Facilitating Preservice Teachers’ Socioscientific Issues Curriculum Design in Teacher Education

by Jaimie A. Foulk, University of Missouri - Columbia; Troy D. Sadler, University of North Carolina – Chapel Hill; & Patricia M. Friedrichsen, University of Missouri - Columbia
Abstract

Socioscientific issues (SSI) are contentious and ill-structured societal issues with substantive connections to science, which require an understanding of science, but are unable to be solved by science alone. Consistent with current K-12 science education reforms, SSI based teaching uses SSI as a context for science learning and has been shown to offer numerous student benefits. While K-12 teachers have expressed positive perceptions of SSI for science learning, they cite uncertainty about how to teach with SSI and lack of access to SSI based curricular materials as reasons for not utilizing a SSI based teaching approach. In response to this need we developed and taught a multi-phase SSI Teaching Module during a Science Methods course for pre-service secondary teachers (PSTs), designed to 1) engage PSTs as learners in an authentic SSI science unit; 2) guide PSTs in making sense of an SSI approach to teaching and learning; and 3) support PSTs in designing SSI-based curricular units. To share our experience with the Teaching Module and encourage teacher educators to consider ways of adapting such an approach to their pre-service teacher education contexts, we present our design and resources from the SSI Teaching Module and describe some of the ways PSTs described their challenges, successes, and responses to the experience, as well as considerations for teacher educators interested in introducing PSTs to SSI.

Service Learning for Science: A Transformative Field Experience for Preservice Elementary Teachers 

by Jenna Porter, CSU Sacramento; & Corinne Lardy, CSU Sacramento
Abstract

Preservice teachers are often faced with tension between theory about effective science education and practice. Service learning is one method for helping bridge the disconnect in meaningful ways that are mutually beneficial for both preservice teachers and community partners. With the recent adoption of the Next Generation Science Standards (NGSS) in most states, and the upcoming accountability testing for science, some elementary schools are beginning to shift toward more science instruction that supports students’ developing understanding of science concepts, as well as the practices in which scientists engage. This transition time provides an excellent opportunity to purposefully partner universities with elementary schools in an effort to support science education (for preservice teachers, inservice teachers, and elementary school students). We have redesigned our science methods course to integrate service learning to provide our preservice teachers with authentic experiences for teaching the effective pedagogical strategies and theories learned in the course. This paper describes the service learning component of our science methods course, which includes a unique field experience. It also illustrates evidence of the positive impact this service learning approach has had on our preservice teachers and community partners, and lessons learned through the process.

A Framework for Science Exploration: Examining Successes and Challenges for Preservice Teachers

by Keri-Anne Croce, Towson University
Abstract

Undergraduate preservice teachers examined the Science Texts Analysis Model during a university course. The Science Texts Analysis Model is designed to support teachers as they help students prepare to engage with the arguments in science texts. The preservice teachers received instruction during class time on campus before employing the model when teaching science to elementary and middle school students in Baltimore city. This article describes how the preservice teachers applied their knowledge of the Science Texts Analysis Model within this real world context. Preservice teachers’ reactions to the methodology are examined in order to provide recommendations for future college courses.

Enacting Wonder-infused Pedagogy in an Elementary Science Methods Course

by Andrew Gilbert, George Mason University; & Christie C. Byers, George Mason University
Abstract

Future elementary teachers commonly experience a sense of disconnection and lack of confidence in teaching science, often related to their own negative experiences with school science. As a result, teacher educators are faced with the challenge of engaging future teachers in ways that build confidence and help them develop positive associations with science. In this article, we present wonder-infused pedagogy as a means to create positive pathways for future teachers to engage with both science content and teaching. We first articulate the theoretical foundations underpinning conceptions of wonder in relation to science education, and then move on to share specific practical activities designed to integrate elements of wonder into an elementary methods course. We envision wonder-infused pedagogy not as a disruptive force in standard science methods courses, but rather an effort to deepen inquiry and connect it to the emotive and imaginative selves of our students. The article closes with thorough descriptions of wonder related activities including wonder journaling and a wonder fair in order to illustrate the pedagogical possibilities of this approach. We provide student examples of these artifacts and exit tickets articulating student experiences within the course. We also consider possible challenges that teacher educators may encounter during this process and methods to address those possible hurdles. We found that the process involved in wonder-infused pedagogy provided possibilities for future teachers to reconnect and rekindle a joyful relationship with authentic science practice.

Theory to Process to Practice: A Collaborative, Reflective, Practical Strategy Supporting Inservice Teacher Growth

by Martha Inouye, University of Wyoming; & Ana Houseal, University of Wyoming
Abstract

To successfully implement the Next Generation Science Standards (NGSS), more than 3.4 million in-service educators in the United States will have to understand the instructional shifts needed to adopt these new standards. Here, based on our recent experiences with teachers, we introduce a professional learning (PL) strategy that employs collaborative video analysis to help teachers adjust their instruction to promote the vision and learning objectives of the Standards. Building on effective professional development characteristics, we created and piloted it with teachers who were working on making student thinking visible. In our setting, it has been effective in providing relevant, sustainable changes to in-service teachers' classroom instruction.

An Integrated Project-Based Methods Course: Access Points and Challenges for Preservice Science and Mathematics Teachers

by Sam Rhodes, William and Mary; & Meredith W. Kier, William and Mary
Abstract

Two instructors in a secondary preservice teacher preparation program address the need to better prepare future teachers for the increasing role project-based learning has taken on in K-12 education. We describe an integrated instructional planning course where a mathematics educator and a science educator collaborated to teach preservice teachers how to design integrated project-based lessons. We found that the preservice teachers valued the integrated approach but had difficulty translating their learning to practice in traditional, clinical-based field placements. We report on recommendations for future course iterations.

Rigorous Investigations of Relevant Issues: A Professional Development Program for Supporting Teacher Design of Socio-Scientific Issue Units

by Amanda Peel, University of Missouri; Troy D. Sadler, University of Missouri; Patricia Friedrichsen, University of Missouri; Andrew Kinslow, University of Missouri; & Jaimie Foulk, University of Missouri
Abstract

Socio-scientific issues (SSI) are complex problems with unclear solutions that have ties to science concepts and societal ideas. These complexities make SSI ideal contexts for meaningful science teaching and learning. Although the student benefits of SSI in the classroom have been established, there is a literature gap pertaining to teacher preparation and support for SSI teaching and learning, and the design of SSI units. In order for successful and meaningful SSI incorporation in science classrooms, teachers need professional development (PD) experiences that scaffold their understanding of the complexities associated with SSI teaching and learning. As such, our team designed and implemented a PD program with explicit examples and design tools to support teachers as they engaged in learning about SSI teaching and learning. Additionally, our PD program supported teachers as they designed their own SSI units for classroom implementation. We describe our PD process for supporting in-service secondary biology, chemistry, and environmental science teachers as they learned about SSI instruction and co-designed their SSI units.

Before our work with this group of teachers began, our research team designed and implemented SSI units, and these results informed development of the SSI-TL framework. The SSI-TL framework has been helpful as we continue to design and structure new SSI units, so we made it a central aspect of the PD to guide what SSI teaching should entail. This framework and other tools were used to support teachers as they designed their own SSI units. The PD was successful in that all groups designed SSI units, and many were able to implement in their classes. The teachers indicated the PD was effective from their perspective and they learned about issues and practices. Specific feedback around scaffolding tools we provided indicated the tools helped teachers navigate the design process.

Cobern and Loving’s Card Exchange Revisited: Using Literacy Strategies to Support and Enhance Teacher Candidates’ Understanding of NOS

by Franklin S. Allaire, University of Houston-Downtown
Abstract

The nature of science (NOS) has long been an essential part of science methods courses for elementary and secondary teachers. Consensus has grown among science educators and organizations that developing teacher candidate’s NOS knowledge should be one of the main objectives of science teaching and learning. Cobern and Loving’s (1998) Card Exchange is a method of introducing science teacher candidates to the NOS. Both elementary and secondary teacher candidates have enjoyed the activity and found it useful in addressing NOS - a topic they tend to avoid. However, the word usage and dense phrasing of NOS statements were an issue that caused the Card Exchange to less effective than intended. This article describes the integration of constructivist cross-curricular literacy strategies in the form of a NOS statement review based on Cobern and Loving’s Card Exchange statements. The use of literacy strategies transforms the Card Exchange into a more genuine, meaningful, student-centered activity to stimulate NOS discussions with teacher candidates.

Personal Science Story Podcasts: Enhancing Literacy and Science Content

by Jennifer K. Frisch, University of Minnesota Duluth
Abstract

Podcasts (like “You are Not So Smart”, “99% Invisible”, or “Radiolab”) are becoming a popular way to communicate about science. Podcasts often use personal stories to connect with listeners and engage empathy, which can be a key ingredient in communicating about science effectively. Why not have your students create their own podcasts? Personal science stories can be useful to students as they try to connect abstract science concepts with real life. These kinds of stories can also help pre-service elementary or secondary teachers as they work towards understanding how to connect science concepts, real life, and literacy. Podcasts can be powerful in teaching academic language in science because through producing a podcast, the student must write, speak, and listen, and think about how science is communicated. This paper describes the personal science podcast assignment that I have been using in my methods courses, including the literature base supporting it and the steps I take to support my teacher candidates in developing, writing, and sharing their own science story podcasts.

The Home Inquiry Project: Elementary Preservice Teachers’ Scientific Inquiry Journey

by Mahsa Kazempour, Penn State University (Berks Campus)
Abstract

This article discusses the Home Inquiry Project which is part of a science methods course for elementary preservice teachers. The aim of the Home Inquiry Project is to enhance elementary preservice teachers’ understanding of the scientific inquiry process and increase their confidence and motivation in incorporating scientific inquiry into learning experiences they plan for their future students. The project immerses preservice teachers in the process of scientific inquiry and provides them with an opportunity to learn about and utilize scientific practices such as making observations, asking questions, predicting, communicating evidence, and so forth. Preservice teachers completing this project perceive their experiences favorably, recognize the importance of understanding the process of science, and reflect on the application of this experience to their future classroom science instruction. This project has immense implications for the preparation of a scientifically literate and motivated teacher population who will be responsible for cultivating a scientifically literate student population with a positive attitude and confidence in science.