Supporting Middle and Secondary Science Teachers to Implement Sustainability-Themed Instruction

by Sheron L. Mark, PhD, University of Louisville, College of Education and Human Development, 1905 S 1st Street, Louisville, KY 40292
Abstract

In today’s society, we face many complex environmental, social, and economic challenges that can be addressed through a lens of sustainability. Furthermore, our efforts in addressing these challenges must be collective. Science education is foundational to preparing students with the knowledge, skills, and dispositions to engage in this work in professional and everyday capacities. This article describes a teacher education project aimed at preparing middle and secondary preservice and alternatively certified science teachers to teach through a lens of sustainability. The project was embedded within a middle and secondary science teaching methods course. Work produced by the teacher candidates, including case-study research presentations and week-long instructional plans, is described.

Using Critical Case Studies to Cultivate Inservice Teachers’ Critical Science Consciousness

by Lenora M. Crabtree, University of North Carolina Charlotte; & Michelle Stephan, University of North Carolina Charlotte
Abstract

Culturally relevant and responsive science instruction includes support of students’ socio-political, or critical, consciousness. A lack of experience with marginalization, and limited attention to critical perspectives in science content and methods courses, however, may leave educators ill-equipped to address intersections of diversity, equity, and science instruction. Curriculum is needed that supports critical consciousness development among science teachers and their students. We describe an innovation, a critical inquiry case study, designed to address this essential facet of culturally relevant pedagogy. Design research methodology guided our development of an interrupted, historical case study employed as part of a four-day professional development workshop for secondary science teachers. In addition to provoking critical awareness and agency, the case study was designed to highlight ways that science itself may create or perpetuate inequities, or serve as a tool for liberation, a content-specific construct we call critical science consciousness. Implementation of the critical case study and participating teachers’ interactions with case materials are described. In addition, we highlight learning goals developed to support critical science consciousness and provide insights into ways teachers exhibited growth in each area. Teachers report heightened understanding of the role science plays in perpetuating inequities, transformations in ways they think about systemic inequities that impact students and families, and growing awareness of the possibilities inherent in teaching science for liberation.

Critical Response Protocol: Supporting Preservice Science Teachers in Facilitating Inclusive Whole-Class Discussions

by Charlene L. Ellingson, Minnesota State University, Mankato; Dr. Jeanna Wieselmann, Caruth Institute for Engineering Education; & Dr. Felicia Dawn Leammukda, Minnesota State University, St. Cloud
Abstract

Despite a large body of research on effective discussion in science classrooms, teachers continue to struggle to engage all students in such discussions. Whole-class discussions are particularly challenging to facilitate effectively and, therefore, often have a teacher-centered participation pattern. This article describes the Critical Response Protocol (CRP), a tool that disrupts teacher-centered discussion patterns in favor of a more student-centered structure that honors students’ science ideas. CRP originated in the arts community as a method for giving and receiving feedback to deepen critical dialog between artists and their audiences. In science classrooms, CRP can be used to elicit student ideas about scientific phenomena and invite wide participation while reducing the focus on “correct” responses. In this article, we describe our use of CRP with preservice science teachers. We first modeled the CRP process as it would be used with high school students in science classrooms, then discussed pedagogical considerations for implementing CRP within the preservice teachers’ classrooms. We conclude this article with a discussion of our insights about the opportunities and challenges of using CRP in science teacher education to support preservice teachers in leading effective whole-class discussion and attending to inclusive participation structures.

Using Student Actors and Video-Mediated Reflection to Promote Preservice Teachers’ Ability to Enact Responsive Teaching

by Kennedy Kam Ho Chan, The University of Hong Kong; Steven Ka Kit Yu, The University of Hong Kong; & Roy Ka Ho Sin, The University of Hong Kong
Abstract

This paper describes a teaching intervention that promotes secondary preservice science teachers’ (PSTs’) ability to enact responsive teaching. The intervention uses a modified version of rehearsals (Lampert et al., 2013) to enhance PSTs’ ability to enact a core practice: eliciting, interpreting, and using student thinking. In the intervention, PSTs have opportunities to decompose the core practice represented in classroom video clips and to approximate the practice in rehearsals. The intervention has three unique features: (1) student actors who simulate the complex classroom interactions inherent in responsive classrooms; (2) opportunities to view and analyze how different teachers (i.e., own, peers, and unfamiliar teachers) enact the core practice; and (3) opportunities for PSTs to reflect upon their own rehearsal videos filmed from multiple vantage points in the same classroom using innovative video technology such as point-of-view (POV) camera goggles. We describe what we have learnt from analyzing the PSTs’ views on the intervention in terms of their perceived learning from the intervention as well as whether and how the unique features of the intervention supported their learning. We also share the lessons learned and advice that we would like to share with other science teacher educators, especially in terms of how to better use and integrate innovative video technology such as POV footage into the teaching interventions to promote responsive teaching.

The Framework for Analyzing Video in Science Teacher Education and Examples of its Broad Applicability

by Anna Arias, Kennesaw State University; Brett Criswell, West Chester University; Josh A. Ellis, Florida International University; Lawrence Escalada, University of Northern Iowa; Michelle Forsythe, Texas State University; Heather Johnson, Vanderbilt University; Donna Mahar, SUNY Empire State College; Amy Palmeri, Vanderbilt University; Margaret Parker, Illinois State University; & Jessica Riccio, Columbia University
Abstract

There appears to be consensus that the use of video in science teacher education can support the pedagogical development of science teacher candidates. However, in a comprehensive review, Gaudin and Chaliès (2015) identified critical questions about video use that remain unanswered and need to be explored through research in teacher education. A critical question they ask is, “How can teaching teachers to identify and interpret relevant classroom events on video clips improve their capacity to perform the same activities in the classroom?” (p. 57). This paper shares the efforts of a collaborative of science teacher educators from nine teacher preparation programs working to answer this question. In particular, we provide an overview of a theoretically-constructed video analysis framework and demonstrate how that framework has guided the design of pedagogical tools and video-based learning experiences both within and across a variety of contexts. These contexts include both undergraduate and graduate science teacher preparation programs, as well as elementary and secondary science methods and content courses. Readers will be provided a window into the planning and enactment of video analyses in these different contexts, as well as insights from the assessment and research efforts that are exploring the impact of the integration of video analysis in each context.

A District-University Partnership to Support Teacher Development

by Katherine Wade-Jaimes, University of Memphis; Shelly Counsell, University of Memphis; Logan Caldwell, University of Memphis; & Rachel Askew, Vanderbilt University
Abstract

With the shifts in science teaching and learning suggested by the Framework for K-12 Science Education, in-service science teachers are being asked to re-envision their classroom practices, often with little support. This paper describes a unique partnership between a school district and a university College of Education, This partnership began as an effort to support in-service science teachers of all levels in the adoption of new science standards and shifts towards 3-dimensional science teaching. Through this partnership, we have implemented regular "Share-A-Thons," or professional development workshops for in-service science teachers. We present here the Share-A-Thons as a model for science teacher professional development as a partnership between schools, teachers, and university faculty. We discuss the logistics of running the Share-A-Thons, including challenges and next steps, provide teacher feedback, and include suggestions for implementation.

Facilitating Preservice Teachers’ Socioscientific Issues Curriculum Design in Teacher Education

by Jaimie A. Foulk, University of Missouri - Columbia; Troy D. Sadler, University of North Carolina – Chapel Hill; & Patricia M. Friedrichsen, University of Missouri - Columbia
Abstract

Socioscientific issues (SSI) are contentious and ill-structured societal issues with substantive connections to science, which require an understanding of science, but are unable to be solved by science alone. Consistent with current K-12 science education reforms, SSI based teaching uses SSI as a context for science learning and has been shown to offer numerous student benefits. While K-12 teachers have expressed positive perceptions of SSI for science learning, they cite uncertainty about how to teach with SSI and lack of access to SSI based curricular materials as reasons for not utilizing a SSI based teaching approach. In response to this need we developed and taught a multi-phase SSI Teaching Module during a Science Methods course for pre-service secondary teachers (PSTs), designed to 1) engage PSTs as learners in an authentic SSI science unit; 2) guide PSTs in making sense of an SSI approach to teaching and learning; and 3) support PSTs in designing SSI-based curricular units. To share our experience with the Teaching Module and encourage teacher educators to consider ways of adapting such an approach to their pre-service teacher education contexts, we present our design and resources from the SSI Teaching Module and describe some of the ways PSTs described their challenges, successes, and responses to the experience, as well as considerations for teacher educators interested in introducing PSTs to SSI.

Introducing Preservice Science Teachers to Computer Science Concepts and Instruction Using Pseudocode

by Kayla Brauer, Drake University; Jerrid Kruse, Drake University; & David Lauer, Drake University
Abstract

Preservice science teachers are often asked to teach STEM content. While coding is one of the more popular aspects of the technology portion of STEM, many preservice science teachers are not prepared to authentically engage students in this content due to their lack of experience with coding. In an effort to remedy this situation, this article outlines an activity we developed to introduce preservice science teachers to computer science concepts such as pseudocode, looping, algorithms, conditional statements, problem decomposition, and debugging. The activity and discussion also support preservice teachers in developing pedagogical acumen for engaging K-12 students with computer science concepts. Examples of preservice science teachers’ work illustrate their engagement and struggles with the ideas and anecdotes provide insight into how the preservice science teachers practiced teaching computer science concepts with 6th grade science students. Explicit connections to the Next Generation Science Standards are made to illustrate how computer science lessons within a STEM course might be used to meet Engineering, Technology, and Application of Science standards within the NGSS.

Introducing ‘Making’ to Elementary and Secondary Preservice Science Teachers Across Two University Settings

by Shelly R. Rodriguez, The University of Texas, Austin; Steven S. Fletcher, St. Edwards University; & Jason R. Harron, The University of Texas, Austin
Abstract

‘Making’ describes a process of iterative fabrication that draws on a DIY mindset, is collaborative, and allows for student expression through the creation of meaningful products. While making and its associated practices have made their way into many K-12 settings, teacher preparation programs are still working to integrate making and maker activities into their courses. This paper describes an end-of-semester maker project designed to introduce preservice science teachers to making as an educational movement. The project was implemented in two different higher education contexts, a public university secondary STEM introduction to teaching course and a private university elementary science methods course. The purpose of this article is to share this work by articulating the fundamental elements of the project, describing how it was enacted in each of the two settings, reviewing insights gained, and discussing possibilities for future iterations. The project’s instructional strategies, materials, and insights will be useful for those interested in bringing making into science teacher preparation.

Keywords: constructionism; making; preservice; project-based; science education

Lessons Learned from Going Global: Infusing Classroom-based Global Collaboration (CBGC) into STEM Preservice Teacher Preparation

by M. Kate York, The University of Texas at Dallas; Rebecca Hite, Texas Tech University; & Katie Donaldson, The University of Texas at Dallas
Abstract

There are many affordances of integrating classroom-based global collaboration (CBGC) experiences into the K-12 STEM classroom, yet few opportunities for STEM preservice teachers (PST) to participate in these strategies during their teacher preparation program (TPP). We describe the experiences of 12 STEM PSTs enrolled in a CBGC-enhanced course in a TPP. PSTs participated in one limited communication CBGC (using mathematics content to make origami for a global audience), two sustained engaged CBGCs (with STEM PSTs and in-service graduate students at universities in Belarus and South Korea), and an individual capstone CBGC-infused project-based learning (PBL) project. Participating STEM PSTs reported positive outcomes for themselves as teachers in their 21st century skills development and increased pedagogical content knowledge. Participants also discussed potential benefits for their students in cultural understanding and open-mindedness. Implementation of each of these CBGCs in the STEM PST course, as well as STEM PST instructors’ reactions and thoughts, are discussed.