-based lab activity to their instructors and peers, clearly communicating expectations for group norms, collaboration, and communication for their students. At the end of the course, students gave a presentation to the class that narrated pedagogical decisions within the unit. Each group engaged their peers in the first day of their unit, presenting their entry event, driving question, and rubric for the project. The instructors asked PSTs to explain to their peers (as fellow colleagues) the learning goals of the project, a brief overview of the project calendar and timeline, and how their project taught 21st century skills while simultaneously covering requisite standards.

The final assignment was to have students complete a modified Buck Institute Collaboration Rubric (BIE, 2018a) for each member of the group. The rubric was adapted to an online format that utilized branching to tailor the questions to each group. Every PST was required to complete the rubric by reflecting on their own contributions as well as those of their peers. Doing so not only allowed for structured reflection on how well they collaborated with their peers, but also allowed for more holistic grading as these rubrics were then coupled with the project rubric to determine the final grades for each individual.

Data Sources and Analysis

The project design rubric from the Buck Institute (BIE, 2018c) was used to assess the quality of the three interdisciplinary PBL unit plans. The unit plans allowed us to see how PSTs operationalized this rubric to plan a small math and science project for future students. Data on the quality of the created units was generated by assessing the units and their subsequent presentations. Applying the Buck Institute Design Rubric (BIE, 2018c), we specifically assessed the following criteria: the inclusion of key knowledge and skills, a challenging, open-ended driving question that would allow students to look at myriad considerations in answering the driving question, multiple inquiry-based activities included in the unit that guide the understanding of the question and the development, the authenticity of the project in terms of its relevance to students’ lives within the contexts of their clinical field placements, the incorporation of opportunities to elicit student reflection into the unit, and opportunities for peer critiques and revisions.

Following the final presentation of the unit, PSTs formally reflected upon how the course prepared them to plan and teach through interdisciplinary, project-based learning, as well as their perceptions of the strengths and weaknesses of the newly revised interdisciplinary teaching methods course. We followed-up with PSTs again approximately one year after the completion of the course. Students’ responses were read and discussed by both instructors. Each author applied in vivo codes (Creswell & Poth, 2018) to understand students’ perceptions of the course. The authors compared codes to ensure that all students’ experiences were accounted for. The codes were sorted into categories representative of course design, course implementation, and preparation for classroom teaching content. Two themes emerged across each category including “personal meaning and values in course learning outcomes” and “efficacy and practicality of PBL implementation.” These themes guided the discussion of students’ perceptions of the course, and key quotes were selected and presented within the “reflections from PSTs” section of this article to represent students’ perceived strengths and weakness of each theme. The authors elaborated upon quotes with observations that were documented throughout the course, specifically during group presentations, individual meetings, and the rationales of final products.

Quality of Interdisciplinary Projects

The three project units all focused on key knowledge and understandings that were aligned with clear standards-based learning outcomes, thoroughly integrating mathematics and science. All projects contextualized their projects through current issues taking place locally or in the media—organic products in grocery stores, water quality as it relates to health, and global warming. Here, we describe briefly the three units, areas of strengths, and areas that could be improved in terms of their alignment to the BIE Project Rubric (BIE, 2018b).

The first group created an integrated chemistry and personal finance project that focused on organic farming to teach standards related to bonding types, the use of lab equipment, the relationships between chemical properties and biochemistry, the economics of product pricing, advertising and decision making, the life functions of bacteria, protein synthesis, and the principles of scientific investigation. PSTs created the driving question of, “Should people in your community buy organic or traditionally farmed food?” PSTs planned for an opening peer-debate on students’ preconceptions of organic and inorganic foods. The PSTs showed how they would explicitly teach students to debate, teaching the skills of having to communicate and critique ideas related to organic farming. The PSTs developed research and inquiry-based activities for students to investigate the sources of organic and traditional foods in their neighborhoods, consider the extent to which genetic modification has played a role in the farming of these foods, and analyze the intended and unintended outcomes stemming from the use of antibiotics, pesticides, and bacterial growth. These labs were open-ended enough to allow for student voice and choice, but would have benefited from the intentional incorporation of time for students to reflect on their findings, reflect on the relevance of these findings to the driving question, and to critique and revise their work. The culminating experience of the unit was a presentation to members of the community and a mini-research paper.

The second group integrated chemistry, algebra II and English to address content standards related to solution concentrations, solubility curves, acids and bases, titrations, creating and conducting experiments, analyzing data, graphing and analyzing exponential and logarithmic functions, and persuasive writing. The group asked, “what are the actual differences between different types of water we drink?” Although this question is relevant to the lives of high school students who drink from water fountains at school, the question may have benefited from being modified into be more open-ended. The entry event demonstrated the Tyndall effect and compared water from the school fountain with a store-bought bottle of water. Students were then expected to assume the role of scientists by collecting water samples from various sources throughout the school and conducting several labs including creating their own purified water and determining the pH levels of water from different sources. Although these labs targeted key learning outcomes, they were structured with a degree of rigidity and with a narrow focus that limited the amount of student voice and choice, the intensity of the sustained inquiry, the amount of productive struggle (NCTM, 2014) that was encouraged, and the degree to which students would be able to critique and revise their work.

Finally, PSTs ended their unit with a jigsaw activity where students assessed the impacts that water quality can have on economic, health, and environmental considerations. Ultimately, students would share their purified water samples and then use marketing techniques to persuade their peers and school learners that their water was the best source. Throughout this process, PSTs planned for their students to have numerous opportunities to reflect on and share their findings by regularly documenting their learning on Instagram.

The final group created a unit that integrated Earth science, algebra 1, and English standards including conducting investigations, utilizing scientific reasoning, maps, the ocean, the impact of human activity on the earth, inferential and descriptive statistics, and oral presentations. These interdisciplinary standards can be seen in context in the project calendar in Appendix B and the project design overview (see Appendix C), which have been included to provide a more holistic picture of the unit. The group utilized a driving question of “how will sea level rise affect your community?” Their rationale for focusing on this topic was their belief that people are motivated to make personal changes when they are able to see the potential impact that rising sea levels will have on their own homes and communities. This topic was made authentic and meaningful for students because it was context-specific, exploring how sea-level rise affects the mid-Atlantic region in the future. PSTs engaged students by using the Maldives—a popular tourist destination which may be underwater in the coming decades. This entry event showed students how sea level rise could potentially devastate an entire nation in the near future. This sparked the impetus for local investigations of how sea level rise could affect students’ homes.

PSTs planned for their students to observe a variety of phenomena that included curated videos and images of thermal expansion and the ice caps. Additionally, students would observe and manipulate data through various modeling and mapping websites, and collect and analyze data to understand and predict the impact of sea level rise within a case-based model. The activities gave secondary students voice and choice in terms of allowing them to focus on their own neighborhoods, choose which sources they collected data from, and allowing the final presentation and infographic to be open-ended and uniquely creative. This final project and infographic was the culmination of sustained inquiry of the data, and showcased study analysis through charts, graphs, and images that displayed how sea-level rise could affect their hometowns. The PSTs planned a culminating event at which students would present their investigations and findings at a local oceanography seminar.

This project was chosen as an exemplar in part because of the intentionality the group showed in integrating key suggestions from the Buck Institute Design Rubric (BIE, 2018c) into their project. For example, as mentioned above, the groups entry event is one that would capture student attention and excitement in a way that would easily transfer to the driving question. Moreover, the group built in authentic, sustained inquiry by curating extensive lists of videos, websites, and sources of relevant data that students were then expected to synthesize and apply to a case-based analysis. Finally, PSTs planned for students to present findings at an oceanography seminar, allowing them to take on the role of scientists who are investigating this important issue. The only aspect of the project that necessitated further consideration was the degree to which independent learning opportunities were extended to K-12 students. Although several aspects of the project allowed for independent learning, we felt that more of the activities that were teacher-lead could have been more open-ended, allowing for a higher degree of student autonomy.

Reflections from PSTs

We asked the PSTs to reflect on the course outcomes immediately following the last class and then followed up with PSTs one year after the course to have them reflect on the aspects of the course that have been useful or not useful to them during their first year of full-time teaching. All PSTs wrote a reflection after the course and 5 of the 9 teachers emailed us a retrospective reflection. Following the course, students noted a more thorough understanding of what interdisciplinary PBL planning and implementation can look like. All PSTs felt more confident planning for a unit that incorporated two or more subject areas, and designing a small-scale project. Specifically, PSTs felt that the course prepared them to consider the logistics, need for communication between teachers, and pacing when implementing interdisciplinary PBL units. Moreover, the PSTs noted that the experience helped them become more creative educators and to value collaboration and peer feedback. PSTs perceived the size of the unit (2-3 weeks) as manageable, and a “great first look at the logistics of planning an interdisciplinary PBL.” One of our participants looks back as a first-year sixth grade teacher and notes that the class experience helped her to understand early PBL trainings that she is required to participate in through her school district.

This awareness developed the interest of some of the PSTs to begin implementing PBL into their classrooms. For example, one PST in the course actively sought out a PBL school to teach in during the course and was hired as a first-year science teacher following graduation. Currently, she works with other teachers across disciplines to thoroughly integrate standards and skills across thematic units to develop multifaceted projects. She shares:

Unlike most of my peers I would imagine, I teach in a school that operates through only PBL teaching, as well as mastery based grading with scientific skills, design thinking, and a set of core values. My current focus has been on building PBL projects that require students to work through several iterations using their design thinking while also developing their values. With a PBL, in my classroom, it has been less of a focus on content, but rather how you use skills to digest and interact with the content.

Other PSTs reported that they are either currently using PBL in their classrooms, using aspects of PBL to frame their instruction, or are hopeful that they will be able to use it in the future. For those who are beginning to incorporate projects in their classroom, a middle school mathematics teacher advises that “it is important to start small when first trying out PBL in your classroom… Don’t try to do all of it on your own and go for a really big and complicated project first time out.”

Prior to this course, the PSTs had no experience planning across disciplines, nor were they being mentored by teachers who collaborated in this way. PSTs noted the benefit of seeing the two methods instructors planning, culminating resources, and implement the course together. One PST said, “[the professors’] co-planning and organizational skills added to the overall effectiveness of the course.” PSTs enjoyed working with each other. This is evidenced by a mathematics PST who stated that their “favorite part [of the course] was getting to work with the science kids and hearing the different experiences they had in the classroom so I could learn from these experiences prior to student teaching.” PSTs hoped to collaborate with others in their future job, and viewed the course as “great practice collaborating with peers and different disciplines.”

Our analyses also supported the conclusion that PSTs wanted to learn more about the day to day routines and methods in the classroom. Evidencing this, one student shared that the instructors did “a phenomenal job in allowing us to plan on a larger scale…taking more time to identify what a day to day looks like would be more realistic for a classroom.” While we assumed PSTs felt confident in teaching methods from their experiences in the semester prior, it became evident that none of the PSTs’ cooperating teachers, and few of the positions that they secured post-graduation, utilized project-based learning and the ideas taught in instructional planning were new to the veteran teachers who were mentoring the PSTs. PSTs wanted more models and “more input from teachers that have actually implemented PBL in their units before.” Additionally, the PSTs felt that the course did not adequately prepare them for the difficulties of implementing PBL within schools that have not fully adopted it. As one PST noted, “a lot was left out in terms of actually implementing [the PBL units] and the roadblocks that occur during implementation.” The PST went on to suggest that the experience “revealed the importance of a whole school culture shift and support.”

Because PSTs were not placed within PBL schools with a focus on interdisciplinary planning and teaching, they felt that the course did not align to the actualities of their clinical field placement. While PBL units included a variety of instructional models to teach content and skills necessary for a culminating project, some PSTs had difficult with the overall practicality of the course. For example, one PST shared after the course:

While PBL mirrors the ideal teaching experience, it is not necessarily the reality of what
we will be facing in our 10 weeks of student teaching. I think that the overall course was effective and useful, but I do wish that the course scaffolded our 10 week student teaching experience a bit better.

This point was similarly made by an earth science teacher who looked back on the class:

The PBL lesson planning remained mostly theoretical and abstract. Since we were not expected to or could not implement them in our student teaching experiences, we could design the best possible PBL units—not the most realistic…Possibly designing a lesson for a school that has already made the switch to PBL rather than designing units for science classes that have had no to very little prior exposure to PBL would have been more practical.

PSTs felt that more practice developing and implementing more traditional lesson plans would have better prepared them for the normal classroom and for their current students, rather than for the ideal. One PST suggested that it would be possible to learn both PBL and traditional teaching methods if “PBL could be factored into the methods course with [the instructional planning] course focusing more on diverse teaching methods.

Despite these feelings, the PSTs valued the course and follow-up reflections suggest that they will continue to draw from their class experiences with their future students. They see interdisciplinary PBL teaching “as way of the future.” Most significantly, the teachers perceived the course with emphasizing the importance of making learning more meaningful and relevant to students. One teacher explains- “I have transferred a lot of the aspects of PBL to my everyday teaching style…Most importantly, the student directed learning, the importance of real, meaningful questions and data and impactful summative assessments.” Our practicing PBL science teacher explained that the class helped to shift her mindset from “grading on something other than content standards and the importance of that in creating well rounded students.”

Conclusion and Implications

The pilot implementation of an interdisciplinary mathematics and science PBL course produced promising outcomes that can continue to be developed through future iterations of this course. By students producing PBL unit plans, PSTs were able to conceptualize how collaborative planning can be achieved as well as interdisciplinary, real world contexts (Wilhem, Sherrod, & Walters, 2008). Importantly, the PSTs valued stepping out of their disciplinary silos and working with others outside of their expertise. The PSTs were able to observe integrating content areas in action, and many noted how integrating mathematics and science instruction enriches both content areas. Such activities are important for preservice teachers to consider what school can look like even when it is different from their own personal experiences (Frykholm & Glasson, 2005; P21, 2009).

A common challenge perceived by the PSTs during and after the course was the alignment of instructional methods courses with clinical field placements, a challenge frequently addressed in teacher education research (see Allen & Wright, 2014). Ideally, such placements would align with coursework to allow PSTs to apply new pedagogical knowledge, such as knowledge of integrated PBL, in the classroom (Zeichner & Bier, 2015). As this was not the case here, the PSTs in this study felt a disconnect between the pedagogical strategies learned in the course and the ones that they were observing from the mentors. The result of this disconnect was that the PSTs preferred a smaller sample of PBL, and more of an emphasis on diverse teaching methods. It is important for the PSTs to realize (and articulate to mentor teachers), that PBL requires a diverse array of pedagogical strategies, mini lessons, and formative assessments to prepare students to develop a final product. PBL is not a strategy, but rather an umbrella that can cover all of the strategies that teachers have learned. It is, therefore, important that PSTs realize that teachers using PBL still have to use diverse instructional strategies like modeling, investigating, and developing explanations to create a comprehensive interdisciplinary project.

As one of our participants noted, interdisciplinary PBL is best supported when there is buy-in from teachers and school leaders. For preservice teachers to realistically see how this method and mindset of planning and teaching plays out, it is important that they have clinical field placements in schools with teachers who have experience with cross-disciplinary planning and PBL (Zeichner & Bier, 2015). It is well-established that the mindsets, experiences, and practices of mentor teachers carry over to teachers-in-training (Carano, Capraro, Capraro, & Helfeldt, 2010). At the very least, methods course instructors should consider including mentor teachers in project development so that unit products can logistically be implemented in classrooms. We also note that a limitation of this study is that we only had one math preservice teacher. In addition to mediating this by having PSTs collaborate with professors in math, science, and engineering in class, it may also be beneficial to have science PSTs collaborate with mathematics mentor teachers (and math PSTs with science mentor teachers) to develop robust, interdisciplinary units.

The development and initial implementation of this interdisciplinary math-science planning course structure suggests benefits of this model to students. While not a focus of this study, the development of this course was a PBL experience for the instructors—a project that was continuously reflected upon and redesigned based on the formative feedback of the PSTs. We, therefore, recommend continuous planning sessions between instructors who desire to co-teach in a similar manner along with reflective sessions after each class to revise instruction for future iterations. We also recommend that instructors intentionally model key components of such structures to their PSTs. Such components include bringing in outside experts, co-planning, and engaging in active reflection throughout the process.

Rigorous Investigations of Relevant Issues: A Professional Development Program for Supporting Teacher Design of Socio-Scientific Issue Units

Introduction

Socio-scientific issues (SSI) are complex problems with unclear solutions that have ties to science concepts and societal ideas (Sadler 2004). These complexities make SSI ideal contexts for meaningful science teaching and learning. The benefits of SSI instruction have been widely documented in science education literature and include gains in the understanding of science content (Klosterman and Sadler, 2010), scientific argumentation (Dawson and Venville, 2008; 2010), and epistemological beliefs about science (Eastwood, Sadler, Zeidler, Lewis, Amiri & Applebaum, 2012). Although the student benefits of SSI in the classroom have been established, there is a literature gap pertaining to teacher preparation and support for SSI teaching and learning, and the design of SSI units.

A few studies have characterized some challenges associated with SSI teaching in classroom contexts. When teachers included SSI in their classrooms, they used SSI as a way to get students interested in and motivated to learn a science topic, but they tended not to include ethical concerns or biases about the issue or the science, resulting in a lack of awareness of the interdependence between society and science (Ekborg, Ottander, Silfver, and Simon, 2012). Teachers also struggled to incorporate evidence and critical evaluation of evidence through media literacy and skepticism in their teaching about SSI and informed decision-making (Levinson, 2006). Even after a targeted intervention focusing on the social, moral, and ethical dimensions of issues, teachers struggled with effectively incorporating these dimensions in their classrooms (Gray and Bryce, 2006).

In order for successful and meaningful SSI incorporation in science classrooms, teachers need professional development (PD) experiences that scaffold their understanding of the complexities associated with SSI teaching and learning (Zeidler, 2014). Additionally, teachers need explicit examples of SSI teaching and learning to support their adoption of instructional techniques for incorporating new ideas in science classrooms, such as media literacy, informed decision-making, and highlighting social connections to an issue (Klosterman, Sadler, & Brown, 2012). As such, our team designed and implemented a PD program with explicit examples and design tools centered around our SSI Teaching and Learning framework. To support teacher learning about SSI teaching and learning, we engaged teachers in 1) SSI unit examples and experiences as learners; 2) explicit discussion and unpacking of the approach; and 3) designing in teams with active support from the research team. Our PD program supported teachers as they designed their own SSI units for classroom implementation with various tools developed by our team, including the SSI-TL framework, a framework enactment guide, the planning heuristic, an issue selection guide, and unit and lesson design templates. We describe our PD process for supporting in-service secondary biology, chemistry, and environmental science teachers as they learned about SSI instruction and co-designed their SSI units.

PD Audience & Goals

To ensure effective teacher participation in the PD program, we identified and invited 30 science teachers from diverse geographic locations throughout the state who met the following criteria:

  1. Currently teaching secondary biology, chemistry, or environmental science.
  2. Receptive to learning about socio-scientific issue instruction and curriculum design.
  3. Commitment to teacher learning and professional growth.

Eighteen teachers accepted our invitation to participate in the workshop. Participant teaching experience ranged from 1 to 32 years. Seven (39%) were early-career teachers with 1-5 years teaching experience. Five (28%) mid-career participants had taught for 6-10 years. The remaining six (33%) participants were veteran teachers with 10 or more years of teaching experience. Over half of the participants (55%) taught at schools within urban clusters as defined by the U.S. Census Bureau, with populations of 2,500-50,000 people. Just over one fourth (28%) of participants taught in urbanized schools within cities of 50,000 or more people, and 17% of the teachers worked in rural districts.

Socio-scientific Issue Teaching and Learning Framework

Our research group has developed a framework for SSI teaching and learning (SSI-TL) for the purpose of designing SSI based science units (Figure 1). An overarching goal of SSI-TL is to provide students with a context for developing scientific literacy through engaging in informed and productive negotiation of complex societal and scientific issues. The SSI-TL framework is composed of three sections, the first of which is Encounter the Focal Issue. In this section, students encounter the SSI and make connections to the science ideas and societal concerns. In the second section of the model, where a majority of classroom activities take place, students Develop science ideas and practices and engage in socio-scientific reasoning (SSR; Sadler, Barabe, & Scott, 2007; Romine, Sadler, & Kinslow, 2017) in the context of the SSI. Learning activities in this section focus on science content embedded within opportunities to engage in science and engineering practices. In terms of focal practices, our group emphasizes modeling, argumentation, and computational thinking because of the potential for these practices to promote sense-making. To facilitate socio-scientific reasoning, we emphasize opportunities for learners to consider the issue from multiple stakeholder perspectives and to consider consequences of potential decisions and actions from a range of vantage points (e.g., economic, political, ethical, etc.). The last section of the SSI-TL framework calls for student Synthesis of ideas and practices and reasoning about the SSI through engaging in a culminating activity.

Figure 1 (Click on image to enlarge). Socio-scientific issue teaching and learning (SSI-TL) framework.

The SSI-TL framework aligns with various essential learning outcomes, which include awareness and understanding of the focal issue, understanding of science ideas, competencies for science and engineering practices, and competencies for socio-scientific reasoning. As teachers utilize this model, they may choose to focus on various discretionary learning outcomes, such as competencies in media literacy, understanding of epistemology of science, competencies for engineering design, and interest in science and careers in STEM. We leveraged this SSI-TL framework during a series of PD sessions to support teachers as they designed SSI units for their classrooms.

The PD Process

An initial meeting of the teachers and our research group took place in December, 2015. At this brief meeting, the participating teachers and the research group members introduced themselves and discuss their interests and experiences regarding SSI teaching. We provided a brief overview of the PD program and our expectations for the participating teachers. The teachers were also given a brief overview of SSI teaching and learning to introduce them to examples of issues they would be choosing in their design teams.

A second full group meeting took place over two days in March, and a third meeting occurred over three days in June. These in-person meetings were used to engage teachers in SSI teaching and learning and to provide structured planning and design time with the help of the PD team. Initially, teachers were grouped by content and assigned a mentor from our research group to aid in SSI learning and the design process. Teachers then chose design partners from their content groups and worked in groups of two to three to design SSI units for their classrooms during and in between the formally organized meetings. To maintain communication between meetings, we used an online community to share content readings and exchange ideas. Teachers read two articles and responded to prompts by commenting on each post (Figure 2; Presley, Sickel, Muslu, Merle-Johnson, Witzig, Izci, and Sadler, 2013; Duncan, and Cavera, 2015). More reading resources can be accessed at http://ri2.missouri.edu/going-further/related-reading.

Figure 2 (Click on image to enlarge). Reading response prompts.

Experiencing SSI & Examples

To familiarize teachers with SSI learning, we engaged them as learners in a portion of a fully developed SSI unit. The unit explored the issue of the emergence of antibiotic resistant bacteria with a focus on natural selection as science content and the practice of scientific modeling. The unit was developed for high school biology classes and had been implemented in several classrooms (Friedrichsen, Sadler, Graham & Brown, 2016). The learning experience was led by one of our teacher partners who had used the unit prior to the workshop. She introduced the issue as she did in class by having participants watch a selection from a video about a young girl who contracts methicillin-resistant Staphylococcus aureus (MRSA). After being introduced to the issue, teachers engaged in a jigsaw activity in which each group was given a different source with information about MRSA to begin the discussion of credibility of different sources and the ways in which scientific information is used by different stakeholders interested in an issue. The groups read over their source and presented to the whole group. Sources included blog posts, a USA Today article, and Centers for Disease Control fact sheets. This activity was followed with a discussion of the different sources and their varying levels of credibility. After these learning activities, the teachers were given an overview of the full unit and shown student work samples, including student models of antibiotic resistance and natural selection, and synthesis projects which called for students to develop and advocate for a policy recommendation to stem the spread of antibiotic resistant bacteria. The full antibiotic resistance SSI unit (Superbugs) can be accessed at http://ri2.missouri.edu/ri2modules/Superbugs/intro.

During the June meeting, teachers were provided with an overview of an SSI unit related to water quality that had been developed and implemented in a high school environmental science class. This unit focused on a local water resource issue with conceptual links to ecological interactions, nutrient cycling, and water systems. The scientific practices emphasized in the unit were modeling and argumentation. One of our team members who was the lead designer and teacher implementer of this unit led a presentation of an overview and key aspects of the unit. The full water quality unit (the Karst Connection) can be accessed at http://ri2.missouri.edu/ri2modules/The%20Karst%20Connection/intro.

Including SSI in science classrooms can be challenging because science teachers are often unfamiliar with or uncomfortable addressing the social connections to the issue. To help scaffold this addition to science curricula, we engaged the teachers as learners in an activity highlighting social and historical trends from an SSI unit related to nutrition and taxation of unhealthful foods (a so called “fat tax”). In this activity, groups of teachers were assigned different historical events that had to do with nutrition and nutrition guidelines. Each group investigated their event and wrote the key ideas on a sheet of paper. These papers were placed along a timeline at the front of the room (Figure 3). Each group shared out to the full group about their event, and as each group presented, they drew connections between historical events and nutrition guidelines of the time. For example, one event was a butter shortage, which resulted in the nutrition guidelines urging people to exclude butter from their diet. This activity allowed teachers to see and experience an example of making social connections to an issue while exploring how the social and science concepts impacted each other over time. The full description of this learning exercise can be accessed at http://ri2.missouri.edu/ri2modules/Fat%20Tax/intro.

Figure 3 (Click on image to enlarge). Nutrition timeline activity.

Unpacking the SSI Approach

After experiencing SSI as learners in our March meetings, we introduced the teachers to the SSI-TL framework (Figure 1) with emphasis on the three main dimensions of the framework: Encounter the focal issue; Develop ideas, practices, and reasoning; and Synthesize. Using the antibiotic resistance unit as an example prior to introducing the framework allowed us to make connections between the framework and what they experienced as learners. Along with the framework, we introduced a framework enactment table, which depicts student and teacher roles and learning outcomes associated with each dimension of the framework. The enactment table allowed teachers to develop a more in-depth understanding of what each section of the framework entails. The framework enactment table can be accessed at http://ri2.missouri.edu/content/RI%C2%B2-Framework-Enactment.

Focus on NGSS Practices. At the time of the PD program, our state had recently adopted new science standards that are closely aligned with the Next Generation Science Standards (NGSS; NGSS Lead States, 2013). Like NGSS, the new state standards prioritize 3-dimentional (3D) science learning, which calls for integration of disciplinary core ideas (DCI), crosscutting concepts (CCC), and science and engineering practices. Due to the interwoven nature of the two, our team has chosen to combine CCCs and DCIs into a single construct of “science ideas”, as seen in the SSI-TL framework (Figure 1). There are eight science and engineering practices outlined in the NGSS, but our team has chosen to focus on a subset of practices: modeling, argumentation, and computational thinking. We chose these practices because they are high leverage practices, meaning that in order to engage in these practices at a deep level, the other practices, such as asking questions or constructing explanations, are being leveraged as well. For example, we posit that in order to create a detailed model, students engage in constructing explanations and analyzing and interpreting data. Our SSI-TL framework calls for 3D learning by engaging students in science ideas and high leverage science practices in the context of an SSI.

Because 3D science learning and practices were new to all of the teachers in the PD, our team offered breakout sessions focusing on a specific scientific practice: modeling, argumentation, or computational thinking. Teachers chose which of the three sessions to attend based on their interests and the practices they planned to feature in their own units. In each session, teachers were engaged in the practice as learners, and then were shown examples of student work pertaining to each practice. Examples were from prior unit implementations and depicted 3D learning through the incorporation of the science practice with science ideas. For example, in the computational thinking session, teachers were shown student generated algorithms of the process of translation, which incorporated computational thinking with the science ideas of protein synthesis. These practice-specific sessions allowed teachers to get an in-depth look at modeling, argumentation, and computational thinking in order to support the incorporation of high leverage practices into their SSI units.

Socio-scientific Reasoning & Culminating Activity. Socio-scientific reasoning (SSR) is a theoretical construct consisting of four competencies that are central to SSI negotiation and decision-making:

  1. Recognizing the inherent complexity of SSI.
  2. Examining issues from multiple perspectives.
  3. Appreciating that SSI are subject to ongoing inquiry.
  4. Exhibiting skepticism when presented potentially biased information (Sadler, Barab, and Scott, 2007).

SSR competencies are key to the SSI teaching and learning approach; therefore, we highlighted them in a demonstration and discussion during the PD. Teachers were introduced to the four SSR competencies, and they explored examples of activities designed to strengthen student SSR competencies. For example, engaging students in a jigsaw activity where they explore an issue from the perspectives of different stakeholders encourages students to engage in SSR because they deal with the complexity of the issue, bring up questions that remain unanswered, analyze information with skepticism about biases, and recognize the limitations of science pertaining to the issue. This session supported teachers in their understanding of SSR and provided them with multiple examples of how this construct can be used in the classroom within SSI contexts.

The culminating activity called for as a part of the Synthesis section of the SSI-TL framework was challenging for the teachers to conceptualize after the first PD session. To support teachers in their understanding of the culminating activity, we presented sample activities and student work from the units we previously developed and implemented. The goal of the culminating activity is to give students a final task where they can synthesize and reason through their ideas about the science behind the issue, the social connections to the issue, and the science practices employed in the unit. This session presented teachers with specific examples and ideas for culminating activities to be used in their SSI units. Teachers engaged in a jigsaw activity and each group examined a different culminating activity example and shared out to the whole group. Teachers discussed how they could alter activities for their classrooms and their units to support the inclusion of culminating projects in their SSI units. An example culminating activity can be accessed in “Lesson 6” at http://ri2.missouri.edu/ri2modules/The%20Vanishing%20Prairie/sequences.

In order to further support teachers as they designed their SSI units, we held a panel discussion where various members of our team (SSI unit designers and implementers) shared information about their units and experiences. In particular, panelists discussed the issue they chose and why they chose it, the science practices featured, and their culminating activities. After each panelist shared, the teachers asked questions about the units and experiences; they were particularly interested in hearing more details about ways in which SSR was incorporated in the units and the culminating activities. They also posed several questions about assessment generally and the scoring/grading of culminating activities more specifically. To further address these questions, we provided the teachers with samples of student work and a rubric that was used in one of our implementations for assessing the culminating activity. Through the various sessions and panel discussions, teachers were supported in their understanding of the overall SSI teaching and learning approach.

Teacher Work & Tools

As the teacher design teams worked through the PD program, the goal for each team was to develop a complete SSI unit ready for implementation in their classrooms. By the end of the June PD session, the expectation was for teams to have completed a unit outline and two lesson plans. The full units were due by the end of the summer. Teachers were responsible for choosing an issue, science ideas, and science practices for their units. In order to support teachers as they designed their unit overviews and lesson plans, we scaffolded their design process with various group techniques and planning tools as described in the following sections.

Group Work & Processes. Initially, teachers worked individually to brainstorm ideas for their units, including possible issues, science ideas, and relevant science practices. Teachers then presented their ideas within their content groups (i.e, biology, chemistry, and environmental science) in order to find shared interests. Based on these discussions, teachers formed design teams, which consisted of two or three teachers who worked together on the design of a unit for the upcoming school year. The composition of design teams ranged from groups with teachers from the same building to groups made up of teachers from different parts of the state.

Planning Heuristic. To scaffold the design process, our team introduced a Planning Heuristic: a table outlining a simplified process for beginning the design of an SSI unit. It describes design steps, products associated with each step, and examples of products from one of the units our team designed. For example, the first step of the heuristic is: explore possible issues, big ideas in science, and target practice(s). The products from this step are a large-scale issue, science themes and focal practices. Examples of these from one of our sample units are climate change as the issue, ecology as the science theme, and modeling as the focal practice. Teachers were encouraged to use the planning heuristic to aid them in their design process. The full Planning Heuristic can be accessed at http://ri2.missouri.edu/planning-heuristic.

Issue Selection Guide. Choosing an issue to center a unit around can be a daunting task. To support teachers in their issue selection, our team designed an Issue Selection Guide. Each design team worked through the guide resulting in narrowing their ideas about possible issues, and ultimately deciding on an issue. The guide poses several reflective questions about the issue to help teachers decide on the appropriateness of that issue. Prompting questions fall under three main questions: 1) Is the issue an SSI? 2) Is the issue a productive SSI for the intended audience? and 3) What instructional moves should be considered in presenting the issue? The Issue Selection Guide can be accessed at http://ri2.missouri.edu/issue-selection-guide.

Design Templates. To align teacher units with our example units for ease of planning and designing their units, we provided teachers with unit design templates. We provided teachers with a Unit Plan Template, which was used to outline the unit and the key ideas within the unit, such as science ideas, science practices, and the issue. We provided teachers with a Lesson Plan Template that presented a basic structure for each lesson, including time the lesson will take, goals for the lesson, lesson assessments, resources needed for the lesson, and an instructional sequence. These templates can be accessed at http://ri2.missouri.edu/templates.

Teacher Reactions & Feedback

The goal of producing SSI units was met because every design team was able to select an issue and complete design of a unit. Table 1 depicts the teams, the issue they selected, whether or not they completed their unit, and whether or not they implemented their unit in their classrooms the following year. Although implementing their units was not a requirement of the PD program, 12 out of 18 teachers implemented the units they designed in their respective classrooms. Six teachers did not implement their units for various reasons. The food additives, made of up a first and second year teacher, did not feel that their unit was far enough along in its development so they decided to wait until the following year to try it. A few of the other teachers experienced changes in their teaching assignments, which made implementation of their units difficult.

Table 1 (Click on image to enlarge)

Design Team Products and Unit Details

Issue Selection Challenges

Interviews were conducted with all of the teachers after the final PD session in June. During these interviews, teachers were asked a series of questions about what they learned and the extent to which the developed tools helped them. Teachers identified the Issue Selection Guide as one of the most useful tools because it helped them narrow down their ideas about issues and allowed them to determine if it was appropriate for their unit. Multiple teachers said that selecting an issue was the most challenging aspect of designing their units:

“[We] had a real issue finding an issue, and [it] was difficult… I had a lot of ideas” (T2, June Interview).

“I had no idea what could be a social and science issue… I used the topic selection paper, that chart thing that you guys made to help work up to picking an issue after – I had a whole bunch of ideas storming around, and it helped me narrow it down and select one that would work for this unit.” (T3, June Interview).

The Issue Selection Guide was useful to the teachers who were struggling with selecting an issue because it helped them narrow their issue ideas and choose an issue that would fit the instructional needs of their classes.

The Value of Examples

When asked what the most valuable part of the PD was, teachers identified the SSI unit examples and experiences as the most helpful:

“Seeing the variety of lesson topics and ideas, working through some of the lessons.”

“The sample SSI units were very helpful in seeing [SSI] in action.”

“The parts of model lessons where we participated in the student portion of the lesson” (Teacher Responses, Anonymous Post Survey, June 2016).

Teachers found the explicit examples of SSI-TL implementation to be the most helpful when learning about SSI and designing their units, indicating that the PD design supported teacher engagement in SSI teaching and learning.

Lesson Planning Challenges

In addition to selecting an issue, teachers identified writing lesson plans as a challenge in their design process:

“I never actually had to sit down, and write a lesson plan before… so going through and planning something start to finish, is not something that I have had to do… that was a challenge for me” (T1, June Interview).

“[The] process of putting it [unit plan] together is a challenge. Because most of the time I just sort of do it internally, I don’t really write it down” (T4, June Interview).

Most of the teachers were experienced teachers, so they didn’t need to write out every lesson because they felt comfortable with what they were teaching and how they were going to teach it. Because the SSI teaching and learning approach was new to the teachers, we were explicit in the structure of these units. The provided unit plan and lesson templates helped the teachers work through a planning and documentation process that was more formal than most of the participants were used to, and it resulted in materials that could be shared with other teachers.

Increases in Comfort with SSI and Science Practices

Teachers also responded to a Likert scale survey before and after the PD with questions about their comfort in teaching SSI, designing SSI units, and utilizing science practices. Ten survey items yielded statistically significant increases from before the PD to after the PD (Table 2). The first two items deal with teachers’ abilities to teach SSI in the classrooms. After the PD more teachers agreed they knew enough about SSIs in their area to design instruction using them, indicating teachers felt more comfortable with SSI design after the PD. More teachers also agreed they were able to negotiate the use of SSIs in their classrooms when talking to community members and parents with concerns, indicating an increase in comfort level with using SSI in their classrooms. The remaining items related to the teachers’ comfort level with scientific practices. Teachers increased in their comfort with the scientific practices of modeling, explanations, argumentation, and evaluating information.

Table 2 (Click on image to enlarge)
Survey Items with Statistically Significant Increases from Pre to Post PD

Conclusion

Teachers are important agents of change, and, given proper supports, they can successfully facilitate SSI learning experiences for their students. Before our work with this group of teachers began, our research team designed and implemented SSI units, and these results informed development of the SSI-TL framework. The SSI-TL framework has been helpful as we continue to design and structure new SSI units, so we made it a central aspect of the PD to guide what SSI teaching should entail. This framework and other tools were used to support teachers as they designed their own SSI units.

The PD employed a blended model of face-to-face meetings and communications with an online networking tool. During the PD we alternated among three sets of activities to support teachers: 1) SSI unit examples and experiences as learners; 2) explicit discussion and unpacking of the approach; and 3) design teams working together with active support from the research team. Throughout the PD we provided design supports with various tools developed by our team, including the SSI-TL framework, the framework enactment guide, the planning heuristic, the issue selection guide, and unit and lesson design templates. The PD was successful in that all groups designed SSI units, and many were able to implement in their classes. The teachers indicated the PD was effective from their perspective and they learned about issues and practices. Specific feedback around scaffolding tools we provided indicated the tools helped teachers navigate the design process.

As we consider ways of advancing this work, we are interested in exploring ways to work with school-based teacher professional learning communities (PLCs). Bringing together teachers from across widely varying school contexts and facilitating their work together was a challenge. We think that supporting communities of teachers familiar with the same local affordances and constraints may be a more effective way to bring about more lasting incorporation of SSI teaching into science classrooms. We are also interested in extending our investigations to learn more about the ways in which teachers implement their units. In the current project, we were able to elucidate some of the challenges teachers faced in designing SSI units (like selecting issues) and presented tools to help teachers navigate these challenges (e.g., the issue selection guide). We think that it would be a productive step for the SSI-TL agenda to do this same kind of work (understanding challenges and designing tools to address them) for implementation.

Cobern and Loving’s Card Exchange Revisited: Using Literacy Strategies to Support and Enhance Teacher Candidates’ Understanding of NOS

Introduction

It is more important than ever that teacher candidates have a clear understanding of why scientists do what they do and what science is all about. Science methods courses are opportunities to help students develop tools and skills to engage with and deepen their understanding of the nature of science (NOS), a necessary skill set for teaching at the elementary and secondary grade levels.  Dynamic activities, such as Cobern & Loving’s (1998) Card Exchange encourage teacher candidates’ inquiry, and critical thinking about NOS and the incorporation of cross-curricular literacy strategies promotes cooperative, collaborative interactions between students.

The consensus among science organizations is that developing an understanding of NOS should be one of the primary objectives of science teaching and learning. Organizations such as the American Association for the Advancement of Science (AAAS) (1993), National Research Council (NRC) (2013), National Science Foundation (NSF) (1996) and National Science Teachers Association (NSTA) (2012) recognize that understanding NOS is as essential to student success in science as scientific knowledge and skills. The National Council for the Accreditation of Teacher Education (NCATE) (2008) has also called for the restructuring of teacher preparation programs to ensure science teachers are confident in both their science content knowledge and ability to engage students in the NOS.

Cobern and Loving’s (1998) Card Exchange “works well,” explains Cobern (1991), “because it begins with students getting up, moving around, and talking to each other, things almost all students like to do” (p. 45). The card exchange is an engaging and non-threatening method of introducing NOS to teacher candidates.  It allows for students to reflect upon their conceptions of NOS that lead to both small group and class-wide discussion on NOS.

Teacher candidates have commented that the card exchange was not only fun but also gave them a better understanding of how and why we do science. Students comments on the card exchange noted the activity broadened their perception of science, enhanced their ideas about science, and increased their appreciation the role of philosophy in science. They have also reported increased confidence and science teacher self-efficacy. However, despite enjoying the overall experience and providing positive reviews about the card exchange, some teacher candidates have had difficulty with the vocabulary and card statements used during the exchange.

This article explores how integrating simple, constructivist cross-curricular vocabulary and literacy instructional strategies teacher candidates needed tools and skills to engage with Cobern and Loving’s (1998) Card Exchange.  It also describes the integration of simple, yet powerful, vocabulary and literacy instructional strategies. The incorporation of dynamic literacy strategies encouraged students’ inquiry, critical thinking, and problem-solving skills and has transformed the card exchange into a broader and more impactful activity for teacher candidates.

Cobern and Loving’s Card Exchange

The game is run as described by Cobern and Loving (1998) with some minor changes. While Cobern and Loving (1998) describe running the card exchange in classes of 30 to 40 students, I run it in classes of 15 to 25 students with each student receiving six cards.  I have also taken to numbering the cards and card statement categories consecutively.

Cobern and Loving’s (1998) process takes students from an internal dialogue on the card statements towards building group consensus (first in groups of two and then in groups of four) and finally a whole class discussion. The overall structure of the exchange allows students to debate the merits of some statements over others and share their thoughts on statements with others in the class.

1) Six to eight cards are distributed randomly to students.  They have 5 minutes to read their cards and think about what the statements mean and rank their cards from their most to least favorite statement.

2) Stage I (10 minutes): Students trade cards (one-for-one) with each other to try to improve their hands.  Their goal is to gain more cards with which they agree while discarding cards they do not like.

3) Stage II (10 minutes): Students pair up and compromise to reach eight cards on which both can agree.  During this process, students must contribute at least three of their cards.  Students return extra cards to the instructor.

4) Stage III (15 minutes): Students form groups of four, (two pairs) and compromise to reach a total of eight cards on which all four students can agree.  During this process, each pair must contribute at least three of their cards.  Students return extra cards to the instructor.  Students then rank the cards in order of importance and write a paragraph statement answering the question “What is Science?” based on their cards.

At the conclusion of the game, groups share their statements aloud and other groups comment.  What follows is a discussion as to why a group chose some cards and rejected others and cross-group discussion.  Students debate the merits of some statements over others and share their thoughts on statements with which they agreed but were not chosen by the group and vice versa. Additionally, Clough (2011) suggests questions relating NOS and science education such as “how does the work of [insert scientist(s)] illustrate that data does not tell scientists what to think, but instead that creativity is part of making sense of data?” (p. 58) that can be used to create classroom discussion and debate.

Card categories and statements of their meanings are revealed at the conclusion of the activity as part of an overall group discussion on NOS. This revelation has led to exciting student insights into biases that exist concerning NOS and individual versus group preferences for statements during the card exchange activity. Finally, I allow time to address questions and comments students might have about the game or NOS in general.

Reflections on The Card Exchange

During the card exchange, teacher candidates often experienced difficulties with the vocabulary and the wording of card statements.  The students’ inability to unpack the meaning of the cards in the time allotted prevented the game from flowing the way it was supposed.

While not technical, the card statements can be confusing. Students found the concepts described in non-technical and procedural vocabulary on the cards to be abstract and lacking in contextual detail. The words and phrases “operate with expectations,” “strive,” “refined,” “logical construct,” “dogmatic,” “pragmatic,” “social negotiations,” “Nature has nothing to say on its own behalf,” and “infallible propositions” on cards 1, 2, 5, 12, 31, and 38 respectively were sources of confusion and frustration for some students. The dense wording on some cards also proved to be a source of student frustration. On more than one occasion, after I explained a card statement, students responded “Well why doesn’t it just say that!” or “Why do they have to use all these big words?  Why can’t they just say what they mean?”

One of the factors that make the card exchange work is the pace. Momentum builds throughout the game as students move from working individually to pairs to groups of four and finally to the broad class discussion. This pacing gets lost when the game is put on hold to address vocabulary and phrasing of the statements. These types of discussions are still teachable moments and can improve student literacy and can eventually lead to a better understanding of NOS. However, valuable class time was spent defining terms and unpacking the meanings of card statements instead of thinking about and discussing the statements to advance their understanding of NOS. What should be an exciting experience becomes frustrating to students and teachers and a tool that can help gain a better understanding of NOS is ignored and discarded.

Literacy Strategies for NOS Learning

The adoption of Next Generation Science Standards (NGSS) is changing the way teachers and students approach and engage in science content through crosscutting concepts that connect core ideas in different disciplines.  It is also, to a certain extent, changing the language that teachers are using.  Science already relies heavily on the use of specific vocabulary.  Ardasheva and Tretter (2017) note “a pressing need for all students to master the academic language and vocabulary” (p. 252).  This includes science-specific technical terminology (e.g., ‘photosynthesis’), non-technical vocabulary (e.g., ‘component’), procedural/signal vocabulary and general academic vocabulary (e.g., ‘the result of’) (Ardasheva & Tretter, 2017; Harmon, Hedrick, & Wood, 2005; Taboada, 2012).

Researchers such as Miller, Scott, and McTigue (2016), Shanahan and Shanahan (2012), and Vacca, Vacca, and Mraz (2016) believe literacy activities and strategies aid to encourage students’ interest, inquiry, critical thinking, and problem-solving in disciplines such as science. Reading and language ability has been shown to be factors that impact student achievement in science (Reed, Petscher, & Truckenmiller, 2016; Taboada, 2012).  Like my students, Collier, Burston, and Rhodes (2016) have noted that science-specific vocabulary is akin to learning a second, or for some students a third, language.

Integration, repetition, meaningful use (Nagy, 1988; Nagy & Townsend, 2012) and scaffolding (Jung & Brown, 2016; Van Laere, Aesaert, & van Braak, 2014) can be applied to the Card Exchange to support student achievement in both literacy and NOS. Research by Harmon et al. (2005) describes independent reading, providing context, student self-selection of terms, and teaching targeted vocabulary words as strategies that support students struggling with the science-specific academic language.

The literacy strategies implemented in the NOS statement review for the Card Exchange promote cooperative, collaborative interactions among students.  The idea is to generate a more authentic form of hands-on and student-centered instruction, along with the possibility for a more meaningful, genuine, and personal kind of learning. Additionally, integrating literacy strategies with science concepts demonstrates how to integrate seemingly content-specific learning strategies across the curriculum (Moje, 2008).

Both the expansion from a one to three-week activity and introduction of the statements prior the card exchange game uses the principle of repetition – providing multiple exposures to targeted terms. “While this practice may seem obvious, it is an essential one, especially for those readers who need more time and repetition to learn key vocabulary than other students” (Harmon et al., 2005, p. 276). Rather than pre-teaching the statements, this solution offers students the opportunity to highlight, draw attention to, and then discuss difficult terms.

The structure of NOS statement review also utilizes the principle of meaningful use.  Students engage in individual reflective thought followed by small group and class-wide discussion of card statements. The students’ active involvement in this process, particularly their thinking about and discussing word meanings and using the new words meaningfully, leads to more learning and deeper processing of the underlying concepts of the card statements (Ardasheva & Tretter, 2017; Nagy, 1988).  Talking about ideas and concepts in a text can improve vocabulary, academic language development, helps students make sense of their thinking, and can foster academic language development.

The long-term goal is for students to learn science-specific technical vocabulary and integrate new words into their vocabulary. However, before the integration of unfamiliar words and phrases, it is necessary to scaffold science-specific academic language by presenting targeted terms in a way that is more familiar and contextual to students (Ardasheva, Norton-Meier, & Hand, 2015; Jung & Brown, 2016; Shanahan & Shanahan, 2012; Vacca et al., 2016).

The NOS Statement Review

The NOS statement review gives students time to examine the statements individually, think about their meanings, self-identify words and phrases they find confusing, and discuss the statements in small groups and later as a class. Early introduction of the statements makes use of ‘powerful’ vocabulary instruction principles such repetition and meaningful (Nagy, 1988).  Additionally, the transformation of the Card Exchange from a once-and-done activity to a multi-class exercise encourages both independent reading and learning by allowing students to self-select words and phrases (Harmon et al., 2005).

The overall goal of the NOS statement review is threefold: 1) to help students unpack the card statements and gain a better understanding of their meanings, 2) the come to class-wide understandings on the meanings of the different statements, which could include rephrasing, and 3) to prepare students to participate in the Card Exchange activity.

The review is run in four phases over two class periods and mirrors the structure of the Card Exchange, which is run during the next class following the review.  During phase 1, students receive a graphic organizer (see Figure 1) with card statements from each of the card topic categories as a homework assignment at least two weeks ahead of the card exchange activity. The graphic organizer has the prompts “What do you think this statement means?” and “What word(s) or phrase(s) do you find confusing?”  Assigning it as homework allows students to read and reflect on their particular statements at their own pace. As students read through the cards, they are encouraged to answer the prompts and to circle or underline parts of the card statements (see Figure 2).

Figure 1 (Click on image to enlarge). Graphic organizer for students with assortment of card statements and reflective prompts.

Figure 2 (Click on image to enlarge). Student work sample.

Phases two through four occur during the following class.  During phase two, students use their completed graphic organizers and are given ten to fifteen minutes to have several small group discussions.  First, they are grouped (two to three students) based on the number in the upper right-hand corner of their worksheets. This ensures that students with the same card statements have the opportunity to share their thoughts and comments with classmates that read and reflected on the same statements.

Phase three involves students moving around and meeting with classmates who were assigned different card statements.  Students have ten to fifteen minutes and can meet one-on-one or in small groups of no more than four students.  The groups must consist of students with different card statements, and each member of the group must have the opportunity to share.

As the instructor, both phases two and three are opportunities to circulate work with students individually or within the small groups.  It is a time to listen to student conversations, ask guiding questions, address individual concerns and questions.

During the fourth phase of the NOS statement review, all of the students come together to engage in a class review and discussion. Students receive a second worksheet (see Appendix) with all of the card statements and students are invited to share their respective statements with the entire class.  Cross-group discussion is encouraged with the instructor as moderator.

At the conclusion of the NOS statement review, we try to come to some understandings about specific terms used in the card statements and what they mean in and out of science.  Sometimes the discussion involves the rewording of a statement.  For example, in one class statement 12 (see Appendix) was reworded to read “Science is never opinionated; it is practical and open-minded – always subject to adjustment in the light of solid, new observations.” In another class, statement 32 (see Appendix) was reworded to say “When scientists work together they can be influenced by each other.  Therefore, it can be hard to identify alternative ways of thinking.” Finally, students are then encouraged, but not mandated, to look over all the statements before the card exchange activity during the next class (week 3).

Discussion

Introducing and discussing NOS is still tricky and finding active methods to engage students in NOS discussion can be a challenge.  Herman, Clough, and Olson (2013) lament that “much is understood about effective NOS teaching and learning, but while the phrase nature of science is widely recognized by science teachers, accurate and effective NOS instruction is still not widespread” (p. 2). Since language ability is quickly being recognized by both NRC’s Framework for K-12 Science Education (2012) and NGSS (2013) as a critical component of student success in science, technology, engineering, and mathematics (STEM) the integration of literacy strategies can help address both NOS and literacy skills for students of all ages.  Integrating simple, yet effective, literacy strategies in the form of a NOS statement review before Cobern and Loving’s (1998) Card Exchange transforms the activity into one that emphasizes both NOS and literacy skills.

Early Introduction: A Double-Edged Sword?

The introduction and repetition of the card statements benefit students by providing them with time to reflect upon and discuss the meanings of the NOS statements.  However, there was a fear that a review could take away from the trading aspect of the game. By reading, reflecting, and discussing the statements, students could have already made up their minds about the statements before the actual activity.

Since implementing the NOS statement review, I have asked students to provide feedback on whether the review enhanced or took away from the Card Exchange.  Students (n = 64) were asked to fill out a short online survey at the conclusion of the card exchange that asked them to rate two statements about the NOS statement review and card exchange on a four-point Likert-like scale (1 = strongly disagree:4 = strongly agree).  The voluntary survey has an average response rate of 87.7%. In response to the statement “Reading, reviewing, and discussing the card statements ahead of the card exchange enhanced the card exchange game” 81.8% responded that they “strongly agree.” Conversely, 78.2% “strongly disagreed” that reading, reviewing, and discussing the card statements “took away” from the card exchange game.

One of the more difficult aspects of the NOS statement review, mainly during phases three and four, was keeping students focused.  During both small group and class-wide discussion, students kept veering away from focusing on the meanings of the statements instead wanting to debate the merits of the statements.  While appreciating their enthusiasm, they were reminded throughout these phases that they would have the opportunity to debate the merits of the statements and whether they agreed or disagreed with them, during the Card Exchange.

Conclusion

The importance of understanding NOS is important to the science and science education community.  However, there is still a need to find interesting and exciting methods of engaging teacher candidates as well as elementary and secondary students in discussions about NOS. Cobern (1991) concluded his original article stressing the card exchange activity’s effectiveness at hooking his students into discussing and considering NOS – a subject, according to him, they had previously avoided. Speaking about science teacher candidates, he noted that the card exchange “capitalizes on the innate gregariousness of students and the diversity of opinion among students” (p. 46) and stressed the need for “creative instructional strategies” for NOS instruction to be effective.

Despite the issues cited earlier with vocabulary and phrasing, the Card Exchange is still a creative and effective introductory NOS activity for both elementary and secondary teacher candidates.  Integrating cross-curricular literacy strategies, such as a NOS statement review, enhances the Card Exchange without taking away from the initial focus of the Card Exchange activity. Instead, it creates a deeper more meaningful learning experience for students.

Personal Science Story Podcasts: Enhancing Literacy and Science Content

Introduction

I think my science teaching methods courses must feel like “drinking from a fire hose” for teacher candidates at times. These preservice teachers are often balancing a full course load, a field placement, and a job or two; meanwhile, I am trying to give them opportunities to practice teaching science as inquiry, when they might still be struggling with their own grasp of the science content. Many of the elementary preservice teachers in my methods classes struggle to see the connection between their lives and science. On the other hand, many of the secondary preservice teachers in science methods classes struggle with the need to teach literacy while they teach science. One assignment that has given me an opportunity to enhance these connections– between students and teachers’ lived experiences and science, and literacy, and between themselves– is the personal science story podcast. This assignment can be used with elementary or secondary preservice teachers, and a modified version is available for students.

Stories are “at the heart of how we make meaning of our experiences of the world” (Huber et al., 2013, p.214). As a teacher explains in Lisa Delpit’s (2005) Other People’s Children, “teaching is all about telling a story. You have to get to know kids so you’ll know how to tell the story…” (p. 120). The stories we tell can show others who we are and what we value, and giving our students opportunities to tell their own stories shows them that we value them and their stories, and that we want to learn more. In modeling teaching methods for my preservice teachers, I seek to show them that their stories matter, so that they may do the same for their own students. First, however, I need to help them figure out how to tell their stories, and why their stories are worth sharing. The stories come first, and then they connect the science.

Digital Storytelling

Digital storytelling is the process of using multimedia to tell a story, and is used in many different fields, including education, public health, and law. As Dip (2014) wrote, digital storytelling is useful for “giving a voice to the vulnerable and enabling their story to be told,” (p 30). In science methods courses, we seek to empower our teacher candidates to share their lived experiences and seek to learn from others’ experiences. As a way of learning about teacher candidates, modeling methods by which these candidates can learn about their own students, and giving candidates an opportunity to practice connecting science to a real-life context, I designed the personal science podcast assignment. In collaboration with other methods colleagues, I have used the assignment with both preservice elementary and secondary teachers. These teacher candidates have used the assignment to reflect on their connections to science, and how they use language with their students (Frisch, Cone, and Callahan, 2017).

Engaging in the process of creating a digital story can help students collect information, organize their conceptions, and become more motivated to learn (Burmark, 2004; Hung, Hwang & Huang, 2012; Robin, 2008). Much of the research on digital storytelling includes an approach of integrating photos, videos, and other images along with audio narration to tell a personal story (e.g., Couldry, 2008; Robin, 2008), and the approach detailed in this paper has a primary focus on the audio narration. This focus was intentional: observations during other technology-related studies have provided evidence that students spend a great deal of time and effort on finding and editing the “perfect” image when presented with a digital storytelling assignment, and writing the script and polishing the narration were given much less attention. One focus of this assignment is to encourage teacher candidates to think about the language they use: written and spoken. This led to the podcast vehicle to frame the assignment. Despite the auditory focus, the assignment can still be placed under the umbrella of digital storytelling because it includes each of the seven “elements of digital storytelling” (Lambert, 2002): point of view, dramatic question, emotional content, gift of your voice, pacing, soundtrack, and economy.

To frame lessons in methods courses, we refer to Social Justice Standards developed by Tolerance.org and based on Derman-Sparks’ (1989) four goals for anti-bias education: identity, diversity, justice, and action. The personal science story podcast assignment provides teacher candidates an opportunity to engage with and reflect on the domains of identify and diversity as they relate to science teaching. The digital storytelling skills of remembering, creating, connecting, and sharing are interwoven within the assignment, and each of these practices can help teacher candidates deepen their understanding of their own cultures and identities as well as give them an opportunity to learn about and show respect for the stories of others (Willox, Harper, & Edge, 2012).

Academic Language

Much as teacher candidates feel time pressure to “cover” large amounts of science content when they teach, those of us who teach science methods courses feel pressure to discuss a wide variety of topics in a limited amount of time. My own efforts to meet teacher preparation standards and make sure that my candidates are equipped with a wide variety of research-based best practices for teaching science inquiry has sometimes meant that I have not given my candidates much of an opportunity to think about how they will support science literacy and language development in their classrooms. The widely-used teacher candidate assessment, edTPA, as well as efforts to give teacher candidates more tools to support English Learners in science classrooms, have made me more aware of the need to provide opportunities to think about academic language and science literacy.

We want our teacher candidates to feel prepared to let their students do science; equally important is that they are ready to support their students in writing, reading, speaking, and listening to science talk (Pearson, Moje, and Greenleaf, 2010; Silva, Weinburgh, and Smith, 2013). Science reform efforts can sometimes result in a de-emphasis of these literacy skills, but reading and writing about science does not have to mean less time for inquiry. The type of science inquiry that involves doing science– making predictions, designing investigations, and collecting and analyzing evidence—can be enhanced by conceptualizing science literacy as a form of inquiry (Pearson et al., 2010). The process of composing an appropriate, science-based question to ask and reading through and paraphrasing science texts and journals to communicate what is already known about the answer can be thought of as components of science inquiry (Frisch, Jackson, and Murray, 2017).

Academic language includes both the vocabulary and the syntax that we use primarily in a school-based setting, rather than conversational language. Scientific language is not the same as academic language, though there is some overlap in that both forms of communication require formality, conciseness, and a “high density of information-bearing words” (Snow, 2010, p. 450). Preservice teachers initially focus on these information-bearing words—the vocabulary of science—rather than on the words and concepts that are still academic in nature but not strictly science-based. For example, teacher candidates might make the assumption that their students already understand the difference between “analyze” and “interpret” rather than explicitly teaching these ideas. By giving teacher candidates a chance to analyze their own language use, both academic and conversational, we can model the process of explicitly teaching academic words and skills like “analyze” and how analyzing data is different from simply displaying data. The language analysis component of this assignment supports this kind of reflection.

Teacher-created podcasts are one way to use the assignment; once created, teacher candidates can use the podcasts with their students. Audio podcasts can be an effective way to reinforce academic language, both in terms of vocabulary and in language function and fluency. Putman and Kingsley (2009) found that fifth-graders who used teacher-prepared podcasts that focused on science vocabulary performed significantly better on vocabulary tests than students who received classroom instruction alone. Student responses indicated that students both enjoyed the podcasts and found them helpful in terms of reviewing words they had forgotten. Borgia (2009) found that fifth-grade students who were given access to teacher-created podcasts as a supplementary tool were able to increase their vocabulary retention.

An extension of the assignment, in which teacher candidates give their own students opportunities to create podcasts, has the potential to be even more powerful, both for learning language and inquiry. Dong (2002) observed that effective biology teachers provide English Learners (ELs) with assignments that offer authentic practice in speaking, reading and writing in the context of biology learning, and this additional practice (especially if done in groups) can reduce speaking anxiety and enhance students’ ability to communicate about science. Another goal of the assignment is to give teacher candidates skill in creating the kind of podcast that can enhance understanding of both scientific and academic language, and to gain self-efficacy in supporting their students to make literacy gains.

In this podcasting assignment, teacher candidates are encouraged to use their own language, in the context of their own stories. We want to value the story as we value the person that tells it (Hendry, 2007). Transitioning between the conversational and the academic in a podcast requires a kind of code switching, and teacher candidates can use this assignment to reflect on different uses of spoken and written language, how they are useful, and what they might miss. The process of using the kind of “real life” language to think about more academic topics can be useful to help students increase understanding and skill in how they use language (Amicucci, 2014), and possibly how they go on to teach language use.

Procedure for Facilitating the Personal Science Story Podcast

Engage: Listen to Some Podcasts

To introduce the assignment to the audience (whether that audience is teachers, teacher candidates, or K-12 students), engage them by giving them an opportunity to listen to an example personal science story podcast. I have produced two podcasts to use as examples: one is 5 minutes (http://bit.ly/ISTE_worms) and another is 10 minutes (http://bit.ly/ISTE_helicopter). These examples are available on SoundCloud for public use, and the accompanying teachers’ guides (discussed later) and podcasting resources are available on this website: http://storiesandatoms.weebly.com. Each semester, we ask our teacher candidates for permission to post their podcasts on the SoundCloud channel, and we now have several other example podcasts available with permission (https://soundcloud.com/jennifer-frisch).

Another option is to share episodes from The Story Collider (http://www.storycollider.org/podcasts/), a podcast that allows scientists to share personal experience stories and connect these back to science. We note, however, that this podcast series was designed for adult audiences, and as such, some episodes are labeled “explicit” (usually for language and sometimes content). StoryCorps is another podcast that can be used in a variety of ways with students or teachers to demonstrate the idea of personal story podcasts; it uses an interview format to tell stories, and there are some examples of stories that reflect on personal science as well.

Explore: The Story Circle

The “story circle” is a small group discussion in which students share ideas for their stories, listen to other students’ stories, and provide constructive criticism. When we started doing this assignment, we noticed that many of our teacher candidates (particularly elementary preservice candidates) were struggling with connecting their real lives to science, and their stories started out either heavily expository (explaining a science concept in somewhat stilted language) or without any connections to science (e.g., a personal story without explicit connections to science concepts). Using a structured story circle early in the process has helped strengthen both the science and the narratives in candidates’ story podcasts, while also increasing their collaboration skills and sense of their class as a scientific community.

Students come prepared to participate in the story circle by bringing two ideas for stories from their lives that they want to tell; encouraging candidates to think of a story or stories that tell the audience something about their identity (who they are as a person, where they come from) can be helpful. Some prompts from the “Digital Storytelling Cookbook” (Lambert, 2010) may be provided for those students that are struggling to think of a story. Although students can write down some notes if they wish, the objective is to have them tell the stories, briefly, in a conversational tone to the group. For example, a teacher candidate participated in the story circle by saying, “I was thinking about two different things, but I’m not sure. One story was about this time when I got sleep paralysis, but then I have another story when I broke my arm falling out of a tree.” The other participant-listeners in the story circle then asked questions about the stories, helping her to tell a little more about each incident, and giving her feedback on which story they wanted to hear more about. As a natural part of these discussions, other candidates started coming up with ideas about the science concepts that might be connected with each story.

An important rule of the story circle is that each participant comes prepared to listen to colleagues’ stories and ask respectful questions. A facilitator should be present in the story circle to help remind participants to be respectful of others’ stories and work, and be receptive to suggestions of others. The guidelines posted by Roadside Theater found at https://roadside.org/asset/story-circle-guidelines?unit=117 (Roadside Theater, 2016) can be helpful to review with students before the circle begins.

After participating in the story circle, teacher candidates begin writing the script for their story. Although this process should be iterative, with opportunities for feedback and revision, some teacher candidates may need some initial support in constructing the backbone of their stories. To this end, one could use Ohler’s expansion of Dillingham’s (2001) “Visual Portrait of a Story” (Ohler, 2013; also available online at http://www.jasonohler.com/pdfs/VPS.pdf). The Visual Portrait of a Story diagram can help the writer map out her story’s problem, conflict, and conclusion. For some students, having this structure in place will lead to writing a full draft of the story, but others will prefer to begin working on the science portion before fleshing out the rest of the story.

Explain: Researching the Science

Once students have begun to map out the general structure of their stories, the next step is to decide on a science concept they would like to research and connect to the story. This step typically comes much easier for secondary science teacher candidates and those elementary candidates who are already enthusiastic about science content: in fact, these candidates often have to be cautioned to focus on just ONE science concept to connect to their story, rather than turning their podcast into a lecture on the science concepts and their connections. I reinforce the idea that the language function for the podcast is primarily to ENGAGE the audience, and secondarily to EXPLAIN the science. This reminder serves several functions: 1) to help explain and reinforce the idea of language function; 2) to help students who might be more inclined to write more exposition remember that an engaging story is the more important part of the podcast; and 3) to reassure those students who do not have strong self-efficacy in their own abilities to learn and explain science that the personal story itself is valuable and important.

Teacher candidates identify one or two ideas that their story makes them wonder about. I ask the teacher candidates to stretch themselves and think about a connection they would like to learn more about, rather than a science concept that they already feel comfortable explaining. For example, if a teacher candidate has decided to tell a story about how she broke her arm, she might feel comfortable relating that story to a description of the names and sizes the bones in the arm. With some guidance, an instructor could help her think of some connections that she will have to do some research to answer: how much force would have to be applied to break a bone? How do bones repair themselves? The focus of this part of the assignment is on questioning: find a question you want to know more about, and then research the answer to the question. This is a good time to discuss (or review) the difference between science questions that can/should be answered using experimentation and science questions that are better answered with library-based research.

During this part of the project, talk about how to identify valid and reliable internet sources to help with research, and how to cite sources appropriately. As the candidates conduct their research, they often find more information than they need to answer their question. The next step is to add the science to the story podcast script. Examine the Next Generation Science Standards and identify standards that fit the science focus– these could be disciplinary content standards, science and engineering practices, or integration. Then the candidates can do their research on the science ideas, and work on putting their findings into appropriate language for the grade level band(s) they are targeting. At this stage it is helpful to reinforce the idea that the primary language function for the podcast is to engage the audience. Although we want the science concept to be well-connected to the story, the podcast story itself will only introduce the concept, and the Teachers’ Guide will expand on the concept.

Elaborate: Language Analysis, Justification, and Teachers’ Guide

After teacher candidates have revised their podcast script to include both the story and the science, they analyze the language in their script in two ways: 1) they examine the vocabulary present in the script, and 2) they examine the reading level of their script.

The academic vocabulary is analyzed using AntWordProfiler (Anthony, 2014), an open-source program that is available for free at (http://www.laurenceanthony.net/). Students input their script as a text file, and the output is color-coded (Figure 1), showing the number and percentage of words that are Level 1, or in the first 1000 most common words (red font color) in the English language according to the General Service List (GSL, West & West, 1953); Level 2 words, or the second 1000 most common words (green font color) from the GSL, Level 3 words (blue font color), or words on the Academic Word List (AWL, Coxhead, 2000); and Level 0 words (black font color), which are not found on any of previously mentioned lists. AntWordProfiler also allows you to program your own lists of words, so if an instructor or candidate would like to target Dolch words or words from a particular science language list, that can also be done. A ten-minute script is short enough that we can ask teacher candidates to look through the words identified as “level 0” and select those words that they feel would be classified as “scientific” for the analysis (other “level 0” words could be proper names, slang, misspelled words, or other uncommon words: candidates have to determine which words they think are “scientific” and justify their responses).

Figure 1 (Click on image to enlarge). Sample output from the AntWord Profiler (Anderson, 2014) program after teacher candidate input her draft script.

The next part of the analysis uses readability-score.com to gather data on the readability of the script. Teacher candidates can copy and paste their text into the site (the free version will analyze the full text of a ten-minute podcast script, but one can only enter three files a day for free). The output includes readability grade level scores including the Flesch-Kincaid Grade Level, Gunning-Fog score, Coleman-Liau Index, SMOG index, Automated Readability Index, and an “average grade level” that takes each of the above indices into account. The site also provides assessment of text quality, syllable counts, adverb counts, and reading and speaking time (Figure 2). Although I note that students can often hear and understand text at a higher level than they can write or read, this step is helpful to get candidates thinking about some of their assumptions about what level of language they are using with students; secondary teacher candidates, in particular, often assume that students will understand complex words even if they are English Learners. The language analysis worksheet (Appendix A in the Appendices) guides teacher candidates in reflecting on the extent to which this language-based evidence reflects the grade level they are targeting with their podcast, and justify whether they think they should change some of their language. One goal of this portion of the project is both to get our teacher candidates to reflect on how they use language and to model the process of analyzing data and justifying reasoning. In this case, the data is in the form of the information provided by the software: percentage of words at each level, readability scores based on different criteria, text quality and syllable counts. Based on these data, candidates make decisions while editing their script, and they must also justify their decisions using data. For example, a candidate that noticed that her script had 6 sentences in passive voice and 27 sentences with more than 20 syllabus decided to re-write all sentences to be in active voice and break up her long sentences to make the language both stronger and more accessible to her target group of students. Making and justifying decisions based on data are skills we are also trying to teach candidates to support in their students.

Figure 2 (Click on image to enlarge). Sample output from the readability-score.com website after candidate submits the text of a draft of her planned story.

The Teachers’ Guide is an extension of the podcast for teacher candidates. While the audience for the podcast should be a class of students, the audience for the Teachers’ Guide is the students’ instructor. If the podcast is used as an “Engage” activity, the Teacher’s Guide can guide the “explore,” “explain,” and/or “elaborate” portions of a lesson: it provides a teacher with activities connected to the concept (explore) that students could do as well as background information about the concept (explain). Throughout the methods course, candidates have been practicing how to teach science by incorporating aspects of the Essential Features of Inquiry, and this framework is used to guide candidates in creating or adapting an appropriate activity for students that could connect science concepts with their story. Additional guidance provided to preservice teachers through the course includes practice with language supports such as graphic organizers, sentence starters, and sentence frames that could be used to enhance their students’ developing science literacy. While developing their Teachers’ Guides, candidates apply their skills in planning both inquiry-based activities that allow students to collect and make sense of data and language supports in the context of their science story. Required components in the teachers’ guide include connections to Next Generation Science Standards, background and supplemental information on the science concept, vocabulary with definitions, and activities that could be used to allow students to explore and expand on the concept by collecting and/or analyzing data. Teacher candidates are asked to cite sources they used for enhancing their own understanding of the concept and any sources they used to develop the activities.

Evaluate: Assessment

For the final step in the project, candidates will record, edit, and ‘produce’ their podcasts, including (creative commons) sound effects or music to enhance the soundtrack if they wish to do so. Students are encouraged to use Audacity to edit their podcasts, because it is free and easy to learn with a variety of tutorials that are updated often on YouTube (one current favorite is http://wiki.audacityteam.org/wiki/Category:Tutorial). If students have the access (e.g., through university computer centers) and the desire to use different software such as Adobe or Garageband, they are encouraged to do so, with the caveat that they will have to find their own tech support, and that the school they teach in may not have access to the software they are gaining skill in using.

The rubric used to assess the personal science story podcasts (Appendix B in the Appendices) is designed to support both the product and the process. At each part of the process, candidates are given extensive feedback to use for revision of the final project. The assignment integrates a variety of skills and objectives, so it is spread out through the semester, in connection with other methods being taught: for example, the story circle can be connected to an introduction to culturally responsive pedagogy, the language analysis component is connected to talk moves, and the Teachers’ Guide construction is done in conjunction with practice with language and literacy supports. At the end of the semester, we have a “science story listening party” where students share their final podcasts in small groups, and those that are comfortable doing so can submit their podcasts and teachers’ guides for me to post online.

On Sharing Student Stories

Many teacher candidates that have completed the assignment have found it to be meaningful in helping them gain skill and self-efficacy in using technology, in learning about science concepts and the Essential Features of Inquiry, and in language analysis. In addition, the process of creating and reflecting on individual (rather than group-created) digital stories can help preservice teachers show increased evidence of self-awareness and emotional engagement (Challinor, Marin, and Tur, 2017), and we have seen this in candidates completing this assignment through their final self-assessments, in which students report increased understanding of their identities and those of some of their colleagues. For some projects in the course, candidates express a strong preference to work in a group, but the “personal” aspect of the story podcast encourages them to push themselves, while still giving them a group “comfort zone” when making use of the story circle idea.

It goes without saying that posting podcasts online should only be done with the consent of the authors. If doing this activity with K-12 students, you will also need parent permission. Although voice-only podcasts are less problematic than posting video, voices and the stories they tell can be individually identifiable so care should be taken to make sure that authors are aware of that possibility.

There are a variety of different platforms one can use to post a podcast series online, and these come with advantages and disadvantages. If you want to make your podcast episodes private (so that only the students in your class can listen to them), it is easiest to just use a learning management system (e.g., Moodle, Canvas, Blackboard, etc.). Universities that have an iTunes U account often have tech support for uploading class-created podcasts to that platform. Another option is to develop a website that you can use to host your podcast (e.g., WordPress, Weebly), although if you plan to upload audio you will generally need to pay an additional fee to accommodate the extra storage. Each website builder may have a media hosting service it recommends (e.g., Blubrry, SoundCloud) and these, too, will come with an additional fee. One newer app/service, http://anchor.fm, shows promise for creating and publishing story podcasts using phones or tablets, including unlimited storage of episodes, analytics, and transcription, and it is free.

The preservice teachers with whom we have shared this project have found it engaging and valuable. Different teachers enjoy different parts of the project: some like the process of constructing a story, some enjoy researching and communicating about a science concept, and some are most engaged by getting a chance to record and edit their stories. The listening parties give the teachers a chance to share their work in their story circle. I ask them to reflect on what they learned from the project: many students reflect on the extent to which the project has taught them something about their colleagues, something about their connections to each other and to science, and something about the power of story to enhance or bring these connections to light.

The Home Inquiry Project: Elementary Preservice Teachers’ Scientific Inquiry Journey

Introduction

In the past two decades, there have been continued calls for elementary teachers to encourage children’s natural curiosity by providing opportunities for children to be actively engaged in various aspects of scientific inquiry including making observations, developing questions, performing investigations, collaborating with peers, and communicating evidence and findings (NGSS Lead, 2013; NRC, 2007; NSTA, 2002, 2012). The National Research Council’s utilization of the term ‘practices’ is aimed at providing a more comprehensive elucidation of “what is meant by ‘inquiry’ in science and the range of cognitive, social, and physical practices that it requires” (NRC, 2012, p.30). Engaging students in these scientific practices through experiential learning opportunities enables them to “to deepen their understanding of crosscutting concepts and disciplinary core ideas” (NRC, 2012, p.217). Regrettably, the reality of science instruction in the early grades is contrary to the recommendations. In addition to the obstacle of lack of instructional time, elementary teachers’ own inadequate scientific knowledge, inaccurate beliefs about the nature and process of science, and negative attitude and low self-efficacy with respect to science and science teaching (Kazempour & Sadler, 2015; Fulp, 2002; Keys & Watters, 2006; King, Shumow, & Lietz, 2001) are all major contributing factors accounting for the minimal and mediocre coverage of science witnessed in the early grades (Banilower, Smith, Weiss, Malzahn, Campbell, & Weiss, 2013).

Prior studies have indicated that elementary preservice teachers view science as a rigid and linear process, the scientific method model, that is solely focused on experimentation, proving or disproving hypotheses, and accumulating facts (Kazempour, 2013, 2014; Kazempour & Sadler 2015; Plevyak, 2007). Many in this group believe that scientists mainly work individually and isolated from their peers except to communicate their findings with the scientific community. Furthermore, they possess stereotypical images of scientists as mainly aging, white male figures, with lab coats, glasses, and other such features, whose work involves the use of beakers, Bunsen burners, microscopes, and chemicals to perform experiments and advance level research in their laboratories (Barman, 1997; Driver, Leach, Millar, & Scott, 1996; Kazempour & Sadler, 2015; Moseley & Norris, 1999; Quita, 2003). Consequently, elementary preservice teachers typically view science as a tedious, irrelevant, and boring process that they find uninteresting and out of reach (Kazempour, 2013, 2014; Kazempour & Sadler 2015; Tosun, 2000)

As highlighted in a number of studies (e.g. Adams, Miller, Saul, & Pegg, 2014; Chichekian, Shore, & Yates, 2016; Kazempour & Sadler, 2015; Lewis, Dema, & Harshbarger, 2014), for many preservice teachers, particularly elementary preservice teachers, their beliefs about the process of scientific inquiry and the scientific community stems from their prior experiences with science, especially as part of their K-12 science education. Elementary preservice teachers often describe their previous experiences with science as inadequate, unmemorable, or negative (Kazempour, 2013). Their recollections of school science commonly include teacher-led lectures or whole-class discussions, heavy reliance on the textbook, infrequent labs and activities that were often completed to confirm ideas discussed by the text or the teacher, and, of course, fact-based tests that would often conclude their science chapters and units (Kazempour, 2013; Kazempour & Sadler2015)

Elementary preservice teachers’ prior K-12 encounters with science not only shapes their beliefs about science, but also significantly influence their attitude toward the subject and level of confidence in learning or teaching science (Appleton, 2006; Avery & Meyer, 2012; Hechter, 2011; Kelly, 2000; Tosun, 2000). According to the 2012 National Survey of Science and Mathematics Education, only 39% of elementary teachers indicate feeling “very prepared to teach science” in comparison to 81% in literacy and 77% in mathematics (Banilower, et al., p. 41). The combination of negative attitude and low self-efficacy with respect to science and science teaching often influence elementary teachers’ instructional practices; either avoiding science altogether or relying on brief, scripted, and text or worksheet focused strategies.

Achieving the goal of developing young children’s understanding of the scientific process will depend extensively on the type of educational experiences they encounter in the classroom. Hence, it is critical that teachers be provided transformative and reflective opportunities that lead to changes in their beliefs, attitudes, confidence, and ultimately their science instructional behaviors (Mullholland & Wallace, 2000). Elementary science content and methods courses which account for and address preservice teachers’ prior experiences, beliefs, and attitudes through alternative science experiences have been shown to lead to positive changes in these domains (Morrell & Carroll, 2003; Tosun, 2000). This article focuses on a project, the Home Inquiry Project, that I have implemented in my elementary science methods course so that preservice teachers have an opportunity to experience and be immersed in the process of scientific inquiry in order to gain a more accurate and complete understanding of the process.

Context

The Home Inquiry Project is a component of the science methods course that I teach at one of the campuses of a large Northeastern university. The elementary teacher candidates enroll in the science methods course during the fall semester of their senior year in the program. They are concurrently enrolled in the social studies and mathematics methods courses and the two-day field experience in the local urban school district. Most of the students in the course are female, Caucasian students from either the small towns or urban cities in the approximately 50-mile radius of the campus. During the first two years of the program, they are required to enroll in three science content courses, one from each discipline of life, physical and earth science.

The Origins of the Project

The Home Inquiry Project originated from an idea I had come across in several articles dealing with engaging preservice teachers with their own authentic inquiry investigations as a component of their science content or methods course. However, the authentic experiences described in these examples only focused on the design and implementation of scientific investigations with emphasis on hypothesis testing and identification of variables. As Windschtill (2004) suggests, preservice teachers may still hold on to their longstanding views of science as the step-by-step and linear scientific method and that such investigation experiences may “do little more than confirm these beliefs through the course of investigative activity” (p. 485). In my methods courses, I introduce students to the cyclical and complex model of scientific inquiry as depicted in Figure 1. This model is comprehensive in that it encompasses the scientific practices emphasized by the NGSS, underscores the importance of community analysis and feedback, and emphasizes the interdependence of science, engineering, and technology, and the influence of science, engineering and technology on society and the natural world (NRC, 2012). Therefore, I wanted to design a project that would provide my students an experience which would more genuinely mimic this cyclical and more complex process of scientific inquiry, including the components of the process that typically receive less attention such as the connection of science to society, community feedback, role of serendipity and creativity in science. Since 2011, I have implemented the Home Inquiry Project in my methods courses and the impact on the preservice teachers’ views about and attitude toward science has been remarkable (Kazempour, in press).

Figure 1. (Click to Enlarge) Flow Chart Depicting the Process of Science. Source: The University of California Museum of Paleontology – Understanding Science –  www.understandingscience.org 

 Phase 1: Introducing the Project

The various components of the project are introduced in segments throughout the semester in order to better demonstrate the process of scientific inquiry. Students are given the initial instructions for the project early in the semester as soon as they are introduced to the scientific practices of developing questions and making observations. The initial prompt is simple and instructs them to choose one of the three options and generate questions and make observations for several consecutive days. The three options that students may choose from to focus their observations include the following:

Option 1: Daytime Sky

On a daily basis, observe the sky and record your observations. Try to do so at the same location. Include the date and time, location, a description of what you observe, a drawing or a photo of what you see, questions you wonder about, etc.

Option 2: Nighttime Sky

On a nightly basis, observe the sky and record your observations. Try to do so at the same location. Include the date and time, location, a description of what you observe, a drawing or a photo of what you see, questions you wonder about, etc.

Option 3: Field/Site

Pick a site (same location each day). It could be your backyard, a local park, on a beach, next to a pond, in a field, etc. On a daily basis, observe the area (choose a smaller area within that location to focus on if the location is too large) and record your observations. Include the date and time, location, a description of what you see, a drawing or a photo of what you see, questions you wonder about, etc.

During the next class session, they are introduced to different types of observations (qualitative vs. quantitative), inferences, and predictions, and are asked to extend their inquiry to include different types of observations, inferences, and predictions.

Phase 2: Initial Connection to Scientific Inquiry

During the following week, a segment of the class is devoted to discussing their initial observations, questions, and inferences as well as their thoughts on the process up to that point. The team and subsequent whole-class discussion prompts students to think about possible questions that they are interested in or ways they can extend their observations. For example, they point out that their initial observations were limited to what they could “see” and how after our discussion they were incorporating their sense of smell, hearing, and even touch. Some of them indicate during the first discussion session that they are already losing interest in what they were initially making observations of and have found themselves wondering about other things that they were noticing. For example, students who observe the daytime sky, often speak about becoming interested in the birds that flew by or the jet contrails they could observe in the sky. We discuss the fact that they can make observations of and ask questions about anything that interests them and are not confined to a particular aspect of the sky or the field.

During the next two class sessions, they are introduced to the scientific inquiry model through a number of collaborative activities, discussions, and the video, Science in Action: How Science Works, by California Academy of Sciences, about the accurate model of scientific inquiry and its connections to authentic scientific work. At this point, I have them work in small teams to discuss the components of the inquiry model they have already been involved with in the Home Inquiry Project and ways they could engage in more components. They are instructed to make another week’s worth of observation, as frequently as they deem necessary, and explore how they may want to extend or redirect their projects. We discuss the flexibility of the process and how they are not confined to the original options they had selected which were meant to simply provide them an initiation point.

Phase 3: Independent Explorations

During the next class session, after we briefly discuss their ongoing experiences and possible modifications in their project, I provide the final set of instructions for the project. They are instructed to continue with their projects in any way they wish to as long as they are engaged with the components of the scientific inquiry model. I explain that they can refine their investigations, continue gathering data, search the literature, reshuffle their project at any time, and so forth. Some may wish to gather evidence while others may want to restart with an entirely different question or simultaneously investigate several related questions. Similarly, some many want to explore societal connections of their topic or search the literature to expand their understanding of the concepts or issues they encounter. At this point, they are informed that the project will culminate in approximately six weeks with individual presentations of their projects during week 10 of the course.

Phase 4: Presentations and Reflections

Depending on class size, students are allotted approximately ten minutes to present their projects. Presentation must be in the form of narrated PowerPoint, narrated Prezi, or an iMovie or other format video. Regardless of the format, the presentations must address: (a) a thorough description of their journey, (b) connections to the process of scientific inquiry, and (c) implications for future teaching.

In describing their journey, students are instructed to explain what observations or questions they started with, how their questions may have evolved, evidence they gathered, transitions they made along the way, and any other aspect of their experience. They are reminded that each individual will have a different journey and that there is no “correct” path that they have to take during the project or explain during their presentation. As part of their descriptions they need to include photos, drawings, videoclips, charts, and other pieces of evidence that would aid in understanding their projects. Second, in describing their project, they are instructed to clearly make connections to and describe the specific components of the scientific inquiry process that they were engaged with throughout their project. Finally, students are asked to reflect on the implications of their experiences for their future classroom teaching. In doing so, they could either discuss their own specific projects or the Home Inquiry Project in general.

Reflecting on the Project

Each presentation is followed with a brief question and answer session where students can engage in conversations regarding specific questions they may have for each presenter or items they found interesting. Afterwards, the class engages in a reflective class discussion about the Home Inquiry Project, their experiences, and overall understanding of science that they gained from the experience. Students’ presentations and verbal comments during the reflection session suggest an overall positive perception of the project and an improved understanding of the process of scientific inquiry.

In the beginning of the semester when the project is first introduced, students continually ask about more specific instruction or check to make sure that they are “on the right track.” It is often strange for them how open ended the instructions are at first, but as we proceed through the project and they learn about the cyclical process of scientific inquiry and through continued in-class discussion and reflection they begin to recognize the rationale for the open-ended nature of the project as suggested in this student reflection except.

The first night I began my observations, I wasn’t sure what I was looking for.  I simply went outside and looked up at the sky.  I didn’t have any questions I was looking to answer.  As time progressed, a very natural curiosity began to develop. I initially began to wonder why I couldn’t always see this moon.  This soon expanded to ‘why can’t I see the moon OR stars on many nights?’

In their final reflections, students comment on the flexible nature of the project and how they felt interested in what they were investigating and motivated to do the project because they chose the path rather than being dictated what to do. Furthermore, they comment on the improvement in their observation and questioning skills and how they find themselves asking questions and making observations more routinely throughout their daily lives and how they are increasingly aware of their surroundings.

The actual experience of being involved in the process of going back and forth between the various components, such as tweaking questions, searching in the literature, making additional observations, and communicating and collaborating with their peers, allows them to notice the resemblance of the process to the fluid nature of scientific inquiry as opposed to the scientific method model.

I have found that the skills developed through science inquiry are skills that are essential in everyday life. There is value in understanding the “why” and “how” in unfolding events. These skills are vastly different from the traditional scientific method, where conclusions are based on the accumulation of facts. Creative thinking and problem solving skills innately develop from the nature of the process found in scientific inquiry.

What is exciting about the inquiry learning is the unknown direction that it will take you. I never thought staring at the night sky could lead me to learn about the different spectrums of light.

Their experiences not only allow them to utilize scientific practices and witness the fluid and iterative nature of scientific inquiry, but it also allows them to better experience and understand cross cutting concepts (NRC, 2012) such as patterns, stability and change, cause and effect, similarity, and diversity.

Finally, they reflect on the numerous implications of the project for their future teaching. Some indicate how a similar project could be done with their own students by asking students to perform similar explorations in their backyards or location of their choice. Teaching in an urban area, they recognize the flexibility of the project in allowing students to focus on even the simple things in their surroundings. They also discuss, as suggested in the excerpts below, the importance of being able to utilize their improved understanding of science in more accurately depicting the scientific process in their science lessons and units.

This experience will follow me into my future classroom and into my future science lesson plans. Inquiry based learning will not only be a part of my science curriculum but also a majority of other subjects with incorporating interdisciplinary objectives.

In my future teaching, I want to help my students feel the way I have come to feel about science.  I realize now that science is more about the journey you take. Finding answers or possibilities (or maybe nothing at all!) are just the end products of that process.

I learned it does not take much to find something amazing relating to science.  I don’t think this is specific to the area we live in but I do think there are so many resources in this area that could be utilized by an elementary class to extend science learning to the outside world.  There are waterways, nature trails, ample wildlife, even their own backyards, etc. The options are endless for relating lessons in the classroom to locations very close to the school.

Conclusion

Authentic experiences, such as the Home Inquiry Project, which immerse preservice teachers in the various aspects of the process of scientific inquiry have the potential to influence preservice teachers’ understanding of science as well as their attitude and confidence toward doing and teaching science. If the ultimate goal is the development of scientific literacy through engaging K-12 students, particularly those in the early grades, in authentic inquiry experiences, then we need to better prepare the teacher population that will be responsible for implementing this type of instruction in the classroom. Elementary teachers will continue to either avoid teaching science altogether or do so in a superficial, test preparation and coverage-focused manner that does not accurately depict the reality of the scientific process unless science content and methods courses begin to actively engage them in these forms of inquiry and reflective practice.

Teaching Outside the Box: A Collaborative Field Experience of Formal and Nonformal Educators

Introduction

As science teacher educators, most methods courses include coverage of content and pedagogical practices essential to effective science instruction. For the elementary teaching candidate, this includes the development of science instructional plans for use with school-aged learners. A common problem encountered with this expectation centers on the aspect of curriculum implementation– the where, what, and when of science teaching and learning. The Common Core Standards have directly impacted science learning at the elementary level in states that have adopted them (National Governors Association Center, 2016). The majority of the day is dedicated to literacy and mathematics, leaving science, social studies, and health as extracurricular content areas rotated throughout the school year. This not only impacts our teaching candidates’ opportunities to observe science teaching and learning, but also limits their chances to implement lessons with school-aged children.

Many science educators have been innovative and creative in their efforts to provide preservice candidates with science teaching opportunities. At the elementary level, candidates have provided instruction at family science night (Gunning & Mensah, 2000), Saturday science clubs (McLaughlin, 2015), discovery centers (Jarrett, 1999), environmental education centers (Bennett & Heafner, 2004; Carrier, 2009; Moseley, Reinke, & Bookout, 2002), in school gardens (Carrier, 2009; Carrier-Martin, 2003; Cronin-Jones, 2000), and at local museums (Kisiel, 2013). The literature also reveals how interdisciplinary partnerships between faculty in teacher education programs (Shin, Lee, & McKenna, 2016; Maheady, Magiera, & Simmons, 2016; McClanahan & Buly, 2009) and among university faculty and local institutions (VanSickle & Schaumleffel, 2016; Bainer, Cantrell, & Barron, 2000) benefit undergraduates as well as the local community. Engagement in service-learning, faculty research and collaborative projects promote authentic, meaningful contexts for learning and have a lasting impression on the teaching candidate (Lederman 1999; Tilgner 1990).

In our teacher education program, elementary candidates have one science methods course. The course covers the elementary science curriculum, essential science content, processes, methods, and inquiry-based planning and assessment. And while all of these elements are vital to science planning and teaching, a recurring challenge centers on the instructional context for application. We want elementary candidates to have one science teaching/learning experience to be powerful and meaningful, encompassing candidates’ knowledge of content, children, inquiry and school curriculum (Wilson, Shulman, & Richert, 1987). In this article, we describe a unique project developed for the field experience. Through an interdisciplinary approach, elementary education majors were paired with recreation managers to develop and implement inquiry-based learning activities surrounding a fifth grade science standard.

By thinking outside the box, an unconventional partnership between formal and nonformal educators was initiated. The goal was for these future professionals to collaborate, share expertise and promote science learning in natural spaces.

Project Inception and Preliminary Work

We have degrees in outdoor education, though our professional pursuits have led us to different programs of study. One of us has spent decades in public education as an elementary teacher and outreach educator, while the other has spent years in national parks and has facilitated a number of environmental education programs. Our involvement on university committees, as well as our participation in local service activities, presented us with many opportunities to converse about our work. In time, we recognized a shared frustration with the practicum component of our methods courses. As interns, both elementary education and recreation manager students were to engage in designated field placements where knowledge and strategies were practiced. However, our course evaluations suggested that the practicum had little value beyond an assigned space for completing required coursework. This limitation prompted us to propose and develop an interdisciplinary field experience in which our students worked together to plan and teach science to school aged learners.

After gaining approval from our respective departments, the first step required that we compare course goals and expected student outcomes. As the instructors, we shared general beliefs about science teaching and learning, but had to distinguish formal from informal learning (Kisiel, 2010; Tal & Steiner, 2006). In teacher education, we often refer to informal learning as experiences that take place outside the classroom (such as field trips or afterschool programs), but recreation managers who often provide outreach education, refer to outdoor learning experiences as nonformal. Therefore, we defined formal learning as pedagogically-based and typically associated with structured learning environments and identified nonformal learning experiences as structured activities that promote participants’ skills (orienteering, climbing, boating) or knowledge (map reading, rock formations, tides and currents) typically aligned with recreational choices or environmental advocacy. This distinction was necessary for distinguishing the roles (and expertise) of the Elementary Education (ELED) and Recreation Management (RM) faculty and students participating in this venture.

Next, we examined the typical student population enrolled in our methods courses. At the time, an average of 22-24 first semester seniors was enrolled in each section of the elementary science methods course. The majority of ELED candidates were Caucasian females, with 50% growing up in suburban areas and 25% indicating rural or urban areas of upbringing. RM students were traditionally second semester sophomores or juniors, 65% male and 35% female. Though a bit more ethnically diverse, the majority of RM students were Caucasian and identified their area of upbringing as 50% suburban, 35% urban and 15% rural. Though the ELED candidates were further along in their program and had more pedagogical training, RM students had a range of leadership and/or risk management courses that included outdoor education.

With learning domains identified and student background experiences in mind, we focused our attention on the shared course assignments completed during the practicum component of our respective courses. In the science methods course, elementary candidates constructed a three-day instructional sequence formatted to the 5E learning cycle (Bybee, 2015). At least one lesson was to be taught to a group of elementary students under the supervision of a licensed practitioner. Analysis of assessment data, teacher feedback, and candidate reflection were subcomponents of the instructional design. In the recreation management methods course, the practicum setting included municipal, state, or federal parks, and outreach assignments aligned with the core competencies of recreation and parks systems. The practicum work focused on leadership, management, programming, and administration skills (Barcelona, Hurd, & Bruggeman, 2011). To ensure common course requirements were met, we integrated the 5E instructional plan with the RM students’ outreach education assignment, resulting in a shared instructional plan for implementation.

In drafting the guidelines for the assignment, we selected four science curricular strands from the North Carolina Standard Course of Study (NCSCOS). Each plan was to include repeated practice of an identified process skill. Students from both programs would be randomly assigned a partner, a curricular strand and practicum date. ELED candidates would propose the “exploration” and “explanation” portions of the inquiry to the RM partner and together, they would determine an appropriate ‘engagement’ activity. RM students would be responsible for contributing activities for the “elaboration” portion of the 5E plan. As the curriculum experts, ELED candidates drafted the plan and shared essential science background content; the RM students contributed nature knowledge and addressed group management. The responsibility of “evaluation” was intentionally kept separate, with the ELED candidate responsible for a formative science assessment and their RM partner focused on program evaluation.

Supporting the Venture

After drafting an overview of the shared curriculum design project for implementation outdoors, we sought support from our university and community partners. For the ELED candidates, it was important that the science teaching involved students from a local public school. For the RM students, we needed a local agency that provided outreach education. Since the practicum would take place outdoors, the agency selected had to be within a reasonable distance to the local school site. The university needed to support this interdisciplinary effort as well, resulting in an internal grant ($5,000) for travel and resources over the academic year. In this section, we share the actions taken to bridge the partnership with our local constituents. We refer to these identified groups as investors, for, without their support, this project would not have been possible.

(Click on image to enlarge)

Investors of the Project

District (school)

With the end of the school year quickly approaching, it was important to contact teachers from existing school partnerships. One school had a departmentalized fifth grade and the science teacher on this team had been in the first author’s graduate class. We approached her (and the team) about an outdoor learning experience that included four field excursions to a neighboring federal park at no cost to the school. We outlined the planning and implementation process, highlighting how the experience would provide 5th graders with an opportunity to observe change in the natural world over time. The mathematics teacher had ideas for integrating geometry and the language arts teacher felt the opportunity would lend itself to her unit on poetry and informational writing. The team’s immediate concerns, however, related to district field trip mandates and transportation costs. Even with a budget to support transportation, the group was less than optimistic that the project would occur.

The proposed project was then shared with the school principal. While concerned about budgetary aspects, she felt this opportunity would be a great experience for the 5th grade students and the teaching team. She consented to the additional field trips, but only if: 1) transportation costs were covered and, 2) the superintendent approved the project. In an effort to move forward, we identified potential dates for the trips using the recently approved school calendar. Field excursions were scheduled about 4-5 weeks apart to allow ample planning time and seasonal variation at the park. Trips were tentatively planned for early October, November, March and late April.

The principal arranged for a meeting with the superintendent. Perhaps serendipitous, the district superintendent had curricular roots in outdoor learning. Her enthusiasm for the project extended beyond the science opportunities for the elementary students and included an expressed interest in forging stronger relations with both the university and the federal park. She felt the partnership was not only innovative in regard to science learning, but provided a large population of at-risk students an opportunity to interact with college students over time. In her letter of support, she approved the tentative calendar, waived the district field trip mandate, and offered two activity buses for transportation of the elementary students.

Federal park

The choice of a local federal park (managed by the United States Army Corps of Engineers) was intentional. The chosen site was a source of near-by nature, only four miles from the school and a familiar source of recreation to the local community. Just days before contacting the park superintendent, an interpretive ranger had crafted a partnership memorandum for the chair of the Recreation Management program at our university. In his attempt to strengthen ties with the university, we were invited to the park to discuss the project. We described how ELED candidates and their RM partners would co-construct a science lesson and implement it with 5th graders at the park. The ranger agreed that, upon approval from the park superintendent, one campground area near the lake would be designated to our project and reserved for the four field excursions. The ranger also referred us to the ‘Friends of the Lake’ group that was in the midst of converting a space at the site into an Environmental Education Center.

We met with the park superintendent and a representative from the Friends of the Lake group in late June. Again, we described our intentions and received support. As a partner in this endeavor, the superintendent waived site fees, granted access to facilities (even during “off” season when closed to the general public), and designated an interpretative ranger to assist us on the days of the field excursions. The Friends’ group offered us an inaugural visit to the Environmental Education Center upon its opening in the spring. With letters of agreement from the school district and the federal park, it was time to put words into action.

Project in Motion

As faculty, we identified two topics from course syllabi that would serve as the “common knowledge” shared by both ELED and RM students: 1) Learning in Nature and 2) Comfort in Nature through Environmental Socialization. Since one aspect of the collaboration required science teaching in an outdoor setting, it was necessary for both groups to understand the importance of children’s interaction with nature as it influences intellectual development (Brown, 2009; Burdette & Whitaker, 2005; Dadvand et al., 2015; Gray, 2011; Kahn & Kellert, 2002). We wanted students to understand how direct and regular access to the natural world has the potential to sharpen an individual’s “breadth of awareness, facility of reasoning, acuity of observation and associative skills” (Pyle, 2002, p. 315). It was also important that they recognize nature’s potential to build confidence, develop identity, and supplement learning for elementary students (Anderson, Lawson, & Mayer-Smith, 2006; Ewert, Place, & Sibhthorp, 2005; Proshanksy & Fabian, 1978). Whether a formal or nonformal educator, the value of nature strand was not only the context for science teaching and learning but also the means for emphasizing the value of nature experiences during the formative childhood years.

(Click on image to enlarge)

In Last Child in the Woods, Richard Louv (2005) expressed concern about the lack of nature opportunities available to today’s children. We recognized that our college students were of this generation and likely had limited outdoor nature experiences. To increase their confidence and comfort in outdoor settings, we expanded course content on human development to include the notion of environmental socialization (ES). Through ES, essential ancillary skills and competencies are developed through frequent outdoor experiences and promote the individual’s conceptualization of self in terms of the environment (Bixler, Floyd, & Morris, 2002; James, Bixler, & Vadala, 2010). This tied in well with the value of nature content because it highlighted how repeated and frequent experiences in the outdoors inform the individual’s practical knowledge of the physical world. During the first week of the course, students in both classes responded to a survey that included 35 Environmental Socialization items, 10 science teaching efficacy items from the STEBI-B (Bleicher, 2004), 5 items specific to college science coursework and environmental education training, and two open-ended items about comfort in the outdoors and teaching science. Demographic information included area of upbringing, gender, and year of birth. The ES measures provided information about recollected childhood experiences and were used to explain and emphasize the significance of these experiences in their own life trajectories in class. We hoped this would further substantiate the rationale for the collaboration and shared practicum experience. A primary goal was for both groups to understand how these formative experiences have the potential to impact future interest, comfort and confidence in science learning for children. The efficacy items were used as pre/post data for the project, providing comparison measures between the formal and nonformal groups.

By early August, both methods courses had been modified to align with our interdisciplinary approach to the shared field experience. Both groups of students met for a general orientation about the joint project/partnership the third week of classes and were randomly assigned partners and curriculum topics at that time. The following week, ELED and RM candidates traveled to the federal park site and met with the ranger. During this visit, the teams selected their designated area, and examined surfaces (grass, forest, open field, parking lot), resources (lake, beach, and playground) and proximity to covered area (amphitheater, pavilion) in case of inclement weather. RM students assessed feasibility of designated teaching areas by evaluating logistics and timing of rotation stations. ELED candidates identified essential materials to the inquiry and modified the 5E plan to fit the selected space. As a part of the shared instructional assignment, an out-of-class meeting between ELED and RM students was required to develop and finalize the instructional plan. By the end of the fifth week, teams had to submit a projected budget and materials list. Each team had the experience of working with limited funds and resources, a reality they would face in their future professions.

In finalizing lessons, teams were encouraged to practice the lessons multiple times. The goal was to implement the engage, explore and explanation portions of the plan in 45 minutes. Instructional pacing was important, especially since each team had to be able to informally assess 5th graders’ learning before they rotated to the next station. For each 5th grade field excursion, ELED and RM students arrived to the park site 1.5 hours in advance (around 6:45 a.m.). Teams were given time to set up their station, organize materials, and quickly run through lessons. The last 15 minutes were spent determining the rotation circuit based on selected sites. During this time, teams designated who would escort students to the next station and who would set up for the next group. When the school buses arrived (at 8:15 a.m.), 5th graders were greeted, assigned to a station group, and escorted to that designated area.

At each station, 5th grade students engaged in a preliminary activity or question that led to the planned exploration. Explorations averaged 25-30 minutes and included data collection in provided science journals. The explanation portion of the lesson was directed toward the 5th graders questions and experiences. The remaining time was spent reinforcing key terms, skills and concepts through the RM activity. After the 5th graders rotated through four stations, a final whole group culminating activity was led by the second author, providing an opportunity for participants to share a favorite moment or experience from the day. The 5th graders were then bussed back to school where the teaching team would spend another 2-3 days reinforcing these learning experiences through writing, math, and science instruction.

In Retrospect: The Project

Close to 100 Appalachian State University students participated in this field experience over the academic year. A final product from the partnership included a curriculum guide with a dozen 5E lesson plans aligned to the NC State Science Standards. In addition, over eighty 5th grade students from a local elementary school engaged in multiple outdoor science learning experiences facilitated by future educators at a neighboring federal park. The district superintendent and principal attended the final field excursion, celebrating the partnership in local newsletters and district correspondence. In addition, the authors were asked to provide inservice to 5th grade teachers in the district using the federal park as the venue for future field trips. The park superintendent and Friends of the Lake group requested copies of the curriculum guide and continue to utilize the materials with visitors to the Environmental Education Center. Though recognized by the investors, our primary focus had been to impact the science teaching/learning experience through a shared practicum. Therefore in this final section, we highlight key findings about the collaboration.

(Click on image to enlarge)

Undergraduates

From survey data collected the first week of class, we noted that ELED and RM students conveyed uncertainty or discomfort with science content knowledge (Udo, Ramsey, & Mallow, 2004). Specific to ELED candidates, we observed increased anxiety once curricular topics were assigned (Gunning & Mensah, 2011). Yet as the semester progressed, ELED candidates’ discomfort shifted from understanding of science content to managing groups and materials in an unstructured (unfamiliar) setting. The RM students’ comfort with facilitating groups in outdoor settings, as well as their expertise with risk management, helped mediate their partners’ anxieties and reduce stresses related to the unexpected. Similar to the recommendations of McLaughlin (2015) and Kelly (2000) we believed that this experience, when combined with our students’ growing expertise in formal and nonformal settings, positively impacted their confidence in the teaching of science.

Unique to this project, was the opportunity for ELED candidates to assume a mentoring role during the instructional planning process. Prior to this project, RM students perceived lesson planning and implementation as requiring little work or effort. However, after working with ELED candidates and the 5th graders, they were more likely to recognize how purposeful planning and preparation impacted the learning experience for the 5th graders. Though RM students expressed an increased appreciation for the instructional planning of the formal educator, ELED candidates’ reflections consistently indicated an increased confidence in planning and teaching science.

The rotation arrangement provided both groups with multiple opportunities to adjust, modify, and practice their instructional approaches (Bennett & Hefner, 2004). Activities observed during the latter rotations included better pacing, more direct questioning, and improved management of materials and resources. With each repetition, candidates expanded upon their understanding of science concepts and vocabulary (McLaughlin, 2015) and exhibited more comfort and confidence in teaching the lessons as the day progressed. Both ELED and RM students indicated the benefit of this type of arrangement during debriefings and in teaching reflections. The majority of ELED candidates and RM students referred to the students’ engagement and excitement for science learning as a worthwhile outcome of their efforts.

Finally, this collaboration demonstrated the need for public land managers to partner with local schools to promote advocacy for natural spaces. Both groups had the opportunity to work with various constituents that can provide support and enhance their professional roles. In this project, nonformal and formal realms were fused to create a shared learning domain, a place in which the expertise and knowledge of its members contributed to the growth and development of the participants. ELED candidates utilized the outdoor environment as a natural space for science teaching/learning, and RM students recognized the importance of their role in advocating for public lands and supporting public school teachers through outreach.

Instructors

There are many aspects of this interdisciplinary project that contributed to our growth as instructors and learners. In retrospect, a great deal of time and energy had been devoted to the practicum experience for our students. Course evaluations confirmed the effort was worthwhile. Prior to this partnership, student comments tended to focus on our teaching style or the organization of the course. Comments during this project were centered more on the value of experiences or assignments related to the partnership.

ELED: “Planning the 5E with Jim (pseudonym) had its challenges, but I enjoyed how authentic the experience was. I felt like a real teacher working with someone who wanted the students to learn science.” (Course Evaluation)

RM: “Presents materials in real-life situations that we would encounter; projects helped us explore many parts of recreation so we fully understand what it takes to be a recreation major and what we need to be successful in the field” (Course Evaluation)

Course evaluations also revealed quantitative gains in the areas of teacher effectiveness, appropriateness of course assignments, and overall course ratings. While these unexpected outcomes were meaningful and provided baseline data for future work, we were unable to replicate the program without funding for transportation. Currently, ELED candidates continue to construct and implement lessons in the outdoors, but without the recreation majors for support.

Conclusion

In this section, we present four shared outcomes that made this teaching outside the box collaboration a worthwhile endeavor. These outcomes motivate us in our ongoing efforts to seek funding sources that promote university partnerships with local agencies and enhance the field experiences of candidates in our respective programs.

(Click on image to enlarge)

Outcome 1: This project promoted the idea that science teaching and learning is a shared responsibility that extends beyond the walls of the classroom and includes local and community partners (Kisiel, 2013). Recent declines in elementary science instructional time, limited childhood play in the outdoors, and lack of access or resources to participate in environmental education programs provide sufficient evidence that the formative science experiences of our nation’s youth are lacking. With frequent experiences in outdoor learning and participation in environmental education, the value of the natural world and recognition of it as an appropriate context for promoting an individual’s interest, curiosity and science knowledge is reinforced.

Outcome 2: Individuals need to reconnect with their natural surroundings. In the past decade, diminished interest and participation in nature-based activities have been reported (Hofferth, 2009). Parental fears of safety, lack of access to nature, and the emergence of digital technologies are but a few of the reasons cited for this waning interest in outdoor activity (Chawla, 1998; Louv, 2005). We noted that many of our undergraduates, as well as the 5th graders, had limited opportunities playing in the outdoors (Duerden & Witt, 2010; Miller, 2005; Pyle 1993). Evidence of outdoor experiences were limited to organized and/or group activities. Survey data revealed that both ELED and RM students were not comfortable teaching science content and that ELED candidates were more likely to indicate discomfort teaching in the outdoors. Educators, whether formal or nonformal, must feel comfortable in nature, and feel competent to carry out science learning in natural spaces.

Significant life and environmental socialization literature suggests frequent and enduring experiences with nature help develop comfort and skills in outdoor natural settings (Chawla, 1998; James, Bixler, & Vadala, 2010); Rios & Brewer, 2014; Tanner, 1980). Throughout the project, both ELED and RM students had ample opportunities to plan, apply, and practice effective strategies and approaches in an outdoor setting. Not only were the impact of these efforts rewarded by the 5th graders engagement, but resulted in a positive science teaching experience in the outdoors for the teaching candidates (Carrier, 2009).

Outcome 3: Elementary students can benefit from participation in innovative programs or projects that situate science learning in meaningful, appropriate contexts. As noted by Bingaman and Bradley-Eitel (2010), frequent outdoor experiences can contribute to increased science content knowledge and problem solving skills over time. We believe that the four “seasonal” field excursions had a positive impact on the 5th graders’ engagement and this influenced content knowledge specific to the curricular strands selected for the project. Using items from an end-of-grades (EOG) practice test as pre/post data, 5th graders correct responses to the identified landforms, weather/climate and interdependence items increased on average by four points.

In addition, we draw upon two additional occurrences that highlight the impact of our endeavor. First, we were informed by classroom teachers that the North Carolina End of Grades (EOG) science scores for the 5th graders increased from below district average to at district average, a significant change from the previous year. Because the school has such a transient student population, this was an incredible accomplishment whether impacted by the project or not. In addition, residential camp staff recognized and praised the students’ comfort in, and knowledge about, the outdoors. Having worked with many local schools over the academic year, the camp leaders were struck by the students’ enthusiasm during a 2-night overnight excursion.

Outcome 4: By promoting and supporting interdisciplinary teaching and learning projects at the university level, undergraduates have unique opportunities to engage in real-life experiences in professional contexts, further preparing them for future roles and responsibilities. This project resulted from ongoing discussions between two faculty members, in two different departments, in two different colleges at one state university. Yet, the partnership’s success can be credited to all the stakeholders: undergraduate students, elementary school students, classroom teachers, district and park superintendents, park rangers and a friends of park group.

Promoting relations, developing partnerships, supporting interdisciplinary projects—all common practices of professionals in the public sector (Smith & Trexler, 2006). However, elementary teaching candidates have limited social networks or resources early on, leaving them exposed and without support upon graduation. As science educators, we must critically examine and question whether our methods courses are preparing candidates for successful “real-life” science teaching. We questioned how competency and confidence in teaching science could occur without observing science teaching in practicum classrooms or without access to essential resources or materials. In answering these questions, we developed an experience for our candidates that utilized the natural world as a resource, as a classroom, and as an interdisciplinary venue for learning (Carrier-Martin, 2003; Duerden & Witt, 2010).

Acknowledgement

This partnership project was supported by a grant from the Appalachian State University Fellows Foundation.