Science Units of Study with a Language Lens: Preparing Teachers for Diverse Classrooms

Citation
Print Friendly, PDF & Email

Heineke, A.J., & McTighe, J. (2019). Science units of study with a language lens: Preparing teachers for diverse classrooms. Innovations in Science Teacher Education, 4(3). Retrieved from https://innovations.theaste.org/science-units-of-study-with-a-language-lens-preparing-teachers-for-diverse-classrooms/

by Amy J. Heineke, Loyola University Chicago; & Jay McTighe, McTighe & Associates Consulting

Abstract

Recent educational policy reforms have reinvigorated the conversation regarding the role of language in the science classroom. In schools, the Next Generation Science Standards have prompted pedagogical shifts yielding language-rich science and engineering practices. At universities, newly required performance-based assessments have led teacher educators to consider the role of academic language in subject-specific teaching and learning. Simultaneous to these policy changes, the population has continued to diversify, with schools welcoming students who speak hundreds of different languages and language varieties at home, despite English continuing as the primary medium of instruction in science classrooms. Responding to these policy and demographic shifts, we have designed an innovation to prepare teachers and teacher candidates to design instruction that promotes students’ disciplinary language development during rigorous and meaningful science instruction. We add a language lens to the widely used Understanding by Design® framework, emphasizing inclusion and integration with what teachers already do to design science curriculum and instruction, rather than an add-on initiative that silos language development apart from content learning. This language lens merges the principles of culturally and linguistically responsive practice with the three stages of backward instructional design to support educators in designing effective and engaging science instruction that promotes language development and is accessible to the growing number of students from linguistically diverse backgrounds.

Introduction

In science classrooms spanning urban, suburban, and rural regions, students enter with ever diversifying cultural and linguistic backgrounds (National Clearinghouse for English Language Acquisition, 2010). In the context of the United States, 20% of students speak a language other than English at home, with half of these students considered English learners (ELs) due to still-developing English proficiency as measured by standardized tests of listening, speaking, reading, and writing (Linquanti & Cook, 2013; National Center for Educational Statistics, 2015). Despite the benefits of linguistic diversity in schools, these demographic shifts provide unique challenges for science teachers, who typically mediate students’ scientific learning, understanding, and achievement using the English language (Lee, Quinn, & Valdés, 2013). To ensure that students have equitable access to science content, teachers must consider and account for language in their daily classroom instruction (Heineke & McTighe, 2018).

Concurrent to the diversification of schools, science education as a field has embraced a vision of students learning and doing science through language-rich scientific and engineering practices, as evidenced by the Framework for K-12 Science Education (National Research Council [NRC], 2013) and Next Generation Science Standards (NGSS; NGSS Lead States, 2013). Indeed, the shift to the NGSS has resulted in instructional foci on science and engineering practices that simultaneously involve both scientific sense-making and language use (e.g., asking questions, constructing explanations, communicating information; Quinn, Lee, & Valdés, 2010). The resulting practice-oriented classroom thus serves as a rich language-learning and science-learning setting where science teachers are not perceived as language teachers but rather “supporters of the language learning that occurs in a content-rich and discourse-rich classroom environment” (Quinn et al., 2010, p. 1). Since the shift to the NGSS, scholars have indicated that explicit emphasis on language development is indicative of high-quality science instruction that effectively supports all students’ learning, including ELs (e.g., Lee, Llosa, Jiang, Haas, O’Connor, & Van Boonem, 2016; Maerten, Rivera, Ahn, Lanier, Diaz, & Lee, 2016; Zwiep & Straits, 2013). But achieving this practice requires concomitant teacher education that prepares science teachers to integrate language in instructional design and implementation (e.g., Stoddart, Solís, Tolbert, & Bravo, 2010; Tolbert, Stoddart, Lyon, & Solís, 2014).

Seeking to respond to the diversifying student population and changing educational policy context of teaching content and language in disciplinary classrooms, we have added a language lens to Understanding by Design® framework that already supports the design of effective instruction in thousands of schools across the country and world. Understanding by Design (UbD) prompts educators to design rigorous and authentic instruction that deepens students’ learning and understanding by beginning with the end in mind (Wiggins & McTighe, 2005). Curriculum designers progress through stages of instructional design – defining learning goals in Stage 1, designing assessments in Stage 2, and planning instruction in Stage 3 – as a means to promote meaningful learning that transfers to contexts beyond the classroom. In this article, we introduce the UbD framework with a language lens in the context of science teacher education. We (a) sketch the components of UbD with a language lens, (b) detail the integration of this approach to prepare teachers, (c) introduce the learning and application of two science teachers, and (d) share recommendations for implementation in science teacher education.

Backward Design for Learning and Language Development

UbD with a language lens uses the existing design framework, but adds a language lens using principles of culturally and linguistically responsive practice to prioritize diverse students while planning instruction that mediates the disciplinary learning and language development of all students (Heineke & McTighe, 2018). In this way, we begin with students, embracing and responding to their unique backgrounds, abilities, strengths, and needs. Grounded in culturally responsive pedagogy (Gay, 2010) and linguistically responsive teaching (Lucas, Villegas, & Freedson-González, 2008), the pre-planning component centers on getting to know learners to prompt dynamic instructional design that taps into students’ background knowledge and experiences, including language backgrounds and proficiencies. Reflecting the foundational basis of responsive and rigorous science instruction, practitioners need to recognize the diversity of students, including students’ language backgrounds, cultural background knowledge, and previous science learning and experiences. In this way, pre-planning involves amassing and analyzing data on students, including formal data (e.g., cumulative files, standardized test scores) and anecdotal data (e.g., observations, conversations).

Following pre-planning, Stage 1 begins with the end in mind by prompting educators to identify the desired results of the unit, including goals for transfer, meaning, and acquisition. Based on established goals (i.e., NGSS), transfer goals prompt students to transfer and use scientific learning beyond focal units of study, meaning goals involve students grappling with essential questions to build deep understandings about scientific concepts, principles, and processes, and acquisition goals focus on related knowledge and skills, which serve as building blocks to achieve larger transfer and meaning goals.

When adding the language lens to Stage 1, we maintain the rigor of scientific learning goals, which promotes the high expectations for all students at the heart of this approach. But science prompts complex and nuanced uses of language, including discipline-specific words, phrases, sentence structures, and text features (see Table 1). In this way, while upholding the high expectations for all students’ disciplinary learning, we want to explicitly target the development of pertinent scientific language, which fosters students’ academic language development and ensures equitable access to content. To accomplish this in instructional design, we (a) analyze the complex and demanding language that students need to achieve the unit’s transfer and meaning goals and (b) target the development of that language by writing objectives focused on language functions (e.g., analyze, critique) and language features (e.g., vocabulary, sentence structures, text features), as well as involving multiple language domains (i.e., listening, speaking, reading, writing; see Heineke & McTighe, 2018 for more information).

Table 1 (Click on image to enlarge)
Examples of Language Designs in Science

Stage 2 of UbD centers on designing assessments for students to demonstrate progress toward the unit goals defined in Stage 1. The focal point of unit assessments, performance tasks prompt students to engage in authentic situations that require transfer of scientific learning to real-world problems and practices. As a part of these experiences, students take on particular roles (e.g., scientist, meteorologist, engineer) and use understandings of scientific concepts and processes in simulated situations aligned to the unit’s learning goals. In addition to performance tasks, supplementary evidence involves students demonstrating learning across units via various measures (e.g., tests, quizzes, academic prompts; Wiggins & McTighe, 2005).

When adding the language lens on Stage 2, the goal is to design and integrate assessments that (a) capture data on both scientific learning and language development, and (b) provide equitable access for all students to demonstrate understanding (Heineke & McTighe, 2018). In this way, units should include performance tasks that are language-rich, culturally responsive, and linguistically accessible. When designed for authenticity, scientific performance tasks are naturally language-rich, as students interact with peers to discuss and solve problems (i.e., listening, speaking), as well as research and share findings via presentations, proposals, dioramas, or other products (i.e., reading, writing). To ensure all students can actively participate, tasks should (b) be culturally relevant to engage learners and not require prerequisite background knowledge, and (b) have linguistic scaffolds to ensure all students can contribute and demonstrate progress regardless of language background or proficiency. In addition to performance tasks, supplementary assessments are integrated to holistically capture students’ abilities, strengths, and needs in both science and language learning.

Table 2 (Click on image to enlarge)
GRASPS Task Framework with Language Lens

In Stage 3 of UbD, teachers design learning plans that authentically facilitate student learning and understanding as aligned to Stage 1 goals and Stage 2 assessments. This includes the learning plan, which involves hands-on experiences with real-world application and differentiation based on students’ backgrounds, abilities, and needs, as well as formative assessment embedded in instruction to glean students’ learning across the unit of study. When adding the language lens to Stage 3, we strategically plan instruction to achieve unit goals, including those for disciplinary language development, while responding to the unique and diverse needs of students (Heineke & McTighe, 2018). When planning the learning trajectory of science units, the language lens prompts consideration and purposeful integration of (a) students’ cultural and linguistic background knowledge, (b) collaborative, cognitively demanding tasks that involve listening, speaking, reading, and writing in English and students’ home languages, (c) complex texts that are culturally relevant and linguistically accessible, and (d) differentiated scaffolds and supports based on students’ language backgrounds, proficiency levels, and learning preferences (Herrera, 2016; Walqui & vanLier, 2010).

Preparing Teachers for Backward Design with a Language Lens

In addition to serving as a template to design instruction for K-12 students, UbD with a language lens provides teacher educators with an approach to prepare teachers to support diverse students’ language development in science instruction. In this section, we share ways to tackle this work with teachers in training, including in-class activities and resources for building the language lens on instructional design (for more detailed information, see Heineke, Papola-Ellis, Davin, & Cohen, 2018a).

Introducing science teachers to UbD with a language lens begins with buy-in. Science teachers are typically prepared as content experts with the pedagogical content knowledge to mediate students’ scientific learning (Shulman, 1986). Because of the very nature of schools, where English as a Second Language (ESL) and English Language Arts teachers maintain the primary responsibility for teaching language, science teachers might need convincing of their role in supporting students’ language development. We have found the most poignant way to achieve buy-in is having teachers begin by exploring data related to students’ linguistic diversity. When looking at formal data like home language surveys and English proficiency scores (e.g., ACCESS), teachers recognize students’ diverse backgrounds and proficiency levels. We then have them probe the multi-faceted nature of individual learners by collecting formal and anecdotal data on students’ background knowledge, cognitive strategies, language preferences, and scientific knowledge and self-efficacy (Collier & Thomas, 2007; Herrera, 2016). Our goal is for teachers to recognize diversity, paired with the need to maintain high expectations for all.

In Stage 1, we center efforts on deconstructing teachers’ and candidates’ linguistic blind spots. Science teachers are experts within particular disciplines, such as physics, chemistry, or biology, and in the context of the United States, many are also native English speakers. Taken together, teachers may not recognize the demanding, discipline-specific language that students need to access and engage in learning and understanding. To develop teachers’ understandings through empathy, we begin by simulating what students might experience linguistically in the science classroom, asking teachers to read highly complex articles from peer-reviewed journals (e.g., Journal of Chemical & Engineering Data) and use them to engage in a particular task (e.g., making a scientific argument using text-based evidence). We then provide specific tools and examples of disciplinary language demands to help teachers uncover linguistic blind spots, such as WIDA’s framework (2012) for academic language at word, sentence, and discourse levels, WestEd’s detailed taxonomy of academic language functions (AACCW, 2010), and Understanding Language’s overview of NGSS language demands (Quinn et al., 2010). Finally, after building empathy and awareness for the language lens in science teaching and learning, we move into analyzing unit-specific language demands and selecting those that are important, aligned, prevalent, and versatile to scientific content to then draft language-focused objectives.

In Stage 2, we want to teachers to embrace the value of performance tasks in promoting and measuring learning, understanding, and language development (Heineke & McTighe, 2018; Wiggins & McTighe, 2005). This begins by getting teachers to critically evaluate the traditional testing tools that may dominate their current repertoires. We use actual assessments, such as a summative paper-and-pencil test for a unit provided in the science textbook, to analyze for cultural and linguistic biases based on pre-planning data. Once biases are determined, we discuss the need to assess students’ scientific knowledge and skills without requiring a set level of language proficiency or privileging any particular cultural background knowledge. This then springboards into the exploration of performance tasks as the preferred approach to unit assessment, specifically probing ideas within three language-rich categories (i.e., oral, written, displayed). We then use the GRASPS framework with a lens on language (Heineke & McTighe, 2018; Wiggins & McTighe, 2005) for teachers to design performance tasks that align with students’ cultural background knowledge and scaffold access based on learners’ language proficiency (see Table 2). We use WIDA tools to determine developmentally appropriate language functions (i.e., Can-do descriptors; WIDA, 2016) and integrate authentic scaffolds (i.e., graphic, sensory, interactive; WIDA, 2007) to provide students’ equitable access to participate in the performance task.

For Stage 3, we want to build from what educators already know, such as inquiry-based science activities or EL-specific instructional strategies. In our experience working with teachers and candidates, this facet may be familiar based on previous coursework or professional preparation. The key is emphasizing not using a strategy for strategy’s sake, but selecting, organizing, and aligning instructional events and materials based on pre-planning data, Stage 1 goals, and Stage 2 assessments. Flexible based on the professional expertise and experience of the participants, adding a language lens to this stage centers on educators exploring the above facets (e.g., background knowledge, collaborative tasks, complex and relevant texts, differentiated supports) with the primary aim to build awareness of available approaches and resources that can enhance their current pedagogy and practice as science teachers (e.g., bilingual resources, amplification of complex texts). In addition to providing the space to explore high-quality, language-rich approaches and resources for various scientific disciplines, we model how to apply and integrate tools that align to the learning goals of instructional units of study.

The Language Lens in Action: A Closer Look at Two Science Teachers

Let’s exemplify this approach by looking at the instructional design work of two focal science teachers, who participated in a grant-funded professional development series on UbD with a language lens (see Heineke et al., 2018a, 2018b). Using the activities and resources detailed above, these teachers collaborated with colleagues across grades and disciplines to learn about UbD with a language lens and apply learning to their science classrooms.

Bridget, Elementary Science Teacher

Bridget was a sixth-grade science teacher at Wiley Elementary School, a K-6 elementary school with 1200 students in the urban Midwest. With the support of her assistant principal, she secured data to understand the culturally and linguistically diverse student population, including home language surveys and language proficiency tests (i.e., ACCESS). By exploring these data, Bridget learned that the majority of Wiley students spoke another language and approximately 45% of students were formally labeled as ELs. She was not surprised to see that Spanish was the majority language spoken by families, followed by Arabic, but learned about the rich array of linguistic diversity in the community with languages including French, Urdu, Tagalog, Bosnian, Hindi, Bengali, Farsi, Yoruba, Serbian, Romanian, Malay, Gujarati, Korean, Mongolian, and Burmese. Bridget also discerned that 50 of her 54 sixth graders used another language at home, including 10 labeled as ELs with 5 dual-labeled as having special needs.

Bridget chose to work on the first science unit of the school year on space systems, which merged science, engineering, and mathematics principles with the goal for sixth graders to use data and models to understand systems and relationships in the natural world. Per the suggestion of the instructor, she brought a previous unit draft to apply her evolving understandings of UbD with a language lens. Having already deconstructed her expert blind spot to flesh out the conceptual understandings pertinent to science standards and transfer goals, she considered her linguistic blind spot with the support of the instructor and other science educators. Bridget found having examples of science language demands (see Table 1) to be helpful in this process, using the categories and types of word-, sentence-, and discourse-level demands to analyze the disciplinary language her students needed to reach Stage 1 goals, including vocabulary (e.g., gravitational pull), nominalization (e.g., illuminate/illumination), idioms (e.g., everything under the sun), sentence structures (e.g., compare/contrast), and informational text features (e.g., diagrams). After pinpointing these knowledge indicators, she used data on her students’ language proficiency to draft skill indicators with attention to particular language functions (e.g., explain, compare) and domains (e.g., reading, writing).

After adding specific knowledge and skill indicators for language development in Stage 1, Bridget then shifted her attention to Stage 2 assessments. Following exploration of a multitude of language-rich performance task options, including those that prioritize oral, written, and displayed language (Heineke & McTighe, 2018), she decided to redesign her primary unit assessment using the GRASPS framework with a language lens (see Table 2). The resultant Mars Rover Team task (see supplemental unit) aimed to engage her sixth graders in authentic and collaborative practice with components strategically designed to promote disciplinary language use across domains (e.g., listening and speaking in teams, reading data tables, writing presentations) and scaffold for students’ language proficiency (e.g., drawings, technology, small groups). She planned to evaluate the resultant tasks for precise disciplinary language, including the vocabulary, nominalization, and other language features pinpointed in Stage 1 goals. In addition to the performance task, Bridget also added the collection of supplemental evidence to the unit of study, specifically aiming to collect and evaluate data on students’ scientific language development via journal prompts, personal glossaries, and resultant artifacts.

The final facet of the professional development focused on Stage 3, where Bridget revised the unit’s learning plan to target demanding disciplinary language, integrate students’ cultural backgrounds, and differentiate for multiple language proficiencies. Having embraced an inquiry-based approach to teaching science, she already had frequent opportunities for students to collaboratively engage in hands-on exploration and application of scientific concepts. By participating in language-focused professional development, she enriched students’ inquiry by adding opportunities for them to use their home languages as resources for learning, as well as tap into culturally specific background knowledge. For example, she modified her use of space mission notebooks to include personal glossaries for students to document pertinent scientific language, including translations into their home languages. Bridget also sought out and incorporated complex and culturally relevant texts, such as space-related myths, legends, and folktales from students’ countries of origin in Asia, Africa, and South America. Designed with her unique and diverse students in mind, the Stage 3 learning plan outlined her instructional trajectory for students to successfully achieve unit goals.

Jillian, Secondary Science Teacher

Jillian was a science teacher at Truman High School, a neighborhood public high school situated in a vibrantly diverse community in the urban Midwest. She began by exploring the rich diversity of her workplace, learning that 80% of the 1350 students use a language other than English home, representing 35 different languages. Spanish was the primary home language spoken, and 75% of the student body identified as Latina/o, but from countries spanning North, South, and Central America, as well as the Caribbean. Jillian also discovered that of that larger group of bilingual students, 25% are labeled as ELs, spanning a range of proficiency levels across language domains and including both newcomers to the United States and long-term ELs who had enrolled in neighborhood schools since the primary grades.

Jillian decided to focus on a weather and climate unit previously drafted for her earth and space science class. Working with other secondary teachers and using graphic organizers of academic language functions (AACCW, 2010) and features (WIDA, 2012), Jillian analyzed the unit’s transfer and meaning goals for language demands. She noted that her students would need to (a) interpret scientific evidence requiring diverse text features like maps, graphs, and charts, (b) describe weather using words that may be familiar from other contexts (e.g., humidity, temperature), (c) compare climates between local and global settings using distinct measurement systems (i.e., Fahrenheit, Celsius). From that analysis, she pinpointed the linguistic knowledge that her students would need to develop to access the larger learning goals, including weather-based text features and vocabulary terms and comparative sentence structures. She then refined skill indicators to target her students’ language development simultaneous to content, including analyzing weather-related data, interpreting weather patterns, and comparing climates. In this way, Jillian maintained the rigor of scientific learning while adding a lens on disciplinary language development to the Stage 1 goals.

Jillian wanted to design a performance task aligned to unit goals. After analyzing the paper-and-pencil test used by the previous earth science teacher, she realized the need to design an authentic, language-rich task that actively engaged her students in listening, speaking, reading, and writing focused on the disciplinary topics of weather and climate. Reflecting the instructor’s consistent messaging regarding responsive practice, she aimed to tap into her students’ rich sources of background knowledge, including their various global experiences and multilingual backgrounds. Using the GRASPS framework, she drafted a performance task where learners take on roles as potential weather reporters who use multiple sources of evidence to describe how weather affects human life around the globe. Students needed to use disciplinary language (in English and home languages) to compare and contrast how weather and climate influenced one facet of human life in various contexts. To ensure she had data to measure progress toward all Stage 1 goals, Jillian integrated opportunities to collect supplementary evidence throughout the unit.

After refining her goals and assessments with a language lens, Jillian wanted a learning plan that was rigorous, engaging, and interesting for her diverse students. Based on pre-planning data, she wove in students’ cultural and linguistic background knowledge. She began with a context-specific hook, prompting students to compare their city with other locations they had lived or traveled, and continued this strand by using global inquiry teams to analyze weather by continent and expert groups based on learners’ various countries of origin. Jillian then used approaches and resources explored during workshops to attend to disciplinary language, including consistent teacher modeling and student application with strategic scaffolds, such as sentence frames and graphic organizers. Having used the UbD template throughout the process of learning and applying the language lens, she completed a unit with a consistent and deliberate lens on scientific language. In this way, Jillian strategically designed experiences to support learners in reaching unit goals for learning and language development.

Conclusions & Recommendations

UbD with a language lens aims to provide all students with equitable access to rigorous learning and language development (Heineke & McTighe, 2018). By adding a language lens to the widely used UbD framework, educators learn to maintain the rigor of science teaching and learning while attending to disciplinary language demands (Heineke & McTighe, 2018; Lee et al., 2013). This timely innovation in science teacher education corresponds with current policy initiatives in K-12 schools and universities, including the NGSS that emphasize language-rich scientific and engineering practices (NGSS Lead States, 2013) and the Teacher Performance Assessment (edTPA) that prioritizes academic language embedded in content instruction (SCALE, 2018). In line with these broad policy shifts that bolster the role of language in science teaching and learning, this framework can be used with K-12 in-service and pre-service teachers, whether approached through professional development or university coursework.

Application in Practice

We originally designed and implemented this approach through a grant-funded, professional development project with in-service teachers working in 32 public schools in the urban Midwest, which included Bridget, Jillian, and other teachers spanning elementary, middle, and high schools in culturally and linguistically diverse communities (see Heineke et al., 2018a for more details on the project). Findings indicated that teachers, as well as participating school and district leaders, developed awareness and knowledge of discipline-specific language development, pedagogical skills to effectively integrate language in content instruction, and leadership abilities to shape implementation in their unique educational settings (Heineke et al., 2018b). By integrating the language lens into the existing UbD template, of which they were already familiar and comfortable in using, teachers embraced language development as a part of their regular teaching repertoires, rather than an add-on initiative.

We are currently integrating this approach into a university pre-service teacher education program, and our preliminary work indicates close alignment between the edTPA and UbD with a language lens. Of the many rubrics that are used to assess teacher candidates on the edTPA, over half directly relate to the components of the approach shared above, including planning for content understandings, knowledge of students, supporting academic language development, planning assessment, analyzing student learning, analyzing students’ academic language understanding and use, and use of assessment to inform instruction (SCALE, 2018). In addition to our previous research with in-service teachers, we plan to collect data on the implementation of UbD with a language lens with pre-service teachers, investigating how the approach and related professional learning experiences facilitate understandings, knowledge, skills, and dispositions for supporting language development in the science classroom.

Suggestions for Implementation

Based on our experiences in designing and implementing this approach, we have suggestions for science teacher educators who endeavor to prepare teachers and candidates for instructional design with a language lens. First, use the UbD template as a common tool to mediate both learning and application, adding the language lens to what educators already know and understand as sound instructional design (see Heineke & McTighe, 2018 as a potential resource to mediate teachers’ learning). Next, utilize the expertise of the educators themselves and build capacity more broadly across schools and programs, prompt collaborative learning and application in science-specific groups of teachers and candidates, as well as more diverse conglomerations of educators to promote co-planning and co-teaching with ESL, special education, or STEM teachers (see Heineke et al., 2018a). Finally, to avoid the conceptualization of language as an add-on initiative, integrate the language lens into science methods coursework and professional development for teacher candidates and teachers, respectively.

When approaching this professional learning in either coursework or professional development, we recommend expending ample efforts to initially build the needed buy-in that science teachers indeed play a role in supporting students’ language development. Since the educational institution has long maintained silos that separate language and content, those need to be broken down for educators to embrace learning and application to practice. Awareness of the role of the language in scientific learning can support these efforts, which can be effectively developed via simulations that build educators’ empathy for students’ interaction with discipline-specific language. When teachers are put in the position of students, such as needing to maneuver complex journal articles, they begin to recognize the need to attend to language in science teaching. Finally, emphasize the importance of students’ assets and teachers’ high expectations. The purpose of the language lens is not to reduce rigor in the science classroom, but rather to enhance instruction and provide equitable access for all learners.

References

Assessment and Accountability Comprehensive Center at WestEd (AACCW). (2010). Language for achievement: A framework for academic English language [Handout]. San Francisco, CA: WestEd.

Collier, V. P., & Thomas, W. P. (2007). Predicting second language academic success in English using the prism model. In J. Cummins & C. Davison (Eds.), International handbook of English language teaching, Part 1 (pp. 333–348). New York: Springer.

Gay, G. (2010). Culturally responsive teaching: Theory, research, and practice (2nd ed.). New York: Teachers College Press.

Heineke, A., & McTighe, J. (2018). Using Understanding by Design in the culturally and linguistically diverse classroom. Alexandria, VA: ASCD.

Heineke, A. J., Papola-Ellis, A., Cohen, S., & Davin, K. (2018a). Linguistically responsive professional development: An apprenticeship model. Improving Schools, 21, 32-47.

Heineke, A. J., Papola-Ellis, A., Davin, K. J., Cohen, S., Roudebush, A., Wright-Costello, B., & Fendt. C. (2018b). Language matters: Developing educators’ expertise for English learners in linguistically diverse communities. Language, Culture, and Curriculum. DOI: 10.1080/07908318.2018.1493493

Herrera, S. G. (2016). Biography-driven culturally responsive teaching (2nd ed.). New York: Teachers College Press.

Lee, O., Quinn, H., & Valdés, G. (2013). Science and language for English language learners in relation to Next Generation Science Standards and with implications for Common Core State Standards for English language arts and mathematics. Educational Researcher, 0013189X13480524.

Lee, O., Llosa, L., Jiang, F., Haas, A., O’Connor, C., & Van Booven, C. D. (2016), Elementary teachers’ science knowledge and instructional practices: Impact of an intervention focused on English language learners. Journal of Research on Science Teaching, 53, 579–597.

Linquanti, R., & Cook, H. G. (2013). Toward a “common definition of English learner”: Guidance for states and state assessment consortia in defining and addressing policy and technical issues and options. Washington, DC: Council of Chief State School Officers.

Lucas, T., Villegas, A. M., & Freedson-González, M. (2008). Linguistically responsive teacher education: Preparing classroom teachers to teach English language learners. Journal of Teacher Education, 59, 361-373.

Maerten-Rivera, J., Ahn, S., Lanier, K., Diaz, J., & Lee, O. (2016). Effect of a multiyear intervention on science achievement of all students including English language learners. Elementary School Journal, 116, 600–624.

National Center for Education Statistics. (2015). EDFacts file 141, Data Group 678; Common Core of Data, “State Nonfiscal Survey of Public Elementary and Secondary Education.” Table 204.27.

National Clearinghouse for English Language Acquisition. (2010). The growing number of English learner students 1998/99 – 2008/09. Washington, DC: Author.

National Research Council. (2013). Next generation science standards: For states, by states. Washington, DC: National Academies Press.

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: The National Academies Press.

Quinn, H., Lee, Okhee, & Valdés, G. (2010). Language demands and opportunities in relation to Next Generation Science Standards for English language learners: What teachers need to know. Understanding language: Language, literacy, and learning in the content areas. Palo Alto, CA: Stanford University.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4-14.

Stanford Center for Assessment, Learning, and Equity (SCALE). (2018). edTPA: Making good choices. Retrieved from https://www.edtpa.com/Content/Docs/edTPAMGC.pdf

Stoddart, T., Solís, J. L., Tolbert, S., & Bravo, M. (2010). A framework for the effective science teaching of English language learners in elementary schools. In D. Sunal, C. Sunal, & E. Wright (Eds.), Teaching Science with Hispanic ELLs in K-16 Classrooms. Albany, NY: Information Age Publishing.

Tolbert, S., Stoddart, T., Lyon, E. G., & Solís, J. (2014). The Next Generation Science Standards, Common Core State Standards, and English Learners: Using the SSTELLA framework to prepare secondary science teachers. Issues in Teacher Education, 23, 65-89.

Walqui, A., & van Lier, L. (2010). Scaffolding the academic success of adolescent English language learners: A pedagogy of promise. San Francisco: WestEd.

WIDA. (2007). English language proficiency standards and resource guide. Madison, WI: Author. Retrieved from https://www.wida.us/get.aspx?id=4

WIDA. (2012). Amplification of the English language development standards: Kindergarten–grade 12. Madison, WI: Author. Retrieved from https://www.wida.us/get.aspx?id=540

WIDA. (2016). Can-do descriptors: Key uses edition, grades K–12. Madison, WI: Author. Retrieved from https://www.wida.us/get.aspx?id=2043

Wiggins, G. P., & McTighe, J. (2005). Understanding by design. Alexandria, VA: ASCD.

Zwiep, S. G., & Straits, W. J. (2013). Inquiry science: The gateway to English language proficiency. Journal of Science Teacher Education, 24, 1315-1331.

Learning About Science Practices: Concurrent Reflection on Classroom Investigations and Scientific Works

Citation
Print Friendly, PDF & Email

Basir, M.A. (2019). Learning about science practices: Concurrent reflection on classroom investigations and scientific works. Innovations is Science Teacher Education, 4(2). Retrieved from https://innovations.theaste.org/learning-about-science-practices-concurrent-reflection-on-classroom-investigations-and-scientific-works/

by Mo A. Basir, University of Central Missouri

Abstract

The NRC (2012) emphasizes eight science practices as a constitutive part of science teaching and learning. Pre-service teachers should be able to perform those practices at least in an introductory-level science investigation. Additionally, they also need to be able to elicit and interpret those science practices in the work of students. Through the integration of doing science and reading about how scientists do science, this article provides a practical teaching approach encouraging critical thinking about science practices. The instructional approach emphasizes on performing science practices, explicitly thinking about how students and scientists do science, and reflecting on similarities and differences between how students and scientists perform science practices. The article provides examples and tools for the proposed instructional approach.

Introduction

What if science teachers had a scientist friend who invited them to go with her on a scientific expedition? Wouldn’t it be interesting and exciting? What would they learn during the trip? After returning from the scientific adventure, what could they tell their students about their firsthand experiences? Don’t you think that what they would learn during the field trip could help them make science exciting and accessible to students? Even though such a thrilling experience may not occur for every educator, books about the lives and activities of scientists can take science teachers on a similar trip. Texts about scientists and their research can describe how a scientist becomes engaged with a topic of her/his study, wonders about a set of complicated questions, and devotes her/his life to these issues. This article is intended to illustrate how we could integrate these kinds of texts into inquiry-oriented lessons and how they can increase the effectiveness of the science methods or introductory science courses.

Learning about real scientific and engineering projects can help students develop an understanding of what scientists do. In science textbooks, most of the time students encounter exciting and well-established scientific facts and concepts generated by the science community, but rarely read and learn about how scientists work or generate new knowledge in science (Driver, Leach, & Millar, 1996). Helping students learn scientific practices, science teachers/educators often utilizes inquiry-oriented lessons. The National Research Council (NRC) has defined K-12 science classrooms as places in which students perform science and engineering practices while utilizing crosscutting concepts and disciplinary core ideas (2012). One of the conventional approaches to meet such expectations is to develop a series of model lessons that involve and engage students in some science investigations.

Some years ago, I started a methods course beginning with these ideas and collected data investigating any changes in classroom discourses (Basir, 2014). Results of that qualitative study revealed no significant change in classroom discourse regarding science and engineering practices. Analysis of the results revealed a list of common patterns and challenges about student learning in the courses. My students had vague ideas about what it means to develop and use a model, make a hypothesis, and construct a science argument. Analysis of their reflections also revealed that the keywords associated with the eight science practices (see Appendix I) were not traceable in their written discourses about their science investigations; they had difficulties recognizing those eight practices in their science inquiry. Trying to resolve these challenges was my motive to revise this methods course. In the following, I first describe how the wisdom of practice in science education helped me develop an idea to change the course and how that idea transformed into an instructional strategy. Then, I use examples to illustrate results of this instructional strategy. The presented instructional approach aids students using NGSS framework accurately when they reflect on their science practices and consequently learn science practices more effectively. Hopefully, this could have a positive effect on their science teaching.

Framework

The apprenticeship model (getting engaged in science inquiry while being coached by a master teacher) has been emphasized as a practical and useful approach for learning and teaching science since decades ago (e.g., NRC, 2000). NRC (2000) defined science inquiry by introducing a set of abilities for a process of science inquiry and NRC (2012) has placed more emphasis on those abilities and call them the eight science practices (see Appendix I for the comparison between the set of abilities and the eight science practices). The eight science practices as defined by NRC (2012) and those abilities for science inquiry as defined by NRC (2000) are very similar. However, as Osborne (2014) asked, in what sense the notion of inquiry as defined by NRC (2000) differs from the science practices defined by NRC (2012). One reason, among others, is about the call for more transparency on the articulation of what classroom science inquiry is or what students need to experience during an inquiry-oriented lesson (Osborne, 2014). Aiming to develop such transparency in methods courses for prospective teachers, we may need to consider some complementary instruction to the apprenticeship model. This means that while teachers and students follow the apprenticeship model of teaching and learning, they need to become more conscious about and cognizant of science practices. As a complement to the apprenticeship model of instruction, to some extent, many instructional methods can help students learn science investigations by learning about history and/or nature of science (Burgin & Sadler, 2016; Erduran & Dagher, 2014; McComas, Clough, & Almazroa, 2002; Schwartz, Lederman, & Crawford, 2004), refining their investigative skills (e.g., Hackling & Garnett, 1992; Foulds & Rowe, 1996), conducting context-based science investigation using local newspapers or local environmental issues (e.g., Barab & Luehmann, 2003; Kuhn & Müller, 2014 ), and becoming cognizant of what/how they do science (e.g., Smith & Scharmann,2008).

In the context of higher education, active learning as an instructional approach provides multiple opportunities for students to initially do activities during class and subsequently analyze, synthesize, evaluate, and reflect on what they did during those activities (Bonwell & Eison, 1991). This latter aspect of active learning, critical thinking, plays a significant role in the effectiveness of teaching (Cherney, 2008; Bleske-Rechek, 2002; Smith & Cardaciotto, 2011) and usually is a missing component in the mentioned context. Unlike the regular introductory university-level science courses, in the context of science teacher preparation, it is a common practice to ask students to write a reflection about what/how they do activities. What has been less emphasized in this context is to provide a framework and benchmark helping students to systematically reflect on their science investigation (Ellis, Carette, Anseel, & Lievens, 2014).

The stories or case studies about how actual scientists do science can function as a benchmark for students who do classroom science investigations. Comparing an authentic science study with a student-level science project can make students aware of possible deficiencies and missing components in their classroom inquiry. Presumably inspired by medical science, case study teaching approaches have been utilized for teaching science (Herried, 2015; Tichenor 2013) and showing promising effects on student learning (Bonney, 2015; Tichenor, 2013). Specifically, science educators have developed many case studies for how to teach science—many of these cases related to science methods are available at National Center for Case Study Teaching in Science (NCCSTS; http://sciencecases.lib.buffalo.edu/cs/).

In this paper, I describe how particular kinds of case studies, the stories of contemporary scientists and their projects, can be used as a complementary teaching component to inquiry-oriented instruction. The objective is to provide an environment in which students could see the “sameness and difference” (Marton, 2006) between what they do and what scientists do. They could use the stories about actual science investigations as a benchmark for reflecting on what they do in the science classroom.

Concurrent Reflections as an Instructional Strategy

Drawing on the reviewed literature, I developed a three-phase instructional approach (Figure 1). In each phase of the instruction, students are assigned with specific task and concurrently reflect on that task. In the first phase, students have multiple opportunities to do science investigations, compare and contrast how they did across the small groups, recognize and interpret the eight science practices in their work, and document their reflection about how they do science on the offered template (Figure 2). This activity helps students conceptualize the eight practices implicitly embedded in those inquiry-oriented lessons. In the second phase, students read and reflect on a case study (i.e., a book about a scientist and her/his project). By reading about scientists and scientific projects, students have the opportunities to discern first-hand instances of the eight science practices. In the third phase, students compare those first-hand investigations done by real scientists, as benchmarks, with what they do in inquiry-oriented lessons and accordingly critically reflect on how to improve their science practices.

Figure 1 (Click on image to enlarge). Illustrates the suggested learning cycle.

Figure 2 (Click on image to enlarge). Template for comparing instances of science practices (SP) in different contexts.

Discussing the Suggested Learning Strategy by an Example

In the following, a three-session lesson (about 4.5 hours) based on this instructional approach is presented. Currently, this lesson is included in one of my science courses (how to do straightforward scientific research). The course is a general education course open to all majors, and secondary and middle-level pre-service teachers are required to take the course. In my previous institution, a similar lesson was included in a science course required for prospective elementary teachers.

Phase One: Doing and Reflecting on Science Practices

In this phase of the learning cycle, students conduct a science investigation and are asked to match the eight science practices with different components of their science inquiry. Students are required to document their interpretations in the provided template (Figure 2). Students are given a worksheet for investigating electromagnet. The very first question in the worksheet is about drawing an electromagnet. This question aims to check how much they know about electromagnets. Figure 3 shows five student responses to the mentioned question. These are typical responses at the beginning of this investigation. Most students know little about electromagnets. After receiving these responses, I put students in small groups and made sure that each group had at least one student who drew a relatively correct preliminary model of an electromagnet. Due to space limitation, only four of the eight science practices have been discussed in the following.

Figure 3 (Click on image to enlarge). Illustrates how students drew the model of an electromagnet as their initial idea.

Asking Questions. Students, as a group of four, were given different size batteries, nails, wire, and paper clips. They were supposed to make an electromagnet and then they were given a focus question: how you can change the power of the electromagnet. Some groups had difficulty building and/or using their electromagnet due to issues such as a lousy battery, open circuit, not enough loop, trying to pick up a too heavy metal object by the electromagnet. With minor help from me, they were able to build the electromagnet. Some groups developed yes-no questions (i.e., does the number of loops affect the electromagnet?). I helped them revise their question by adding a “how” to the beginning of their question. Typical questions that students came up with which focused the small group investigations were: How does the voltage of the battery affect the power of the electromagnet? How does the amount of wire around the nail affect the strength of the electromagnet? How does the insulation of the wire affect the power of the electromagnet?

Developing and Using Models. Scientists utilize scientific models and discourses to explain the observed phenomena. However, students usually use vernacular discourses instead of using science/scientific models for explaining a phenomenon. Students needed to develop a hypothesis related to the questions they asked. Here are two typical hypotheses that student groups came up with: 1) making the loops tighter and the wire would have a stronger effect on the nail and in turn, the electromagnet would become more robust, or 2) a bigger battery would make the electromagnet stronger. When (at reflection time) students were asked to think and explicitly mention any models they used, they sometimes talked about the picture of the electromagnet that they drew as a model of the electromagnet (Figure 2). Nonetheless, they typically didn’t see the role of their mental model in the hypotheses they made. With explicit discussion, I helped them to rethink why they generated those hypotheses (i.e., bigger battery or more loops, more powerful magnet). I expected them to mention some of the simple electromagnetic rules learned in science courses; however, most of the hypotheses stem from their vernacular discourses rather than science/scientific discourses. Through discussion with small groups and the whole classroom, I invited them to think about the background knowledge they utilized for making those hypotheses. We discussed the possible relationship between their hypotheses and the vernacular discourses such as “bigger is more powerful,” “more is more powerful,” or “the closer the distance, the stronger interaction”—These vernacular discourses are like general statements that people regularly use to make sense of the world around them. If we use a bigger battery and more wire, then we will have a stronger magnet.” Later, as they collected data, they realized that the vernacular ideas did not always work, a 9-volt battery may not provide as much power as a 1.5-volt D battery.

Constructing Explanations. The relation between different variables and their effects on the strength of an electromagnet is a straightforward part of the investigation. However, most of the groups were not able to explain why the number of wire loops affects the power of the electromagnet, or why uninsulated wire does not work. One of the common misconceptions students hold is the thought that uninsulated wire lets electricity go inside the nail and makes the nail magnetic by touch. I did not tell them why that idea was not correct and then motivated them to explicitly write their thought in the template (Figure 4).

Engaging in Argument from Evidence. We had different kinds of batteries, so one of the groups focused on the relationship between voltage and the electromagnet power. Through investigation, they realized that a 9-volt battery did not necessarily increase the strength of the electromagnet in comparison with a D battery. Another group focused on the relation of the number of cells and the electromagnet power. I encouraged them to discuss and compare the results of their studies and find out the relation of batteries and the power of the electromagnet. However, neither group had students with enough science background on electromagnetism to develop better hypotheses.

Phase Two: Reading and Reflecting on How Scientists Perform Science Practices

As mentioned before, we can use many different kinds of texts about scientists and their projects for this instructional approach. Table 1 suggests some book series appropriate for the proposed strategy. For instance, “Sower series” can help students to learn about historical figures in science and their investigation or “scientist in the filed” is about contemporary scientists and their projects. Stronger than Steel (Heos & Comins, 2013) from the scientist in the field series is discussed to illustrate how we can use these books in the classroom in the following.

Table 1 (Click on image to enlarge)
Suggested Textbooks Describing Scientists’ Biography and Their Projects


The summary of the book. Stronger than Steel is about Randy Lewis, his team, and his long-term research project about spider silk. Randy’s early research questioned the structure of the spider silk: how spider silk could be so strong and at the same time so flexible. By applying the well-established models and methods for the analysis of the matter, Randy and his team were able to develop an explanation for why spider silk is both strong flexible at the same time. They found out that the particular spider silk they analyzed was made of two proteins; a combination of these two proteins is responsible for super flexibility and strength of the spider silk. Building on genetic theory, the research team examined spider DNA. It took them about three years to isolate two genes associated with the proteins responsible for the strength and flexibility of the spider silk. Familiar with the transgenic models, in the late 1990s, Randy’s team designed bacteria producing the main ingredient of the spider silk, the two proteins mentioned before. In the next step, they injected those specific spider genes into goat embryos and achieved incredible results. Some of the transgenic goats were able to produce the spider silk proteins, but of course not like Spiderman. The transgenic goats are very similar to regular goats, but their body produces extra spider silk proteins in their milk. Randy’s team milked the transgenic goats, processed the milk, separated the spider silk proteins, and finally spun the spider silk fibers from the mixture of those two proteins. Currently, they are working to find alternative organisms that could produce spider silk more efficiently than transgenic spider goats. They are working on two other organisms: silkworms, which are masters in making silk and alfalfa, which is a plant that produces much protein.

As can be seen in this summary, the book has many examples of eight science practices from the first-hand science projects (i.e., the research questions about making spider silk, the theory-driven hypothesis explaining the possibility of using transgenic methods and making silk from goats). We can use different reading strategies in this phase of the instruction. I often have students submit answers to a set of guided questions as they read the books. The objective here is to motivate students to match and interpret the eight science practices in the work of the scientists as described in the case study. Table 2 illustrates some of the reflections that students submitted on the reflection template (Figure 2) after reading the book.

Table 2 (Click on image to enlarge)
Instances of Science Practices as Interpreted by Students

Phase Three: Comparing and Reflecting on How Scientists and Students Perform Science Practices

In this phase of the learning cycle, students had small-group activity comparing the instances of the science practices in the case study with the instances of science practices in their electromagnet investigation. We also had a whole-classroom discussion coordinated by me.

Asking questions. Randy utilized transgenic and genetic models to do the investigation. Students were asked to think about the research questions that led Randy’s work. Here are the typical responses students came up with: Why is spider silk is so strong and flexible at the same time? What spiders’ genes are related to spiders’ ability to produce silk? Can other organisms produce spider silk? How can other creatures produce spider silk? We discussed how the questions in Randy’s project are model-based and theory-laden. Then students examined their electromagnet questions and tried to transform them into model-based and theory-laden questions.

Figure 4 depicts how student questions changed and improved after the mentioned discussion. We discussed that if we used the magnetic field model to describe what was happening around a magnet, then we could have asked how to increase the magnetic field at the tip of the nail. By discussing the formula related to the magnetic field and the amount of electric current, students were able to ask a question about the relation of electric current and power of electromagnet instead the relation of voltage of batteries and the power of electromagnet.

Figure 4 (Click on image to enlarge). Illustrates the changes in student groups, A and B, before and after of the case study.

Developing and Using Models. Based on the transgenic model, Randy’s team hypothesized that if they put those two genes in a goat embryo the goat body is going to produce those two proteins and possibly the goat milk is going to contain those two proteins. I led the whole classroom discussion focusing on how students’ hypotheses, similar to the transgenic goat project, should be based on science/scientific knowledge. I emphasized that they need to replace their vernacular discourses, described above, with simple electromagnetic models. In this phase, students were either asked to do some library research to review electromagnetic laws and formulas, or given a handout including rules and formulas related to electromagnets (the version of the worksheet designed for the elementary pre-service teachers is less demanding). Students had an opportunity to revise their vernacular ideas about electromagnets. For instance, they discussed the formula (B=μ0I/2πr) that illustrates factors affecting the magnetic field around a straight wire with electric current. They saw that the magnetic field around the wire is inversely related to the distance from the wire. We discussed how this formula is connected to the vernacular idea that the less distance from the electromagnet, the more powerful electromagnet. They also examined the formula related to the magnetic field in the center of a loop (B=μ0I/2R), which shows that the power of an electromagnet increases when the electric current increases in a circuit. With this formula, they can better explain why doubling the number of batteries increases the strength of the electromagnet or develop a hypothesis as to why D-batteries make a more powerful electromagnet than 9-volt batteries. For instance, one of the small groups initially claimed, “If we use a bigger battery and more wire, then we will have a stronger magnet.” After going through the complete lesson, they revised their claim, “If there is a stronger current, then the magnet force will increase.”

Constructing Explanations. As a part of the structured reflection on the case study, students were supposed to recognize scientific explanations that Randy’s team developed. Here are some of the scientific explanations we discussed in our class: Randy’s team used the biomaterial models to understand the structure of spider silk. They figured out why spider silk is so strong and at the same time so flexible. They described how two essential proteins make the spider silk, one makes the silk stronger than steel, and another make it as elastic as rubber. Using the genetic models, they had the understanding that specific genes carry the information for the production of particular proteins. So, after a two-year examination of the spider genes, eventually, they pinpointed the two specific genes and developed an explanation of how/why those two genes are responsible for making those proteins. These discussed scientific explanations provided a rich context and a benchmark for students to improve their explanations about electromagnet. The model-based explanations in Randy’s project encouraged students to use simple electric and magnetic laws and tools for developing explanations about the electromagnet investigation. For instance, looking at the hypothesis that group A and B made (Figure 4), we could see that both initial hypotheses look like a claim with no explanation (i.e., the more wire on the nail, the more powerful the electromagnet). However, after the discussion about Randy’s project, both groups added some model-based explanations to their claims. In the revised version of their work, by measuring the electric current, group A figured out that why a 6-volt battery created a stronger magnetic field than a 9-volt battery. Group B used the formula for electric resistance to explain why electric current would increase in the coil. They also used a multimeter and Tesla meter for measuring electric current and magnetic field for collecting supporting data.

As part of their homework, students were asked to reflect on how their explanation was changed during this lesson. Some of them emphasized the role of scientific background knowledge and the tools they used in the second round of the investigation. One of them said:

In the second explanation, we had more background knowledge about the subject, so we were better able to develop a hypothesis that was backed by a scientific theory. This led to more accurate results. We also used tools that measured the exact amount of electric current and the exact magnetic strength in the second experiment.

It is important to mention that student-teacher discussion essentially facilitated the use of background knowledge in the second round of the investigation. One of the students mentioned:

One of the explanations comes from the knowledge that we brought (which is none, or little knowledge of magnetism). The other explanation utilizes the outside knowledge that Dr. Mo presented us with. The equation that explained what makes a magnet stronger. We were then able to adjust the explanation to be more accurate.

Engaging in Argument from Evidence. Some of the discussed points from the case study that are related to engaging in argument from evidence are typically either mentioned in student reflection or suggested by me. Randy’s team used the genetic theory arguing for the relation between alfalfa, silkworms, and goats. Then they collected empirical data and developed evidence for that argument. Randy’s team developed a strong argument from evidence to convince the funding agencies for exploring the alternative methods for production of spider silk. Randy is also engaged in the debate from evidence to support the claim that transgenic research is beneficial to our society. He argues that although this kind of investigation could be misused (i.e., designer babies or spread of transgenic animals in natural environments), the beneficial aspects of transgenic research are immense.

In comparison with Randy’s work, we discussed how science goes beyond the walls of the science labs and how science, society, and technology are mutually related—one of the eight aspects of NOS based on NGSS is “science is a human endeavor.” Regarding this relationship in the context of the electromagnet investigation, through whole-class discussion, we came up with some library research questions: how a Maglev works or how electromagnetic field/wave possibly could have some possible sides effects on the human brain.

Furthermore, Randy’s work provided an environment for us to have a discussion related to the coordination of theory and evidence, which is another aspect of NOS based on NGSS: “science models, laws, mechanisms, and theories explain natural phenomena.” In return, the discussion helped students use scientific knowledge and tools for developing hypotheses. In the first round of investigation, students asked questions and developed explanations with little attention to scientific knowledge, a required component for asking scientific question and explanation. In the second round, they used scientific laws, units, and sensors to develop their hypotheses (compare before- and after-condition of the hypotheses in figure 3). The discussion about Randy’s work helped them to be conscious about the coordination of scientific background knowledge and making hypothesis and explanation. As shown in Table 3, in response to a question on the group assignment, group A mentioned:

When we read about Randy’s investigation, we understood that sometimes it is necessary to draw from the knowledge that already exists on the topic. For example, Randy knew that bacteria could be used to produce penicillin. In our electromagnet investigation, once Dr. … showed us the slides, we knew that electrical current influenced the strength of the magnet. With this knowledge, we created a better hypothesis of what was happening.

Table 3 (Click on image to enlarge)
Instances of Student Response to a Reflective Group Assignment at the End of the Lesson

Discussion and Conclusion

This article seeks ways to improve pre-service teacher learning about NGSS’ eight science practices. This learning objective can be accomplished in the suggested learning cycle (Figure 1). As discussed, in the first phase, when students work on their science investigation, what naturally comes out of students’ work are vernacular discourses, based on their mental models used in their daily life practices, rather than science models and discourses. As Windschitl, Thompson, and Braaten (2008) put it, one of the fundamental problems with student science investigation is the modeless inquiry (i.e., students conduct investigations without utilizing scientific models). Here students managed to investigate variables that affect the power of an electromagnet such as the kind of battery, number of loops, size of the nail, and diameter of the loops. At this stage, however, they were not able to utilize science models to explain “why” those variables affect the strength of the electromagnet.

In the second phase, due to the authenticity of the scientific project described in the case study, it was easy for students to recognize instances of the eight science practices in that project. Through reflection, students realized that the scientific investigation in the case study was vastly built on scientific models and theories.

In the third phase, through the negotiation process between the students and teacher and by comparing their work with Randy’s work, a majority of the students became cognizant of the fact that the electromagnetic models were almost absent in their initial electromagnet investigation. Randy’s project functioned as a benchmark assisting pre-service teachers to compare their work with the benchmark and revise their science practices. Additionally, the comparison between classroom science and actual scientists’ work provided an environment for discussion about some aspects of NOS such as the relation of science-society-technology, and the coordination of theory-evidence. In return, those discussions helped students improve their electromagnet investigation.

As a limitation of the presented strategy, it can be asked, what would happen if the case study was eliminated? Students would go through the electromagnet investigation, then I would give students the background knowledge about electromagnet, and then students would do the investigation for the second time. Probably, due to doing a similar investigation two times, we should expect some improvement in the quality of their investigation. However, the case study functioned as a benchmark and guidance. During the discussion about Randy’s work, students became cognizant of the critical role of background knowledge, modeling, and scientific lab technology for doing science. Importantly, they realized that for making hypotheses, observation and collecting data is not enough; they need to bring scientific knowledge to the table to develop a hypothesis. Accordingly, it seems that the case study provided a productive environment for students to do science investigation and learn about the eight science practices.

As Hmelo-Silver (2006) stated, scaffolding improves student learning when it comes to how and why to do the tasks. The discussed structured reflection can help students learn how and why they conduct science investigations and encourage them to critically think and talk about science practices (nature of science practices). Going through multiple inquiry-oriented lessons provides an environment for students to do the NGSS eight science practices described. To develop a thorough understanding of those practices, however, students need to repeatedly think critically to discern instances of science practices from what they do, compare them with a benchmark, and find out a way to improve their science practices. By going through the concurrent reflection embedded in all three phases of the suggested instructional strategy, prospective teachers experienced the fact that classroom science investigations should go beyond a “fun activity” (Jimenez-Aleixandre, Rodriguez, & Duschl, 2000) and the vernacular discourses that they know, and must be based on scientific knowledge, models, and technology, and explicitly relate to society.

Acknowledgment

I would like to show my gratitude to James Cipielewski and Linda Pavonetti for sharing their wisdom with me during the initial phase of this project.

Supplemental Files

Appendix-1.png

References

Basir, M.A. (2014). Pre-service Teacher Discourses: Vernacular Versus Formal Science Learning Discourses. Paper presented at NARST 2014.

Barab, S. A., & Luehmann, A. L. (2003). Building sustainable science curriculum: Acknowledging and accommodating local adaptation. Science Education, 87(4), 454-467.

Bleske-Rechek, A. L. (2002). Obedience, conformity, and social roles: Active learning in a large introductory psychology class. Teaching of Psychology, 28(4), 260-262.

Bonney, K. M. (2015). Case study teaching method improves student performance and perceptions of learning gains. Journal of microbiology & biology education, 16(1), 21.

Bonwell, C.C., and Eison, J.A. (1991). Active learning: Creating excitement in the classroom. Washington, DC: Jossey-Bass.

Burgin, S. R., & Sadler, T. D. (2016). Learning nature of science concepts through a research apprenticeship program: A comparative study of three approaches. Journal of Research in Science Teaching53, 31-59.

Cherney, I. D. (2008). The effects of active learning on students’ memories for course content. Active Learning in Higher Education9, 152-171.

Driver, R., Leach, J., & Millar, R. (1996). Young people’s images of science. London: McGraw-Hill International.

Ellis, S., Carette, B., Anseel, F., & Lievens, F. (2014). Systematic reflection: Implications for learning from failures and successes. Current Directions in Psychological Science, 23(1), 67-72.

Erduran, S., & Dagher, Z. R. (2014). Reconceptualizing nature of science for science education. In Reconceptualizing the Nature of Science for Science Education (pp. 1-18). Springer Netherlands.

Foulds, W., & Rowe, J. (1996). The enhancement of science process skills in primary teacher education students. Australian Journal of Teacher Education21(1), 2.

Hackling, M., & Garnett, P. (1992). Expert—Novice differences in science investigation skills. Research in Science Education22, 170-177.

Heos, B., & Comins, A. (2013). Stronger than Steel. Boston, MA: Houghton Mifflin Book for Children.

Herreid, C. F. (2015). Testing with case studies. Journal of College Science Teaching, 44(4), 66-70.

Jimenez-Aleixandre, M., Rodriguez, A., & Duschl, R. A. (2000). ‘‘Doing the lesson’’ or ‘‘doing science’’: Argument in high school genetics. Science Education, 84, 287–312.

Kuhn, J., & Müller, A. (2014). Context-based science education by newspaper story problems: A study on motivation and learning effects. Perspectives in Science2(1-4), 5-21.

Marton, F. (2006). Sameness and difference in transfer. The Journal of the Learning Sciences, 15, 499-535.

McComas, W. F., Clough, M. P., & Almazroa, H. (2002). The role and character of the nature of science in science education. In McComas, W.F., The nature of science in science education (pp. 3-39). New York, NY: Springer.

National Research Council. (2000). Inquiry and the national science education standards. Washington, D.C.: National Academy Press.

National Research Council. (2007). Taking Science to School: Learning and Teaching Science in Grades K-8. Duschl, H.A. Schweingruber, and A.W. Shouse. Washington, DC: The National Academies Press.

National Research Council. (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies.

Schwartz, R. S., Lederman, N. G., & Crawford, B. A. (2004). Developing views of nature of science in an authentic context: An explicit approach to bridging the gap between nature of science and scientific inquiry. Science education88, 610-645.

Smith, C. V., & Cardaciotto, L. (2011). Is Active Learning Like Broccoli? Student Perceptions of Active Learning in Large Lecture Classes. Journal of the Scholarship of Teaching and Learning, 11(1), 53-61.

Smith, M. U., & Scharmann, L. (2008). A multi-year program developing an explicit reflective pedagogy for teaching pre-service teachers the nature of science by ostention. Science & Education17, 219-248.

Tichenor, L. L. (2013). Assessing Learning Outcomes of the Case Study Teaching Method. In R. E. Yager, Exemplary College Science Teaching (pp. 91-106). Arlington, VA: NSTA Press.

Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science education, 92, 941-967.

Theory to Process to Practice: A Collaborative, Reflective, Practical Strategy Supporting Inservice Teacher Growth

Citation
Print Friendly, PDF & Email

Inouye, M., & Houseal, A. (2019). Theory to process to practice: A collaborative, reflective, practical strategy supporting inservice teacher growth. Innovations in Science Teacher Education, 4(1). Retrieved from https://innovations.theaste.org/theory-to-process-to-practice-a-collaborative-reflective-practical-strategy-supporting-inservice-teacher-growth/

by Martha Inouye, University of Wyoming; & Ana Houseal, University of Wyoming

Abstract

To successfully implement the Next Generation Science Standards (NGSS), more than 3.4 million in-service educators in the United States will have to understand the instructional shifts needed to adopt these new standards. Here, based on our recent experiences with teachers, we introduce a professional learning (PL) strategy that employs collaborative video analysis to help teachers adjust their instruction to promote the vision and learning objectives of the Standards. Building on effective professional development characteristics, we created and piloted it with teachers who were working on making student thinking visible. In our setting, it has been effective in providing relevant, sustainable changes to in-service teachers' classroom instruction.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Appleby, J. (1998). Becoming critical friends: Reflections of an NSRF coach. Providence, RI: Annenberg Institute for School Reform at Brown University

Ball, D.L., & Cohen, D.K. (1999). Developing practice, developing practitioners: Toward a practice-based theory of professional education. In G. Sykes & L. Darling-Hammond (Ed.), Teaching as the learning profession: Handbook of policy and practice (pp. 3–32). San Francisco, CA: Jossey Bass.

Banilower, E. R., Smith, S. P., Weiss, I. R., Malzahn, K. A., Campbell, K. M., & Weis, A. M. (2013). Report of the 2012 National Survey of Science and Mathematics Education. Chapel Hill, NC: Horizon Research, Inc.

Beaudoin, C., Johnston, P., Jones, L., & Waggett, R. (2013). University support of secondary stem teachers through professional development. Education, 133, 330-339.

Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. Educational Researcher, 33(8), 3–15.

Bybee, R (2014). NGSS and the next generation of science teachers. Journal for Science Teacher Education, 25, 211-221.

Cormas, P. C., & Barufaldi, J. P. (2011). The effective research-based characteristics of professional development of the national science foundation’s GK-12 program. Journal of Science Teacher Education, 22, 255-272.

Fullan, M., Hill, P., & Crevola, C. (2006). Breakthrough. Thousand Oaks, CA: Corwin Press.

Guskey, T. R. (1984). The influence of change in instructional effectiveness upon the affective characteristics of teachers. American Educational Research Journal, 21, 245-259.

Guskey, T. R. (2002). Professional development and teacher change. Teachers and Teaching: Theory and Practice, 8, 381–391.

Hestness, E., McDonald, R. C., Breslyn, W., McGinnis, J. R., & Mouza, C. (2014). Science teacher professional development in climate change education informed by the Next Generation Science Standards. Journal of Geoscience Education62, 319-329.

Houseal, A. K., Abd El Khalick, F., & Destefano, L. (2014). Impact of a Student-Teacher-Scientist Partnership on students’ and teachers’ content knowledge, attitudes toward science, and pedagogical practices. Journal of Research in Science Teaching. 51, 84-115.

Keeley, Page. (2008). Science formative assessment: 75 practical strategies for linking assessment, instruction, and learning. Thousand Oaks, CA: Corwin Press.

Krajcik, J. (2015). Three-dimensional instruction: Using a new type of teaching in the science classroom. The Science Teacher, 83(8), 50–52.

Mehan, H. (1979). Learning lessons: social organization in the classroom. Cambridge, MA: Harvard University Press.

Mezirow, J. (1990). Fostering critical reflection in adulthood: A guide to transformative and emancipatory learning. San Francisco: Jossey-Bass.

Miller, R. G., Curwen, M. S., White-Smith, K. A., & Calfee, R. C. (2014). Cultivating primary students’ scientific thinking through sustained teacher professional development. Early Childhood Education Journal, 43, 317-326.

Nagle, B. (2013). Preparing high school students for the interdisciplinary nature of modern biology. CBE-Life Sciences Education12, 144-147.

National Academies of Sciences, Engineering, and Medicine. (2015). Science Teachers Learning: Enhancing Opportunities, Creating Supportive Contexts. Washington, DC: The National Academies Press.

National Research Council. [NRC]. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

NRC. (2015). Guide to Implementing the Next Generation Science Standards. Washington, DC: National Academies Press. Available at http://www.nap.edu/catalog/18802/guide-to-implementing-the-next-generation-science-standards

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: National Academies Press.

Reiser, B.J. (2013). What Professional Development Strategies Are Needed for Successful Implementation of the Next Generation Science Standards? Paper written for the Invitational Research Symposium on Science Assessment, September 24-25, Educational Testing Service, Washington, DC. Available at http://www.k12center.org/rsc/pdf/reiser.pdf.

Roth, K., Garnier, H., Chen, C., Lemmens, M., Schwille, K., & Wickler, N. (2011). Videobased lesson analysis: Effective science PD for teacher and student learning. Journal of Research in Science Teaching, 48, 117-148.

U.S. Department of Education, National Center for Education Statistics, Schools and Staffing Survey (SASS), “Public School Teacher Data File,” 2011–12.

Project Zero. (2016). Visible Thinking. Retrieved from http://www.pz.harvard.edu/research/Vislhink.htm

Wei, R. C., Darling-Hammond, L., and Adamson, F. (2010). Professional development in the United States: Trends and challenges. Dallas, TX: National Staff Development Council.

 

Taking Our Own Medicine: Revising a Graduate Level Methods Course on Curriculum Change

Citation
Print Friendly, PDF & Email

Kraus, R.V., & Shapiro, L.J. (2018). Taking our own medicine: Revising a graduate level methods course on curriculum change. Innovations in Science Teacher Education, 3(4). Retrieved from https://innovations.theaste.org/taking-our-own-medicine-revising-a-graduate-level-methods-course-on-curriculum-change/

by Rudolf V. Kraus, Rhode Island College; & Lesley J. Shapiro, Keene State College

Abstract

Implementing the Next Generation Science Standards presents challenges for practicing teachers. This article presents our reflection on creating and revising a class designed to teach inservice teachers about curriculum change and the Next Generation Science Standards. In its initial iteration, the course was designed to address the intellectual and practical aspects of this change in standards. Interaction with teachers, as well as gathered course reflections, indicated that addressing the process of curriculum change is both a practical task and an emotional one.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

American Museum of Natural History. (2018, May 11). Five tools and processes for translating the NGSS into instruction and classroom assessment. Retrieved from https://www.amnh.org/explore/curriculum-collections/five-tools-and-processes-for-ngss/

Backus, L. (2005). A year without procedures: Removing procedures from chemistry labs creates opportunities for student inquiry. Science Teacher, 72(7), 54-58.

Bupp, N. (1996). The change curve. In High-Performance work organization (HPWO) partnership seminar. Placid Harbor: MD, 4-11

Bybee, R. W. (1995). Science curriculum reform in the United States. In R.W. Bybee & J.D. McInerney (Eds), Redesigning the science curriculum (pp. 12-20). Washington DC: National Academies Press.

Bybee, R. W. (2014). NGSS and the next generation of science teachers. Journal of Science Teacher Education, 25, 211-221.

Elrod, P. D., & Tippett, D. D. (2002). The “death valley” of change. Journal of Organizational Change Management, 15, 273-291.

Fraser, S. P., & Bosanquet, A. M. (2006). The curriculum? That’s just a unit outline, isn’t it?. Studies in Higher Education, 31, 269-284.

Herron, M. D. (1971). The nature of scientific enquiry. The School Review, 79, 171-212.

Liu, Y., & Perrewe, P. L. (2005). Another look at the role of emotion in the organizational change: A process model. Human Resource Management Review, 15, 263-280.

Mangin, M. (2016). Teacher leadership and high-stakes teacher evaluation: Complementary or conflicting approaches to improvement? Journal of School Leadership, 26, 938.

Moreno, N. P. (1999). K-12 science education reform–a primer for scientists. Bioscience, 49, 569.

National Research Council. (2012) A framework for K-12 science education: practices, crosscutting concepts, and core ideas. Washington DC: National Academies Press.

Prophet, B., & Hodson, D. (1988). The science of common things: A case study in social control. History of Education, 17, 131-147.

Pruitt, S. L. (2015). The Next Generation Science Standards: Where are we now and what have we learned?. Science & Children, 52(9), 7-9.

Rutherford, F., & Ahlgren, A. (1990). Science for all Americans. New York, NY: Oxford University Press.

Sotelo, B., & Livingood, R. A. (2015). A qualitative case study for technology acceptance using TAM and the Kübler-Ross models. International Journal of Strategic Information Technology and Applications, 6(4), 20-29.

Stigler, J. W., & Hiebert, J. (2009). The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. New York: Simon and Schuster.

Wiggins, G. P., & McTighe, J. (2011). The understanding by design guide to creating high-quality units. Alexandria VA: ASCD.

Wren, K. (2014). Before the Common Core, there was science for all Americans the landmark AAAS book continues to influence education reform 25 years after it defined the concept of science literacy. Science, 345, 1012-1013.

Yager, R. (2000). The history and future of science education reform. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 74(1), 51.

Yager, R. E. (2015). Biology education in an era of acronyms. The American Biology Teacher, 77, 563-564

Rigorous Investigations of Relevant Issues: A Professional Development Program for Supporting Teacher Design of Socio-Scientific Issue Units

Citation
Print Friendly, PDF & Email

Peel, A., Sadler, T.D., Friedrichsen, P., Kinslow, A., Foulk, J. (2018). Rigorous investigations of relevant issues: A professional development program for supporting teacher design of socio-scientific issue units. Innovations in Science Teacher Education, 3(3). Retrieved from https://innovations.theaste.org/rigorous-investigations-of-relevant-issues-a-professional-development-program-for-supporting-teacher-design-of-socio-scientific-issue-units/

by Amanda Peel, University of Missouri; Troy D. Sadler, University of Missouri; Patricia Friedrichsen, University of Missouri; Andrew Kinslow, University of Missouri; & Jaimie Foulk, University of Missouri

Abstract

Socio-scientific issues (SSI) are complex problems with unclear solutions that have ties to science concepts and societal ideas. These complexities make SSI ideal contexts for meaningful science teaching and learning. Although the student benefits of SSI in the classroom have been established, there is a literature gap pertaining to teacher preparation and support for SSI teaching and learning, and the design of SSI units. In order for successful and meaningful SSI incorporation in science classrooms, teachers need professional development (PD) experiences that scaffold their understanding of the complexities associated with SSI teaching and learning. As such, our team designed and implemented a PD program with explicit examples and design tools to support teachers as they engaged in learning about SSI teaching and learning. Additionally, our PD program supported teachers as they designed their own SSI units for classroom implementation. We describe our PD process for supporting in-service secondary biology, chemistry, and environmental science teachers as they learned about SSI instruction and co-designed their SSI units.

Before our work with this group of teachers began, our research team designed and implemented SSI units, and these results informed development of the SSI-TL framework. The SSI-TL framework has been helpful as we continue to design and structure new SSI units, so we made it a central aspect of the PD to guide what SSI teaching should entail. This framework and other tools were used to support teachers as they designed their own SSI units. The PD was successful in that all groups designed SSI units, and many were able to implement in their classes. The teachers indicated the PD was effective from their perspective and they learned about issues and practices. Specific feedback around scaffolding tools we provided indicated the tools helped teachers navigate the design process.

Introduction

Socio-scientific issues (SSI) are complex problems with unclear solutions that have ties to science concepts and societal ideas (Sadler 2004). These complexities make SSI ideal contexts for meaningful science teaching and learning. The benefits of SSI instruction have been widely documented in science education literature and include gains in the understanding of science content (Klosterman and Sadler, 2010), scientific argumentation (Dawson and Venville, 2008; 2010), and epistemological beliefs about science (Eastwood, Sadler, Zeidler, Lewis, Amiri & Applebaum, 2012). Although the student benefits of SSI in the classroom have been established, there is a literature gap pertaining to teacher preparation and support for SSI teaching and learning, and the design of SSI units.

A few studies have characterized some challenges associated with SSI teaching in classroom contexts. When teachers included SSI in their classrooms, they used SSI as a way to get students interested in and motivated to learn a science topic, but they tended not to include ethical concerns or biases about the issue or the science, resulting in a lack of awareness of the interdependence between society and science (Ekborg, Ottander, Silfver, and Simon, 2012). Teachers also struggled to incorporate evidence and critical evaluation of evidence through media literacy and skepticism in their teaching about SSI and informed decision-making (Levinson, 2006). Even after a targeted intervention focusing on the social, moral, and ethical dimensions of issues, teachers struggled with effectively incorporating these dimensions in their classrooms (Gray and Bryce, 2006).

In order for successful and meaningful SSI incorporation in science classrooms, teachers need professional development (PD) experiences that scaffold their understanding of the complexities associated with SSI teaching and learning (Zeidler, 2014). Additionally, teachers need explicit examples of SSI teaching and learning to support their adoption of instructional techniques for incorporating new ideas in science classrooms, such as media literacy, informed decision-making, and highlighting social connections to an issue (Klosterman, Sadler, & Brown, 2012). As such, our team designed and implemented a PD program with explicit examples and design tools centered around our SSI Teaching and Learning framework. To support teacher learning about SSI teaching and learning, we engaged teachers in 1) SSI unit examples and experiences as learners; 2) explicit discussion and unpacking of the approach; and 3) designing in teams with active support from the research team. Our PD program supported teachers as they designed their own SSI units for classroom implementation with various tools developed by our team, including the SSI-TL framework, a framework enactment guide, the planning heuristic, an issue selection guide, and unit and lesson design templates. We describe our PD process for supporting in-service secondary biology, chemistry, and environmental science teachers as they learned about SSI instruction and co-designed their SSI units.

PD Audience & Goals

To ensure effective teacher participation in the PD program, we identified and invited 30 science teachers from diverse geographic locations throughout the state who met the following criteria:

  1. Currently teaching secondary biology, chemistry, or environmental science.
  2. Receptive to learning about socio-scientific issue instruction and curriculum design.
  3. Commitment to teacher learning and professional growth.

Eighteen teachers accepted our invitation to participate in the workshop. Participant teaching experience ranged from 1 to 32 years. Seven (39%) were early-career teachers with 1-5 years teaching experience. Five (28%) mid-career participants had taught for 6-10 years. The remaining six (33%) participants were veteran teachers with 10 or more years of teaching experience. Over half of the participants (55%) taught at schools within urban clusters as defined by the U.S. Census Bureau, with populations of 2,500-50,000 people. Just over one fourth (28%) of participants taught in urbanized schools within cities of 50,000 or more people, and 17% of the teachers worked in rural districts.

Socio-scientific Issue Teaching and Learning Framework

Our research group has developed a framework for SSI teaching and learning (SSI-TL) for the purpose of designing SSI based science units (Figure 1). An overarching goal of SSI-TL is to provide students with a context for developing scientific literacy through engaging in informed and productive negotiation of complex societal and scientific issues. The SSI-TL framework is composed of three sections, the first of which is Encounter the Focal Issue. In this section, students encounter the SSI and make connections to the science ideas and societal concerns. In the second section of the model, where a majority of classroom activities take place, students Develop science ideas and practices and engage in socio-scientific reasoning (SSR; Sadler, Barabe, & Scott, 2007; Romine, Sadler, & Kinslow, 2017) in the context of the SSI. Learning activities in this section focus on science content embedded within opportunities to engage in science and engineering practices. In terms of focal practices, our group emphasizes modeling, argumentation, and computational thinking because of the potential for these practices to promote sense-making. To facilitate socio-scientific reasoning, we emphasize opportunities for learners to consider the issue from multiple stakeholder perspectives and to consider consequences of potential decisions and actions from a range of vantage points (e.g., economic, political, ethical, etc.). The last section of the SSI-TL framework calls for student Synthesis of ideas and practices and reasoning about the SSI through engaging in a culminating activity.

Figure 1 (Click on image to enlarge). Socio-scientific issue teaching and learning (SSI-TL) framework.

The SSI-TL framework aligns with various essential learning outcomes, which include awareness and understanding of the focal issue, understanding of science ideas, competencies for science and engineering practices, and competencies for socio-scientific reasoning. As teachers utilize this model, they may choose to focus on various discretionary learning outcomes, such as competencies in media literacy, understanding of epistemology of science, competencies for engineering design, and interest in science and careers in STEM. We leveraged this SSI-TL framework during a series of PD sessions to support teachers as they designed SSI units for their classrooms.

The PD Process

An initial meeting of the teachers and our research group took place in December, 2015. At this brief meeting, the participating teachers and the research group members introduced themselves and discuss their interests and experiences regarding SSI teaching. We provided a brief overview of the PD program and our expectations for the participating teachers. The teachers were also given a brief overview of SSI teaching and learning to introduce them to examples of issues they would be choosing in their design teams.

A second full group meeting took place over two days in March, and a third meeting occurred over three days in June. These in-person meetings were used to engage teachers in SSI teaching and learning and to provide structured planning and design time with the help of the PD team. Initially, teachers were grouped by content and assigned a mentor from our research group to aid in SSI learning and the design process. Teachers then chose design partners from their content groups and worked in groups of two to three to design SSI units for their classrooms during and in between the formally organized meetings. To maintain communication between meetings, we used an online community to share content readings and exchange ideas. Teachers read two articles and responded to prompts by commenting on each post (Figure 2; Presley, Sickel, Muslu, Merle-Johnson, Witzig, Izci, and Sadler, 2013; Duncan, and Cavera, 2015). More reading resources can be accessed at http://ri2.missouri.edu/going-further/related-reading.

Figure 2 (Click on image to enlarge). Reading response prompts.

Experiencing SSI & Examples

To familiarize teachers with SSI learning, we engaged them as learners in a portion of a fully developed SSI unit. The unit explored the issue of the emergence of antibiotic resistant bacteria with a focus on natural selection as science content and the practice of scientific modeling. The unit was developed for high school biology classes and had been implemented in several classrooms (Friedrichsen, Sadler, Graham & Brown, 2016). The learning experience was led by one of our teacher partners who had used the unit prior to the workshop. She introduced the issue as she did in class by having participants watch a selection from a video about a young girl who contracts methicillin-resistant Staphylococcus aureus (MRSA). After being introduced to the issue, teachers engaged in a jigsaw activity in which each group was given a different source with information about MRSA to begin the discussion of credibility of different sources and the ways in which scientific information is used by different stakeholders interested in an issue. The groups read over their source and presented to the whole group. Sources included blog posts, a USA Today article, and Centers for Disease Control fact sheets. This activity was followed with a discussion of the different sources and their varying levels of credibility. After these learning activities, the teachers were given an overview of the full unit and shown student work samples, including student models of antibiotic resistance and natural selection, and synthesis projects which called for students to develop and advocate for a policy recommendation to stem the spread of antibiotic resistant bacteria. The full antibiotic resistance SSI unit (Superbugs) can be accessed at http://ri2.missouri.edu/ri2modules/Superbugs/intro.

During the June meeting, teachers were provided with an overview of an SSI unit related to water quality that had been developed and implemented in a high school environmental science class. This unit focused on a local water resource issue with conceptual links to ecological interactions, nutrient cycling, and water systems. The scientific practices emphasized in the unit were modeling and argumentation. One of our team members who was the lead designer and teacher implementer of this unit led a presentation of an overview and key aspects of the unit. The full water quality unit (the Karst Connection) can be accessed at http://ri2.missouri.edu/ri2modules/The%20Karst%20Connection/intro.

Including SSI in science classrooms can be challenging because science teachers are often unfamiliar with or uncomfortable addressing the social connections to the issue. To help scaffold this addition to science curricula, we engaged the teachers as learners in an activity highlighting social and historical trends from an SSI unit related to nutrition and taxation of unhealthful foods (a so called “fat tax”). In this activity, groups of teachers were assigned different historical events that had to do with nutrition and nutrition guidelines. Each group investigated their event and wrote the key ideas on a sheet of paper. These papers were placed along a timeline at the front of the room (Figure 3). Each group shared out to the full group about their event, and as each group presented, they drew connections between historical events and nutrition guidelines of the time. For example, one event was a butter shortage, which resulted in the nutrition guidelines urging people to exclude butter from their diet. This activity allowed teachers to see and experience an example of making social connections to an issue while exploring how the social and science concepts impacted each other over time. The full description of this learning exercise can be accessed at http://ri2.missouri.edu/ri2modules/Fat%20Tax/intro.

Figure 3 (Click on image to enlarge). Nutrition timeline activity.

Unpacking the SSI Approach

After experiencing SSI as learners in our March meetings, we introduced the teachers to the SSI-TL framework (Figure 1) with emphasis on the three main dimensions of the framework: Encounter the focal issue; Develop ideas, practices, and reasoning; and Synthesize. Using the antibiotic resistance unit as an example prior to introducing the framework allowed us to make connections between the framework and what they experienced as learners. Along with the framework, we introduced a framework enactment table, which depicts student and teacher roles and learning outcomes associated with each dimension of the framework. The enactment table allowed teachers to develop a more in-depth understanding of what each section of the framework entails. The framework enactment table can be accessed at http://ri2.missouri.edu/content/RI%C2%B2-Framework-Enactment.

Focus on NGSS Practices. At the time of the PD program, our state had recently adopted new science standards that are closely aligned with the Next Generation Science Standards (NGSS; NGSS Lead States, 2013). Like NGSS, the new state standards prioritize 3-dimentional (3D) science learning, which calls for integration of disciplinary core ideas (DCI), crosscutting concepts (CCC), and science and engineering practices. Due to the interwoven nature of the two, our team has chosen to combine CCCs and DCIs into a single construct of “science ideas”, as seen in the SSI-TL framework (Figure 1). There are eight science and engineering practices outlined in the NGSS, but our team has chosen to focus on a subset of practices: modeling, argumentation, and computational thinking. We chose these practices because they are high leverage practices, meaning that in order to engage in these practices at a deep level, the other practices, such as asking questions or constructing explanations, are being leveraged as well. For example, we posit that in order to create a detailed model, students engage in constructing explanations and analyzing and interpreting data. Our SSI-TL framework calls for 3D learning by engaging students in science ideas and high leverage science practices in the context of an SSI.

Because 3D science learning and practices were new to all of the teachers in the PD, our team offered breakout sessions focusing on a specific scientific practice: modeling, argumentation, or computational thinking. Teachers chose which of the three sessions to attend based on their interests and the practices they planned to feature in their own units. In each session, teachers were engaged in the practice as learners, and then were shown examples of student work pertaining to each practice. Examples were from prior unit implementations and depicted 3D learning through the incorporation of the science practice with science ideas. For example, in the computational thinking session, teachers were shown student generated algorithms of the process of translation, which incorporated computational thinking with the science ideas of protein synthesis. These practice-specific sessions allowed teachers to get an in-depth look at modeling, argumentation, and computational thinking in order to support the incorporation of high leverage practices into their SSI units.

Socio-scientific Reasoning & Culminating Activity. Socio-scientific reasoning (SSR) is a theoretical construct consisting of four competencies that are central to SSI negotiation and decision-making:

  1. Recognizing the inherent complexity of SSI.
  2. Examining issues from multiple perspectives.
  3. Appreciating that SSI are subject to ongoing inquiry.
  4. Exhibiting skepticism when presented potentially biased information (Sadler, Barab, and Scott, 2007).

SSR competencies are key to the SSI teaching and learning approach; therefore, we highlighted them in a demonstration and discussion during the PD. Teachers were introduced to the four SSR competencies, and they explored examples of activities designed to strengthen student SSR competencies. For example, engaging students in a jigsaw activity where they explore an issue from the perspectives of different stakeholders encourages students to engage in SSR because they deal with the complexity of the issue, bring up questions that remain unanswered, analyze information with skepticism about biases, and recognize the limitations of science pertaining to the issue. This session supported teachers in their understanding of SSR and provided them with multiple examples of how this construct can be used in the classroom within SSI contexts.

The culminating activity called for as a part of the Synthesis section of the SSI-TL framework was challenging for the teachers to conceptualize after the first PD session. To support teachers in their understanding of the culminating activity, we presented sample activities and student work from the units we previously developed and implemented. The goal of the culminating activity is to give students a final task where they can synthesize and reason through their ideas about the science behind the issue, the social connections to the issue, and the science practices employed in the unit. This session presented teachers with specific examples and ideas for culminating activities to be used in their SSI units. Teachers engaged in a jigsaw activity and each group examined a different culminating activity example and shared out to the whole group. Teachers discussed how they could alter activities for their classrooms and their units to support the inclusion of culminating projects in their SSI units. An example culminating activity can be accessed in “Lesson 6” at http://ri2.missouri.edu/ri2modules/The%20Vanishing%20Prairie/sequences.

In order to further support teachers as they designed their SSI units, we held a panel discussion where various members of our team (SSI unit designers and implementers) shared information about their units and experiences. In particular, panelists discussed the issue they chose and why they chose it, the science practices featured, and their culminating activities. After each panelist shared, the teachers asked questions about the units and experiences; they were particularly interested in hearing more details about ways in which SSR was incorporated in the units and the culminating activities. They also posed several questions about assessment generally and the scoring/grading of culminating activities more specifically. To further address these questions, we provided the teachers with samples of student work and a rubric that was used in one of our implementations for assessing the culminating activity. Through the various sessions and panel discussions, teachers were supported in their understanding of the overall SSI teaching and learning approach.

Teacher Work & Tools

As the teacher design teams worked through the PD program, the goal for each team was to develop a complete SSI unit ready for implementation in their classrooms. By the end of the June PD session, the expectation was for teams to have completed a unit outline and two lesson plans. The full units were due by the end of the summer. Teachers were responsible for choosing an issue, science ideas, and science practices for their units. In order to support teachers as they designed their unit overviews and lesson plans, we scaffolded their design process with various group techniques and planning tools as described in the following sections.

Group Work & Processes. Initially, teachers worked individually to brainstorm ideas for their units, including possible issues, science ideas, and relevant science practices. Teachers then presented their ideas within their content groups (i.e, biology, chemistry, and environmental science) in order to find shared interests. Based on these discussions, teachers formed design teams, which consisted of two or three teachers who worked together on the design of a unit for the upcoming school year. The composition of design teams ranged from groups with teachers from the same building to groups made up of teachers from different parts of the state.

Planning Heuristic. To scaffold the design process, our team introduced a Planning Heuristic: a table outlining a simplified process for beginning the design of an SSI unit. It describes design steps, products associated with each step, and examples of products from one of the units our team designed. For example, the first step of the heuristic is: explore possible issues, big ideas in science, and target practice(s). The products from this step are a large-scale issue, science themes and focal practices. Examples of these from one of our sample units are climate change as the issue, ecology as the science theme, and modeling as the focal practice. Teachers were encouraged to use the planning heuristic to aid them in their design process. The full Planning Heuristic can be accessed at http://ri2.missouri.edu/planning-heuristic.

Issue Selection Guide. Choosing an issue to center a unit around can be a daunting task. To support teachers in their issue selection, our team designed an Issue Selection Guide. Each design team worked through the guide resulting in narrowing their ideas about possible issues, and ultimately deciding on an issue. The guide poses several reflective questions about the issue to help teachers decide on the appropriateness of that issue. Prompting questions fall under three main questions: 1) Is the issue an SSI? 2) Is the issue a productive SSI for the intended audience? and 3) What instructional moves should be considered in presenting the issue? The Issue Selection Guide can be accessed at http://ri2.missouri.edu/issue-selection-guide.

Design Templates. To align teacher units with our example units for ease of planning and designing their units, we provided teachers with unit design templates. We provided teachers with a Unit Plan Template, which was used to outline the unit and the key ideas within the unit, such as science ideas, science practices, and the issue. We provided teachers with a Lesson Plan Template that presented a basic structure for each lesson, including time the lesson will take, goals for the lesson, lesson assessments, resources needed for the lesson, and an instructional sequence. These templates can be accessed at http://ri2.missouri.edu/templates.

Teacher Reactions & Feedback

The goal of producing SSI units was met because every design team was able to select an issue and complete design of a unit. Table 1 depicts the teams, the issue they selected, whether or not they completed their unit, and whether or not they implemented their unit in their classrooms the following year. Although implementing their units was not a requirement of the PD program, 12 out of 18 teachers implemented the units they designed in their respective classrooms. Six teachers did not implement their units for various reasons. The food additives, made of up a first and second year teacher, did not feel that their unit was far enough along in its development so they decided to wait until the following year to try it. A few of the other teachers experienced changes in their teaching assignments, which made implementation of their units difficult.

Table 1 (Click on image to enlarge)

Design Team Products and Unit Details

Issue Selection Challenges

Interviews were conducted with all of the teachers after the final PD session in June. During these interviews, teachers were asked a series of questions about what they learned and the extent to which the developed tools helped them. Teachers identified the Issue Selection Guide as one of the most useful tools because it helped them narrow down their ideas about issues and allowed them to determine if it was appropriate for their unit. Multiple teachers said that selecting an issue was the most challenging aspect of designing their units:

“[We] had a real issue finding an issue, and [it] was difficult… I had a lot of ideas” (T2, June Interview).

“I had no idea what could be a social and science issue… I used the topic selection paper, that chart thing that you guys made to help work up to picking an issue after – I had a whole bunch of ideas storming around, and it helped me narrow it down and select one that would work for this unit.” (T3, June Interview).

The Issue Selection Guide was useful to the teachers who were struggling with selecting an issue because it helped them narrow their issue ideas and choose an issue that would fit the instructional needs of their classes.

The Value of Examples

When asked what the most valuable part of the PD was, teachers identified the SSI unit examples and experiences as the most helpful:

“Seeing the variety of lesson topics and ideas, working through some of the lessons.”

“The sample SSI units were very helpful in seeing [SSI] in action.”

“The parts of model lessons where we participated in the student portion of the lesson” (Teacher Responses, Anonymous Post Survey, June 2016).

Teachers found the explicit examples of SSI-TL implementation to be the most helpful when learning about SSI and designing their units, indicating that the PD design supported teacher engagement in SSI teaching and learning.

Lesson Planning Challenges

In addition to selecting an issue, teachers identified writing lesson plans as a challenge in their design process:

“I never actually had to sit down, and write a lesson plan before… so going through and planning something start to finish, is not something that I have had to do… that was a challenge for me” (T1, June Interview).

“[The] process of putting it [unit plan] together is a challenge. Because most of the time I just sort of do it internally, I don’t really write it down” (T4, June Interview).

Most of the teachers were experienced teachers, so they didn’t need to write out every lesson because they felt comfortable with what they were teaching and how they were going to teach it. Because the SSI teaching and learning approach was new to the teachers, we were explicit in the structure of these units. The provided unit plan and lesson templates helped the teachers work through a planning and documentation process that was more formal than most of the participants were used to, and it resulted in materials that could be shared with other teachers.

Increases in Comfort with SSI and Science Practices

Teachers also responded to a Likert scale survey before and after the PD with questions about their comfort in teaching SSI, designing SSI units, and utilizing science practices. Ten survey items yielded statistically significant increases from before the PD to after the PD (Table 2). The first two items deal with teachers’ abilities to teach SSI in the classrooms. After the PD more teachers agreed they knew enough about SSIs in their area to design instruction using them, indicating teachers felt more comfortable with SSI design after the PD. More teachers also agreed they were able to negotiate the use of SSIs in their classrooms when talking to community members and parents with concerns, indicating an increase in comfort level with using SSI in their classrooms. The remaining items related to the teachers’ comfort level with scientific practices. Teachers increased in their comfort with the scientific practices of modeling, explanations, argumentation, and evaluating information.

Table 2 (Click on image to enlarge)
Survey Items with Statistically Significant Increases from Pre to Post PD

Conclusion

Teachers are important agents of change, and, given proper supports, they can successfully facilitate SSI learning experiences for their students. Before our work with this group of teachers began, our research team designed and implemented SSI units, and these results informed development of the SSI-TL framework. The SSI-TL framework has been helpful as we continue to design and structure new SSI units, so we made it a central aspect of the PD to guide what SSI teaching should entail. This framework and other tools were used to support teachers as they designed their own SSI units.

The PD employed a blended model of face-to-face meetings and communications with an online networking tool. During the PD we alternated among three sets of activities to support teachers: 1) SSI unit examples and experiences as learners; 2) explicit discussion and unpacking of the approach; and 3) design teams working together with active support from the research team. Throughout the PD we provided design supports with various tools developed by our team, including the SSI-TL framework, the framework enactment guide, the planning heuristic, the issue selection guide, and unit and lesson design templates. The PD was successful in that all groups designed SSI units, and many were able to implement in their classes. The teachers indicated the PD was effective from their perspective and they learned about issues and practices. Specific feedback around scaffolding tools we provided indicated the tools helped teachers navigate the design process.

As we consider ways of advancing this work, we are interested in exploring ways to work with school-based teacher professional learning communities (PLCs). Bringing together teachers from across widely varying school contexts and facilitating their work together was a challenge. We think that supporting communities of teachers familiar with the same local affordances and constraints may be a more effective way to bring about more lasting incorporation of SSI teaching into science classrooms. We are also interested in extending our investigations to learn more about the ways in which teachers implement their units. In the current project, we were able to elucidate some of the challenges teachers faced in designing SSI units (like selecting issues) and presented tools to help teachers navigate these challenges (e.g., the issue selection guide). We think that it would be a productive step for the SSI-TL agenda to do this same kind of work (understanding challenges and designing tools to address them) for implementation.

References

Dawson, V., & Venville, G. (2008, April). Argumentation and conceptual understanding: Grade 10 students learning about genetics. A paper presented at the annual international conference of the National Association for Research in Science Teaching (NARST), Baltimore, 30th March–2nd April.

Dawson, V. M., & Venville, G. (2010). Teaching strategies for developing students’ argumentation skills about socioscientific issues in high school genetics. Research in Science Education, 40(2), 133-148.

Duncan, R. G., & Cavera, V. L. (2015). DCIs, SEPs, and CCs, Oh My!: Understanding the Three Dimensions of the NGSS. The Science Teacher, 82(7), 67.

Eastwood, J. L., Sadler, T. D., Zeidler, D. L., Lewis, A., Amiri, L., & Applebaum, S. (2012). Contextualizing nature of science instruction in socioscientific issues. International Journal of Science Education, 34(15), 2289-2315.

Ekborg, M., Ottander, C., Silfver, E., & Simon, S. (2012). Teachers’ Experience of Working with Socio-scientific Issues: A Large Scale and in Depth Study. Research in Science Education, 43(2), 599-617. doi:10.1007/s11165-011-9279-5

Friedrichsen, P., Sadler, T. D., Graham, K., & Brown, P. (2016). Design of a socio-scientific issue curriculum unit: Antibiotic resistance, natural selection, and modeling. International Journal of Designs for Learning, 7(1), 1-18.

Gray, D. S., & Bryce, T. (2006). Socio‐scientific issues in science education: implications for the professional development of teachers. Cambridge Journal of Education, 36(2), 171-192. doi:10.1080/03057640600718489

Klosterman, M. L., & Sadler, T. D. (2010). Multi-Level Assessment of Scientific Content Knowledge Gains Associated with Socioscientific Issues-Based Instruction. International Journal of Science Education, 32(8), 1017-1043.

Klosterman, M. L., Sadler, T.D, & Brown, J. (2012). Science teachers’ use of mass media to address socio-scientific issues and sustainability. Research in Science Education, 42, 51-74. DOI: 10.1007/s11165-011-9256

Levinson, R. (2006). Teachers’ perceptions of the role of evidence in teaching controversial socio-scientific issues. Curriculum Journal, 17(3), 247-262. doi:10.1080/09585170600909712

NGSS Lead States (2013). Next generation science standards. For states, by states. Washington, DC: The National Academies Press.

Presley, M. L., Sickel, A. J., Muslu, N., Merle-Johnson, D., Witzig, S. B., Izci, K., & Sadler, T. D. (2013). A framework for socio-scientific issues based education. Science Educator, 22(1), 26.

Romine, W. L., Sadler, T. D., & Kinslow, A. T. (2017). Assessment of scientific literacy: Development and validation of the quantitative assessment of socio-scientific reasoning (QuASSR). Journal of Research in Science Teaching, 54, 274-295 DOI:10.1002/tea.21368

Sadler, T. (2004). Informal reasoning regarding socioscientific issues: A critical review of research. Journal of Research in Science Teaching, 41(5), 513-536. doi:10.1002/tea.20009

Sadler, T., Barab, S., & Scott, B. (2007). What do students gain by engaging in socioscientific inquiry? Research in Science Education, 37(4), 371-391. doi:10.1007/s11165-006-9030-9

Zeidler, D. L. (2014). Socioscientific issues as a curriculum emphasis: Theory, research and practice. In N.G. Lederman & S.K. Abell (Eds.), Handbook of Research on Science Education, 2, 697-726.

 

 

A Blended Professional Development Model for Teachers to Learn, Implement, and Reflect on NGSS Practices

Citation
Print Friendly, PDF & Email

Dare, E.A., Ellis, J.A., & Tyrrell, J.L. (2018). A blended professional development model for teachers to learn, implement, and reflect on NGSS practices. Innovations in Science Teacher Education, 3(3). Retrieved from https://innovations.theaste.org/a-blended-professional-development-model-for-teachers-to-learn-implement-and-reflect-on-ngss-practices/

by Emily A. Dare, Michigan Technological University; Joshua A. Ellis, Michigan Technological University; & Jennie L. Tyrrell, Michigan Technological University

Abstract

In this paper we describe a professional development project with secondary physics and physical science teachers. This professional development supported fifteen teachers in learning the newly adopted Next Generation Science Standards (NGSS) through integrating physical science content with engineering and engineering practices. Our professional development utilized best practices in both face-to-face and virtual meetings to engage teachers in learning, implementing, and reflecting on their practice through discussion, video sharing, and micro-teaching. This paper provides details of our approach, along with insights from the teacher participants. We also suggest improvements for future practice in professional development experiences similar to this one. This article may be of use to anyone in NGSS or NGSS-like states working with either pre- or in-service science teachers.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Angle, J. (2011). Drivers, start your glue guns: Using model stock cars to explore motion and force concepts. Science Scope, 35(4), 45–51.

Banilower E. R., Heck D. J., & Weiss I. R. (2007). Can professional development make the vision of the standards a reality? The impact of the national science foundation’s local systemic change through teacher enhancement initiative. Journal of Research in Science Teaching, 44, 375–395.

Banilower, E. R., Smith, P. S., Weiss, I. R., Malzahn, K. A., Campbell, K. M., & Weis, A. M. (2013). Report of the 2012 national survey of science and mathematics education. Chapel Hill, NC: Horizon Research, Inc.

Blumenfeld, P., Soloway, E., Marx, R. W., Guzdial, M., & Palincsar, A. (1991). Motivating project-based learning: Sustaining the doing, supporting the learning. Educational Psychologist, 26, 369–398.

Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P-12 classrooms. Journal of Engineering Education, 97, 369–387.

Cantrell & Hughes. (2008). Teacher efficacy and content literacy implementation: An exploration of the effects of extended professional development with coaching. Journal of Literacy Research, 40, 95-127.

Capps D. K., Crawford B.A., & Constas M. A. (2012). A review of empirical literature on inquiry professional development: alignment with best practices and a critique of the findings. Journal of Science Teacher Education, 23, 291–318.

Community for Advancing Discovery Research in Education. (2017). Emerging design principles for online and blended teacher professional development in K-12 STEM education. Waltham, MA: Education Development Center, Inc. Retrieved from http://cadrek12.org/resources/emerging-design-principles-online-and-blended-teacher-professional-development-k-12-stem.

Corcoran, T. B. (1995). Transforming professional development for teachers: A guide for state policymakers. Washington, DC: National Governors’ Association.

Cunningham, C. M., & Carlsen, W.S. (2014) Teaching Engineering Practices. Journal of Science Teacher Education, 25, 197-210.

Dare, E. A., Ellis, J. A., & Roehrig, G. H. (2014). Driven by beliefs: Understanding challenges physical science teachers face when integrating engineering and physics. Journal of Pre-College Engineering Education Research, 4(2), 47-61.

Dare, E. A., Rafferty, D., Scheidel, E., & Roehrig, G. H. (2017). Flood rescue: A gender-inclusive integrated STEM curricular unit. K-12 STEM Education, 3, 193-203.

Darling-Hammond. L. (2005). Teaching as a profession: Lessons in teacher preparation and professional development. Phi Delta Kappan, 86, 235-240.

Ellis, J., Dare, E., Voigt, M., & Roehrig, G. (2015). Rethinking the egg drop with NGSS science and engineering practices. Michigan Science Teachers Association Journal, 60(2), 61-66.

Fennema, E., Carpenter, T. P., Franke, M. L., Levi, L., Jacobs, V. R., & Empson, S. B. (1996). A longitudinal study of learning to use children’s thinking in mathematics instruction. Journal for Research in Mathematics Education, 27, 403-434.

Garet, M. S., Porter, A. C. , Desimone, L., Birman, B. F., & Yoon, K. S. (2001).What makes professional development effective? Results from a national sample of teachers. American Education Research Journal, 38, 915–945.

Hirsch, L. S., Carpinelli, J. D., Kimmel, H., Rockland, R., & Bloom, J. (2007). The differential effects of pre-engineering curricula on middle school students’ attitudes to and knowledge of engineering careers. Published in the proceeding of 2007 Frontiers in Education Conference, Milwaukee, WI.

Koszalka, T., Wu, Y., & Davidson, B. (2007). Instructional design issues in a cross-institutional collaboration within a distributed engineering educational environment. In, T. Bastiaens & S. Carliner (Eds.), Proceedings of Work Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2007 (pp. 1650–1657). Chesapeake, VA: AACE.

Kubitskey, B. (2006). Extended professional development for systemic reform. Unpublished doctoral dissertation. Ann Arbor: University of Michigan.

Loucks-Horsley, S., Hewson, P. W., Love, N., & Stiles, K. E. (1998). Designing professional development for teachers of science and mathematics. Thousand Oaks, CA: Corwin Press.

National Research Council (1996). National science education standards. Washington, DC: National Academy Press.

National Research Council. (2012). A framework for K-12 science education: Practice, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: National Academies Press.

Ortmann, L. (2015). Disciplinary literacies in STEM integration: An interpretive study of discourses within classroom communities of practice (Doctoral Dissertation). Retrieved from ProQuest Digital Dissertations. (3727938)

Richardson, V. (2003). The dilemmas of professional development. Phi Delta Kappan, 84, pp. 401–406.

Schnittka, C. G. (2009). Save the penguins STEM teaching kit: An introduction to thermodynamics and heat transfer. Auburn, AL: Auburn University.

Schön, D. A. (1983). The reflective practitioner: How professionals think in action (Vol. 5126). Basic books.

Supovitz, J. A., & Turner, H. M. (2000). The effects of professional development on science teaching practices and classroom culture. Journal of Research in Science Teaching, 37, pp. 963–980.

York-Barr, J., Sommers, W.A., Ghere, G.S., & Montie, J.K. (2006). Reflective practice to improve schools: An action guide for educators (2nd ed.). Thousand Oaks, CA: Corwin.

An Innovative Integrated STEM Program for PreK-6 Teachers

Citation
Print Friendly, PDF & Email

Lottero-Perdue, P.S., Haines, S., Bamberger, H., & Miranda, R.J. (2018). An innovative integrated STEM program for preK-6 teachers. Innovations in Science Teacher Education, 3(2). Retrieved from https://innovations.theaste.org/an-innovative-integrated-stem-program-for-prek-6-teachers/

by Pamela S. Lottero-Perdue, Towson University; Sarah Haines, Towson University; Honi J. Bamberger, Towson University; & Rommel J. Miranda, Towson University

Abstract

In this article, we describe an innovative, 6-course, 18-credit post-baccalaureate certificate (PBC) program for pre-kindergarten through grade six teachers (PreK-6) in Integrated Science, Technology, Engineering and Mathematics (iSTEM) Instructional Leadership. Here, the acronym, “iSTEM,” refers to education that not only addresses each of the S, T, E and M subjects, but also emphasizes the connections among them. We collaboratively contributed to the development of the program, and teach courses within it. The program graduated its pilot cohort of teachers in 2015, is running its second cohort, and is recruiting for a third. The article summarizes the program’s origins and integration approach and key aspects of program design. Those key aspects include: make-up of the program team; a deliberate course sequence; decrease in structure (and increase in more open-ended, student-centered learning approaches) over time in the program; and movement in the program from growth as an iSTEM teacher towards growth as iSTEM teacher leader. Each of the courses is described in greater detail, followed by a discussion of program assessment and evaluation. The article concludes with our reflections about the program’s challenges and successes thus far.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Berkowitz, A., Ford, M., & Brewer, C. (2005). A framework for integrating ecological literacy, civics literacy, and environmental citizenship in environmental education. In E. A. Johnson & M. J. Mappin (Eds.). Environmental education and advocacy (pp. 227-266). Cambridge, UK: Cambridge University Press.

Blake, R., Frederick, J.A., Haines, S.A., & Colby Lee, S. (2010). Inside-Out: Teaching environmental science inside and outside the elementary/middle school classroom. Arlington, VA: National Science Teachers Association (NSTA) Press.

Buck Institute for Education (BIE). (2011). PBL in the Elementary Grades: Step-by-Step Guidance, Tools & Tips for Standards-focused K-5 Projects. Project Based Learning Toolkit Series. Novato, CA: BIE.

Coyle, K. (2005). Environmental literacy in America: What ten years of NEETF/Roper research and related studies say about environmental literacy in the U.S. Washington, DC: The National Environmental Education and Training Foundation.

Cunningham, C. M., & Carlsen, W. S. (2014). Teaching engineering practices. Journal of Science Teacher Education, 25, 197-210.

Cunningham, C. M., & Lachapelle, C. P. (2014). Designing engineering experiences to engage all students. In S. Purzer, J. Strobel & M.E. Cardella (Eds.), Engineering in pre-college settings: Synthesizing research, policy, and practices, (pp. 117-142). West Lafayette, IN: Purdue University Press.

Dufour, R. (2004, May). What is a “Professional Learning Community?” Educational Leadership, 61(8), 6-11.

EiE. (2011). Thinking inside the box: Designing plant packages. Boston, MA: National Center for Technological Literacy.

Erdogan, M. (2009). Fifth grade students’ environmental literacy and the factors affecting students’ environmentally responsible behaviors. Unpublished doctoral dissertation, Middle East Technical University, Ankara, Turkey.

Gess-Newsome, J. & Lederman, N. (Eds.) (1999). Examining pedagogical content knowledge. Science and Technology Library Series. Boston, MA: Kluwer Academic Publishers.

Haines, S.A. (2006). Outdoor classrooms: Planning makes perfect. Science and Children, 43(8), 44-48.

Instructional Leader STEM (Grades PreK-6), COMAR 13A.12.02.29. (2015). http://mdrules.elaws.us/comar/13a.12.02.29

Johnson, D. W., Johnson, R. T., & Smith, K. A. (2006). Active learning: Cooperation in the college classroom. Edina, MN: Interaction Book Company.

Kamkwamba, W. & Mealer, B. (2016). The boy who harnessed the wind (Young Readers Edition). New York, NY: Puffin Books.

Kitagawa, L. (2016, January). Made for the shade: A creative task engages kindergarteners in building protective structures for UV-sensitive lizards. Science and Children, 53(5), 34-40.

Learning Forward. (2011). Standards for Professional Learning.  Oxford, OH:  Author.

Lester, H. & Munsinger, L. (ill.) (2008). Tacky the penguin. New York: Houghton Mifflin Harcourt.

Lottero-Perdue, P.S. (2017). Engineering design into science classrooms. In Settlage, J., Southerland, S., Smetana, L., & Lottero-Perdue, P.S. Teaching Science to Every Child: Using Culture as a Starting Point. (Third Edition). (pp. 207-266). New York, NY: Routledge.

Reeves, D. B. (2010). Transforming Professional Development into Student Results. Alexandria, VA:  ASCD.

Schulman, I. S. (1987). Learning to teach. American Association of Higher Education, 40, 1-5.

Suskie, L. (2009). Assessing student learning: A common sense guide (2nd ed). San Francisco, CA: Jossey-Bass.

Maryland State Department of Education (MSDE). (2012). Maryland STEM Standards of Practice. Retrieved October 12, 2017 from: http://mdk12.msde.maryland.gov/instruction/academies/MarylandStateSTEMStandardsofPractice.pdf

MSDE. (2007). Maryland State Technology Literacy Standards for Students. Retrieved October 12, 2017 from: http://mdk12.msde.maryland.gov/instruction/curriculum/technology_literacy/vsc_technology_literacy_standards.pdf

National Academy of Engineering (NAE) and National Research Council (NRC). (2009). Engineering in K-12 Education: Understanding the Status and Improving the Prospects. Washington, DC: The National Academies Press. doi:10.17226/12635.

NAE and NRC. (2014). STEM Integration in K-12 Education: Status, Prospects, and an Agenda for Research. Washington, DC: The National Academies Press. doi:10.17226/18612.

National Council of Teachers of Mathematics. (2013, February). Focus Issue: Mathematics Teaching in a STEM Context, Mathematics Teaching in the Middle School, 18(6).

National Governors Association Center (NGAC) for Best Practices and Council of Chief State School Officers (CCSSO). (2010). Common Core State Standards. Washington, DC: NGAC and CCSSO. Retrieved from http://www.corestandards.org

Next Generation Science Standards (NGSS) Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: National Academies Press. Retrieved from www.nextgenscience.org/next-generation-science-standards

Park, L.S. (2010). A Long Walk to Water. Boston, MA: Houghton Mifflin Harcourt.

Reimers, J.E., Farmer, C.L., and Klein-Gardner, S.G. (2015). An introduction to the standards for preparation and professional development for teachers of engineering. Journal of Pre-College Engineering Education Research (J-PEER), 5(1), Article 5, pp. 40-60.

Rothstein, D. & Santana, L. (2011). Make Just One Change: Teach Students to Ask their Own Questions. Cambridge, MA: Harvard University Press.

Vasquez, JA., Sneider, C. & Comer, M. (2013). STEM lesson essentials: Integrating Science, Technology, Engineering and Mathematics. Portsmouth, NH: Heinemann.

The Watercourse/Project WET International Foundation and the Council for Environmental Education. (1995).  Project WET: Water Education for Teachers, Curriculum and Activity Guide. Bozeman, MT.: The Watercourse/Project WET International Foundation and the Council for Environmental Education.

 

Supporting Science Teachers In Creating Lessons With Explicit Conceptual Storylines

Citation
Print Friendly, PDF & Email

Cisterna, D., Lipsitz, K., Hanuscin, D., de Araujo, Z., & van Garderen, D. (2018). Supporting science teachers in creating lessons with explicit conceptual storylines. Innovations in Science Teacher Education, 3(1). Retrieved from https://innovations.theaste.org/supporting-science-teachers-in-creating-lessons-with-explicit-conceptual-storylines/

by Dante Cisterna, University of Nebraska-Lincoln; Kelsey Lipsitz, University of Missouri; Deborah Hanuscin, Western Washington University; Zandra de Araujo, University of Missouri; & Delinda van Garderen, University of Missouri

Abstract

We describe a four-step strategy used in our professional development program to help elementary science teachers recognize and create lesson plans with coherent conceptual storylines. The conceptual storyline of a lesson refers to sequencing its scientific concepts and activities to help students develop a main scientific idea and, often, is an implicit component of a lesson plan. The four steps of this learning strategy are, 1) Building awareness of conceptual storylines; (2) Analyze the coherence of the conceptual storyline of existing lessons; (3) Creating an explicit conceptual storyline as part of the planning process; and (4) Promote conceptual coherence throughout the storyline. We provide examples of how these steps were developed in our professional development program as well as evidence of teachers’ learning. We also discuss practical implications for using conceptual storylines in professional development for science teachers.

Introduction

Lesson planning is a central activity for developing and enacting teachers’ instructional practices. A well-designed lesson plan concretizes the multiple decisions made by teachers to organize their instruction, based on their knowledge of teaching and student learning (Remillard, 2005). However, lesson plans–even detailed ones—do not necessarily convey the rationale behind choices made regarding teaching approaches, sequences of ideas, and specific activities and representations of content (Brown, 2009). In fact, teachers use a variety of lesson plan formats that require a variety of different components, often based on school or district priorities (e.g. connections to other content areas, integration of technology, etc.). Likewise, some lesson plans have teachers indicate the science standards that are aligned with the activities, while other lessons do not.

In our professional development program targeted to elementary science teachers and focused on physical science concepts (see more details of the PD model in van Garderen, Hanuscin, Lee, & Kohn, 2012), we support teachers in making the central features of a lesson plan more explicit. Given that the teachers who participate in our professional development program come from different school buildings and districts (and may use different curricula), we are interested in promoting their pedagogical design capacity (Brown, 2009) so they can apply and adapt the central features of lesson plan design into their particular contexts. We also use the 5E Learning Cycle (Bybee et al., 2006) as a model for guiding the organization of their lesson activities. A substantial body of research over past decades shows that lessons that utilize a learning cycle framework (Bybee, 1997) can result in greater achievement in science, better retention of concepts, improved attitudes toward science and science learning, improved reasoning ability, and superior process skills than would be the case with traditional instructional approaches (e.g., Bilgin, Coşkun, & Aktaş, 2013; Evans, 2004; Liu, Peng, Wu, & Lin, 2009; Wilder & Shuttleworth, 2005). During our professional development program, teachers learn first about physical science concepts, and then, they refine their understanding of the 5E Learning Cycle and select activities that are aligned to the purpose of each phase in their lesson plans. We know that learning to plan using the 5E Learning Cycle may be challenging for some teachers, as described in previous research studies (e.g., Ross & Cartier, 2015; Settlage, 2000). However, in our experience working with teachers, we noticed a new challenge for teachers’ lesson plan design: recognizing the sequence of concepts so that the lesson has conceptual coherence.

Although teachers were often adept at aligning particular activities with specific phases of the 5E Learning Cycle based on their intended purposes, the complete sequence of activities they chose did not always exhibit strong conceptual connections or align with the scientific concepts stated in lesson learning goal(s). Many teachers focused more on the activities in which students engaged than the science concepts that students should be developing through the activities. A similar finding was also described in the Trends in International Mathematics and Science Study (TIMSS) video analysis study, which indicated that in the majority of US classrooms, “ideas and activities are not woven together to tell or reveal a coherent story” (Roth et al., 2011, p. 120).

In our experience, we found that even teachers who are provided lesson plans that have a coherent sequence of concepts may not recognize this key element of lesson design, and may make adaptations to lessons that are counterproductive to their intent and purpose (Hanuscin et al., 2016). We saw teachers struggled to select activities whose underlying scientific concepts were connected to one another and followed a coherent progression that helped students connect the different concepts to better support their learning. That is, the particular challenge we noticed was related to the creation of a coherent conceptual storyline.

What is a Conceptual Storyline?

We use Ramsey’s (1993) definition of conceptual storylines in our professional development program. The conceptual storyline of a lesson refers to the flow and sequencing of learning activities so that concepts align and support one another in ways that are instructionally meaningful to student learning. We focus on ensuring that the sequence of activities for a particular lesson plan is coherent; that means, the organization of the underlying scientific concepts allows students to develop a full understanding of the scientific concepts stated in the lesson learning goals. Therefore, we expect the conceptual storyline of a lesson to be coherent both in terms of activities and scientific concepts to help students build an organized understanding of a scientific phenomenon (McDonald, Criswell, & Dreon, 2007). Similarly, incoming research suggests that the use of some strategies related to building coherence in lesson plans can impact student learning (see Roth et al., 2011).

Conceptual coherence in lessons

The conceptual storyline of a lesson is often an implicit dimension of planning and, as such, teachers may lack awareness of storylines and how to develop them. Therefore, a key goal that we implemented in our professional development model was supporting teachers’ development of coherent conceptual storylines as an explicit element of lesson design. We have been working with several strategies to help teachers recognize conceptual storylines as an explicit and central component of a lesson plan. We begin by using a Conceptual Storyline Probe (Hanuscin et al., 2016), an example of which is shown in Table 1, to highlight differences in two teachers’ lesson plans. Showing these differences to teachers is the first step to help them recognize that lessons have storylines with different levels of coherence.

Table 1 (Click on image to enlarge)
Two Lessons with Different Levels of Conceptual Coherence

After reading both lessons, teachers share examples of the criteria they used for evaluating the lessons. In doing this, it is very important that PD facilitators or instructors let teachers talk and provide all the criteria they consider relevant. For example, these criteria might include whether the lesson is hands-on, and whether or not there are connections to the students’ daily lives. Sometimes, during the discussion teachers make comments about the sequence of activities (see examples of teachers’ responses in Figure 1). When prompted about this, teachers mention that there is ‘something’ in the lesson activities that make them flow differently. To be clear, Diana’s lesson includes different ideas about bulbs that lack connections between each other, while Michelle’s lesson organizes its activities in a sequence by which students can build an understanding of a central concept (switches). Therefore, noticing the difference in each lesson’s conceptual coherence is the first step in recognizing conceptual storylines as a component of lesson design.

Figure 1 (Click on image to enlarge). Examples of teachers’ initial responses to the evaluation of two lessons with different levels of conceptual coherence.

A Strategy to Supporting Teachers Plan Lessons with Coherent Conceptual Storylines

Given the challenging nature of identifying the conceptual nuances in lesson plans, we recognize the importance of providing teachers support in constructing lessons with coherent conceptual storylines. To help teachers recognize coherent conceptual storylines as essential for well-designed lessons and encourage them to plan lessons that are conceptually coherent, our team has developed a strategy that includes four distinctive steps, as illustrated in Figure 2. Although our prior work was situated in elementary science, awareness of conceptual storylines can extend to all grade levels.

Figure 2 (Click on image to enlarge). Steps for supporting teachers in developing a coherent conceptual storyline.

Step 1. Building awareness of conceptual storylines

For teachers unfamiliar with conceptual storylines as a component of lesson planning, we help them build their awareness of what storylines are, how important they are for meaningful instruction, and how they may support student learning. We help teachers think about the storyline of an instructional lesson or learning cycle by making an analogy using two familiar television shows, Saturday Night Live (SNL) and Downton Abbey. While SNL has consistencies in structure between shows (e.g. musical guest, celebrity monologue, etc.) the storylines of sketches within an episode, and indeed from episode to episode lack coherence. This means that the viewer can watch a whole episode or pieces of a given episode in any sequence. In contrast, to make sense of the storyline of Downton Abbey, one needs to watch the episodes in sequence to connect the events and ideas. Thus, Downton Abbey exemplifies a coherent storyline within and across episodes. When discussing this analogy between TV shows, teachers easily recognize that lessons also need to organize their concepts sequentially so each activity is necessary and sufficient for promoting student understanding. Drawing on this analogy helps teachers realize that conceptual coherence is an important feature of a lesson and that planning with conceptual storylines allows students to build science concepts within a larger arc and in connected ways—rather than as disconnected pieces.

Step 2. Analyze the coherence of the conceptual storyline of existing lessons

Once teachers recognize the importance of conceptual coherence in a lesson, they can use conceptual storylines for analyzing existing lesson plans. Some teachers examined their own lesson plans and others focused on district-provided lesson plans or lesson plans from commercial curricula. To help teachers learn how to identify and evaluate conceptual storylines, we provide them with two contrasting lesson plans, similar to the lessons presented in Table 1. One lesson has a coherent set of activities focused on a single concept (coherent conceptual storyline), and the second lesson includes activities that address multiple concepts loosely related to a topic (incoherent conceptual storyline). As teachers compare and contrast these lessons, they identify key considerations of different types of conceptual storylines. For example, the coherent conceptual storyline would sequence a key concept in such a manner that one concept builds to the next and allow students to develop the scientific concepts of the lesson learning goal, scientific phenomenon, or big idea.

We also provide teachers support in identifying the lesson’s main scientific idea and the key concepts that students should develop in each phase of the 5E Learning Cycle. For example, we use a card-sorting activity to help teachers make connections between the specific key ideas in a lesson and the phases of the 5E Learning Cycle. Before introducing this aspect of lesson plan design, we have teachers sequence the activities of a lesson based on their own understanding of a good instructional sequence. After learning about the 5E Learning Cycle and conceptual storylines, teachers sort the cards again and provide a rationale for their choices. To illustrate this we include responses of Anne, a fourth grade teacher, to the card sorting activity about a lesson focused on identifying characteristics of conductors and insulators (See Figure 3). At the end, Anne was able to justify that the activity in which students test a mystery box for electrical connections was not adequate for the Engage phase of the lesson, because this activity did not provide enough evidence for students about the components of an electric circuit that would serve as a foundation for the following activities through the lesson. We recognize that the process of learning about conceptual storylines is often slow, and needs to be fostered through several activities.

Figure 3 (Click on image to enlarge). Responses to a card sorting activity before and after learning about conceptual storylines.

Overall, these learning opportunities allow for the teachers to examine different lesson plans and engage in discussions about what a coherent conceptual storyline looks like, as well as potential implications for student learning when using coherent or incoherent lessons.

Step 3. Creating an explicit conceptual storyline as part of the planning process

Once teachers were able to identify a lesson’s conceptual storyline and assess it for coherence, we engaged them in the design of a new conceptual storyline for their own lesson plans. We scaffolded this process by helping teachers break down a main concept, a scientific phenomenon, or big idea into more specific key ideas. Similarly, the use of the NGSS Disciplinary Core Ideas can help teachers identify key scientific concepts to organize the conceptual storyline. The example presented in Figure 4 shows how the main concept about magnetic poles is ‘unpacked’ in several sub-concepts. The teacher began the sequence by anticipating a student misconception and used it to build the storyline.

Figure 4 (Click on image to enlarge). Examples of specific concepts about magnet poles organized by teachers in the creation of a conceptual storyline.

To support teachers in making explicit connections among those key ideas, we introduce teachers to a Conceptual Storyline Map, an instructional scaffold adapted from Bybee’s (2015) work (see map in Appendix A). By using this map, teachers sequence the specific concepts and are able to connect two concepts through a linking question, while making connections to the phases of the 5E Learning Cycle. For example, one third grade teacher created a lesson plan to help her students understand how magnetic objects interact. When articulating the conceptual storyline she linked two important key ideas: 1) that magnets can attract, repel, or have no interaction with other objects, and 2) that magnets attract or repel other magnets, attract some metals (ferromagnetic), but have no interaction with other materials. In this case, the second idea builds on the first one and supports the construction of a conceptual storyline. The teacher included a linking question to make the connection between both ideas explicit, “What types of interactions do magnets have?”.

We note this process may be frustrating for some teachers who are not as familiar with the content knowledge or struggle to articulate the links between key concepts in a conceptual storyline. We recommend that PD instructors or facilitators do not provide the connections between the key concepts of the conceptual storyline, because these connections are not necessarily explicit for teachers. In our experience, having teachers create the conceptual storyline in collaborative teams has been helpful for addressing these potential problems.

Articulating concepts in a coherent conceptual storyline as an explicit component in lesson planning provided the teachers’ with a basis for the selection of activities and content representations. Therefore, the storyline acts as a backbone for the lesson. That backbone is a necessary foundation for the lesson, but does not provide a complete lesson plan; teachers must still select the particular activities and content representations to complete the lesson. In this way, the activities and content representations become the ‘connective tissue’ to the backbone of the lesson.

Step 4. Promote conceptual coherence throughout the storyline

Following teachers’ identification of the big idea or main concepts for the storyline, as well as the specific key ideas targeted during each phase of the learning cycle, the last step in teachers’ construction of conceptual storylines involves the ‘fine grain’ work needed to secure conceptual coherence in a lesson. In this step, teachers select activities and content representations (e.g., models, diagrams, analogies), and make any adjustments to their lessons to retain the conceptual coherence.

As teachers select activities and content representations, they must attend to the ‘big idea’ they developed in Step 3 that encompasses the various activities in the lesson. Likewise, these activities might provide opportunities to explore a scientific phenomenon and engage students in tasks related to the NGSS performance expectations. Whether teachers use curricular standards for their big idea or independently identify the main concepts, the main ideas guide the development of the lesson storyline. To assist teachers in planning a lesson with a coherent conceptual storyline, we provide teachers with a lesson plan form that designates the first column to the main concept that students are developing in that particular phase of the 5E learning cycle. Consequently, those concepts help teachers select and organize the activities of a lesson. For example, one fifth grade teacher created a lesson plan named “What is matter?”, in order to help students develop a scientific definition of matter and an understanding that matter can take multiple forms (see Appendix B).

The process of selecting particular activities and representations is iterative, and multiple adjustments can and should be made to ensure conceptual coherence across the big idea, the key concepts of the storyline, the concept representations, and activities. Because lesson plans are not created in isolation, we encourage teachers to make connections with ideas that were developed in previous lessons or relate to prior knowledge and students’ ideas.

Concluding Thoughts

Designing lesson plans with a coherent conceptual storyline may take more time initially because of the added layer of complexity in aligning concepts and activities. However, every lesson plan is based on a storyline—coherent or incoherent. If teachers do not plan for coherence, the result may be a set of disconnected concepts and activities.

In our professional development experience, we have noticed that teachers not only use conceptual storylines to select activities and content representations, but also for assessment purposes. In the last iteration of our program, we started supporting teachers in making connections between the concepts included in particular storylines and the ways to assess these concepts—either formatively or summatively (see matrix on Appendix C). We decided to include this component because we noticed teachers struggled to select topic-specific assessments strategies throughout the lesson. Given that many lesson plans require the inclusion of the assessment strategies, the use of conceptual storylines may help teachers identify what concepts need to be assessed during the lesson and when. The use of conceptual storylines may become an important tool to gather students’ evidence, especially to guide students in developing main scientific ideas.

In addition, the use of conceptual storylines is key towards building conceptually coherent lessons and thus, helping students build foundational science concepts. In our work, participant teachers are able to recognize the importance of planning lessons with conceptual coherence as an explicit component of lesson plan design and as a guide for the use of activities and representations. As one participant teachers stated:

When we planned our entire learning cycle we really did go over what the storyline would be…I think [PD facilitator] really helped us understand what may be a huge piece of what’s missing with a lot of instruction…the storyline of each of the learning cycles really built upon the previous one.

Conceptual storylines are just one tool that teachers can use to create coherent lesson plan designs. In emphasizing the importance of conceptual coherence, we do not mean to imply that content has greater importance than the process by which students learn the content—indeed, careful consideration should be given to the kinds of activities that will support students in building new understandings, developing facility with new skills, and developing confidence and competence as learners. We recognize that to create conceptual storylines, teachers need strong foundations in content knowledge to identify the key scientific concepts and the ways they are connected to each other. Therefore, in our professional development program, learning about conceptual storylines is embedded as part of a comprehensive curriculum that integrates content knowledge about physical science concepts and pedagogical lenses. For professional developers interested in adapting this strategy in their contexts, we recommend that learning about conceptual storylines be embedded in a larger professional development program rather than included as an isolated feature of lesson design.

References

Abell, S. K., & Volkmann, M. J. (2006). Seamless Assessment in Science: A Guide for Elementary and Middle School Teachers. Portsmouth, NH: Heinemann.

Bilgin, I., Coşkun, H., & Aktaş, I. (2013). The effect of 5E learning cycle on mental ability of elementary students. Journal of Baltic Science Education, 12, 592-607.

Brown, M. (2009). The teacher–tool relationship: Theorizing the design and use of curriculum materials. In J. T. Remillard, B. A., Herbel-Eisenmann, & G. M. Lloyd (Eds.), Mathematicsteachers at work: Connecting curriculum materials and classroom instruction (pp. 17–35). New York, NY: Routledge, Taylor, and Francis.

Bybee, R. W. (1997). Achieving scientific literacy: From purposes to practices. Portsmouth, NH: Heinemann.

Bybee, R.W., Taylor, J.A., Gardner, A., Van Scotter, P., Carlson, J., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins, effectiveness, and applications. Unpublished white paper. Retrieved August 2008, from http://www.bscs.org/pdf/5EFull Report.pdf.

Bybee, R., Taylor, J., Gardner, A., Van Scotter, P., Carlson, J., Westbrook, A., & Landes, N. (2006). The BSCE 5E instructional model: Origins, effectiveness, and applications. Colorado Springs: BSCS.

Bybee, R. W. (2015). The BSCS 5E instructional model—Creating teachable moments. Arlington, VA: NSTA Press.

Evans, C. (2004). Learning with inquiring minds, students are introduced to the unit on gas laws and properties of gases using the 5E model. The Science Teacher, 71(1), 27-30.

Hanuscin, D., Lipsitz, K., Cisterna-Alburquerque, D., Arnone, K. A., van Garderen, D., de Araujo, Z., & Lee, E. J. (2016). Developing coherent conceptual storylines: Two elementary challenges. Journal of Science Teacher Education, 27, 393-414.

Liu, T. C., Peng, H., Wu, W. H., & Lin, M. S. (2009). The effects of mobile natural-science learning based on the 5E learning cycle: A case study. Educational Technology & Society, 12, 344–358.

McDonald, S., Criswell, B., & Dreon, O. (2008). Inquiry in the chemistry classroom: Perplexity, model testing, and synthesis. In J. Luft, R. Bell, & J. Gess-Newsome & (Eds.). Science as Inquiry in the Secondary Setting (pp. 41-51). Arlington, VA: NSTA Press.

Ramsey, J. (1993). Developing conceptual storylines with the learning cycle. Journal of Elementary Science Education, 5(2), 1-20.

Remillard, J. T. (2005). Examining key concepts in research on teachers’ use of mathematics curricula. Review of Educational Research, 75, 211-246.

Ross, D. K., & Cartier, J. L. (2015). Developing Pre-service Elementary Teachers’ Pedagogical Practices While Planning Using the Learning Cycle. Journal of Science Teacher Education, 26, 573-591.

Roth, K. J., Garnier, H., Chen, C., Lemmens, M., Schwille, K., & Wickler, N. I. Z. (2011). Videobased lesson analysis: Effective science PD for teacher and student learning. Journal of Research in Science Teaching, 48, 117-148.

Settlage, J. (2000). Understanding the learning cycle: Influences on abilities to embrace the approach by preservice elementary school teachers. Science Education, 84, 43-50.

van Garderen, D., Hanuscin, D., Lee, E., & Kohn, P. (2012). QUEST: A collaborative professional development model to meet the needs of diverse learners in K‐6 science. Psychology in the Schools, 49, 429-443

Wilder, M. & Shuttleworth, P., (2005). Cell inquiry: A 5E learning cycle lesson. Science Activities: Classroom Projects and Curriculum Ideas, 41(4), 37-43.

Designing and using multimedia modules for teacher educators: Supporting teacher learning of scientific argumentation

Citation
Print Friendly, PDF & Email

Marco-Bujosa, L., Gonzalez-Howard, M., McNeill, K., & Loper, S. (2017). Designing and using multimedia modules for teacher educators: Supporting teacher learning of scientific argumentation. Innovations in Science Teacher Education, 2(4).   Retrieved from https://innovations.theaste.org/designing-and-using-multimedia-modules-for-teacher-educators-supporting-teacher-learning-of-scientific-argumentation/

by Lisa Marco-Bujosa, Boston College; Maria Gonzalez-Howard, University of Texas, Austin; Katherine McNeill, Boston College; & Suzanna Loper, Lawrence Hall of Science, University of California-Berkeley

Abstract

In this article, we describe the design and use of multimedia modules to support teacher learning of the practice of scientific argumentation. We developed four multimedia modules, available online for use in professional development or preservice classes, incorporating research-based features designed to support teacher learning of argumentation. Specifically, the features underlying the design of the modules include: (1) providing images of practice, (2) problematizing instruction, (3) offering the student perspective, and 4) encouraging teacher reflection. Each module supports teacher educators in engaging teachers in learning about argumentation through activities utilizing these features. We describe the rationale for designing multimedia teacher learning modules that incorporate these features. We also describe how these features are incorporated into learning activities by focusing on one session from one module. We then illustrate the utility of these modules by providing one example of how these resources can assist teacher educators to support particular district goals around argumentation by adapting and modifying the modules. This article features the ways these online modules are an innovative support for teacher learning, by providing multimedia resources and the opportunity for increased user flexibility. Finally, we discuss some preliminary findings around teachers’ use of the features in these learning modules.

Introduction

The Next Generation Science Standards (NGSS) represent a new vision for science teaching and learning, requiring teachers to blend disciplinary core ideas, science and engineering practices, and crosscutting concepts (Pruitt, 2014). The focus of the NGSS is on providing students with more authentic experiences in science, with an emphasis on students using their understanding of disciplinary core ideas to make sense of the natural world (Schwarz, Passmore, & Reiser, 2017). This represents a departure from traditional science instruction that focuses more on memorizing science knowledge and less on students engaging in science as a practice (Ford, 2015). However, the NGSS provide little guidance for teachers with respect to what these science practices should look like in science classrooms, or how teachers can design lessons to include them (Windschitl, Schwarz, & Passmore, 2014). Consequently, it can be difficult for teachers to incorporate science practices into their instruction.

In our work, we focus on one particular science practice, argumentation. A key aspect of argumentation is to promote student understanding of the nature of scientific knowledge and the culture of science (NRC, 2012), or science as knowledge and practice (Osborne, Erduran, & Simon, 2004). We conceptualize scientific argumentation as consisting of both a structural and dialogic component (McNeill, González-Howard, Katsh-Singer, & Loper, 2016). The structure of an argument consists of a claim about the natural world that is supported by both evidence and scientific reasoning (McNeill, Lizotte, Krajcik, & Marx, 2006). The dialogic component of argumentation emphasizes science as a social process in which students construct arguments through interactions with their classmates (Berland & Reiser, 2011). Although we describe structure and dialogic interactions as two different components of argumentation, they are often intertwined in classroom instruction. For instance, a student might critique the source of evidence a peer is using during a small group discussion.

Research has shown that scientific argumentation is difficult to implement in classrooms, particularly the dialogic component, which differs greatly from traditional, teacher directed, science instruction (Berland & Reiser, 2011). Studies around this science practice have shown that teachers’ argumentation instruction is influenced by their pedagogical content knowledge (PCK) and beliefs. PCK refers to professional knowledge specific to teaching and learning about a particular science concept (Shulman, 1986). Recent studies have highlighted the importance of PCK for the science practices, such as argumentation (e.g., McNeill, et al., 2016). Teacher beliefs about argumentation, and the value of argumentation, can also influence how teachers incorporate this practice into their instruction (Sampson & Blanchard, 2012).

In our previous work (McNeill, et al., 2016), we explored teachers’ beliefs around argumentation in three areas related to their classroom instruction: 1) students’ backgrounds, 2) learning goals and 3) self-efficacy. In terms of students’ backgrounds, some teachers believe argumentation is too hard for some students (Sampson & Blanchard, 2012) or that argumentation may create confusion and lead to student misconceptions about science concepts (Osborne et al., 2004). Research also indicates that teacher beliefs about student ability to engage in argumentation vary based upon factors such as the socioeconomic status of their students (Katsh-Singer, McNeill, & Loper, 2016). In addition, teachers’ understandings of argumentation, and their beliefs about how knowledge is created and used in the classroom, can influence the ways teachers plan for and teach argumentation activities in the classroom (McNeill, et al., 2016; Marco-Bujosa, McNeill, González-Howard, & Loper, 2017). These learning goals play an important role in teachers’ approach to argumentation instruction. For example, in a study of the impact of teachers’ beliefs on instruction of scientific argumentation, Zohar (2008) found teachers who believed that the goal of science instruction was to provide content knowledge only rarely engage students in activities requiring critical thinking, an essential aspect of scientific argumentation. Finally, teacher beliefs about themselves have been shown to influence their instruction (Bryan, 2012). For example, in prior work we found that teachers’ confidence in their ability to teach argumentation can influence their instruction (McNeill, et al., 2016). These kinds of beliefs may cause teachers to undermine the goals of argumentation by placing an instructional priority on transmitting knowledge.

Teachers need support to develop their PCK and beliefs about argumentation. To do so, teachers need to see the practices in action, and understand how they are different from traditional approaches to science instruction (Hanuscin, Arnone, & Bautista, 2016; Osborne, 2014). The challenge for teacher educators is that most science teachers, or prospective science teachers, received little support to develop knowledge of the science practices in their science education experiences or teacher preparation programs (Osborne, 2014). Consequently, teachers may be unfamiliar with the science practices, both as a science learner and as a teacher, and will need support to incorporate the practices into their science teaching. Additionally, research has shown that considering how teachers learn is important in supporting teachers to teach science practices (Allen & Penuel, 2015; Hanuscin, Arnone & Bautista, 2016) and argumentation in particular (Marco-Bujosa, et al., 2017). Thus, teacher learning experiences about the science practices, such as argumentation, may need to shift to better support teacher learning. This has implications for curriculum, learning structures, and strategies used in teacher preparation and professional development (Bybee, 2014; Hanuscin et al., 2016).

We developed multimedia modules about scientific argumentation to change teacher beliefs about argumentation in three ways that have been shown to support teacher instruction of this practice: beliefs about student abilities to engage in this scientific practice; beliefs about the importance of teaching argumentation (learning goals); and beliefs about their ability to teach argumentation (self-efficacy). In this paper, we focus on the features of the multimedia modules, which are designed to help teacher educators support teacher learning of scientific argumentation. In particular, these online modules were developed to incorporate the lessons emerging from research on supporting teachers to learn about the science practices. Specifically, four features provided the backbone of our module design approach: (1) providing images of practice, (2) problematizing instruction, (3) offering the student perspective, and 4) encouraging teacher reflection. These features are based upon research and best practices (e.g., van den Berg, Wallace & Pedretti, 2008; Zhang, Lundeberg, Koehler, & Eberhardt, 2011), as well as our personal experience working with teachers and teacher educators around argumentation. Additionally, creating these modules in an online platform offered an innovative means by which to support teacher learning through the use of multimedia supports. Furthermore, the online platform permits flexible use by teacher educators, specifically allowing for customization and adaptation to their needs, as well as the needs of the schools and teachers they serve. In the next section, we describe the context of our work – a research and development project around the practice of scientific argumentation – that provided the impetus for the development of these modules.

Context of our Work

​We developed the teacher learning modules as a part of The Argumentation Toolkit, (http://www.argumentationtoolkit.org/), an online collection of resources designed to help teachers understand and teach scientific argumentation, which we will refer to as “the toolkit” for the remainder of the article. The toolkit was developed as part of a research and development project to support middle school teachers in integrating argumentation into their science instruction. This project is a collaboration between the Lawrence Hall of Science at the University of California, Berkeley and Boston College.

In order to effectively teach argumentation, teachers need an understanding of this science practice and of instructional strategies to engage and support students. Thus, we developed the toolkit to support both teacher understanding of argumentation and to provide teachers with classroom strategies. The toolkit was developed around four elements of scientific argumentation that are particularly challenging for teachers and students. Two of these elements relate to the structural component of argumentation – 1) evidence, and 2) reasoning – while two correspond to the dialogic aspects of this science practice – 3) student interaction, and 4) competing claims (Figure 1).

Figure 1 (Click on image to enlarge). Argumentation elements.

In our work developing resources for teachers, we found that teacher educators also require resources and support to facilitate their professional development efforts around argumentation. We approached this need through the development of multimedia modules for scientific argumentation, which were added to the toolkit website to provide support for teacher educators using the toolkit resources. The following sections describe our design approach, specifically illustrating the utility of particular features in a multimedia format that guided our development of the modules. Additionally, we provide an illustration of the first author’s use of these multimedia learning modules during professional development for science teachers. This example is intended to highlight how the flexibility of these modules allows teacher educators to modify and adapt them to their own setting.

Module Design

We developed four multimedia teacher learning modules around scientific argumentation. The four modules consist of an introductory module, which introduces teachers to argumentation using the four common student challenges previously described, and three advanced modules, which provide teachers with additional depth and practice related to teaching argumentation. More information about these modules is provided in Table 1, and on the toolkit website under the “Teacher Learning” tab (http://www.argumentationtoolkit.org/teacher-learning.html). Each module consists of four sessions, which can be presented all at once in a 3 hour long session, or as individual, 45 minute sessions. Modules provide teachers with the opportunity to engage in a variety of argumentation activities, review student artifacts and student talk (e.g., writing and video), and design or revise their own argumentation lessons. Additional information about the design and organization of the modules is provided below in the section of this article entitled, “Using the Module.”

Table 1 (Click on image to enlarge)
Description of Teacher Learning Modules

Each module, and its corresponding sessions, was designed to incorporate four features intended to support teacher learning of the science practices: (1) providing images of practice, (2) problematizing instruction, (3) offering the student perspective, and 4) encouraging teacher reflection. Table 2 provides a summary and a description of how each feature is incorporated in the modules.

Table 2 (Click on image to enlarge)
Module Design Features to Support Teacher Learning

We next describe and illustrate each of these design features using examples from one session, the fourth session from the Introductory Module on Scientific Argumentation, entitled, “How do we support students in interacting with peers during argumentation?” (The agenda for this session is provided in the Appendix, and can also be accessed on the toolkit website.) This session was designed to help teachers develop an understanding of argumentation as a social process in which students question and critique claims using evidence and reasoning.

Design Features to Support Teacher Learning

Providing images of practice

To incorporate the first feature, providing images of practice, the modules make rich images of classroom enactment of science argumentation available to teachers. Images of practice serve as useful instructional models for teachers in preservice classes and professional development, particularly for those who are unfamiliar with the practice and lack context for how argumentation activities may differ from traditional science instruction (Reiser, 2013). In our learning modules, these images are incorporated through videos of teachers and students engaging in argumentation activities.

As compared to text-based supports, these videos provide teachers with real world examples of argumentation in science classrooms. The videos feature footage of real classrooms with teachers enacting a curriculum on argumentation with their students. The teachers in the videos were using a curriculum with a strong focus on scientific argumentation. This context was used with the hope that it would provide strong examples of what argumentation may look like in a classroom. Each video was created with a particular goal for teacher learning. For instance, while some videos provide an overview of the elements that are particularly challenging for teachers and their students, other videos highlight classroom activities and strategies to support engagement in argumentation. For each video, specific clips were selected to illustrate the particular goals of the video. Further, the videos are edited and have voice overs to emphasize particular goals, and teachers reflect on challenges and successes of implementing these activities in their classroom.

The fourth session begins with an activity “Video & Discussion.” This video supports the dialogic elements of argumentation, and is specifically focused on encouraging student interaction (Figure 2). The videos support teacher learning by providing an overview of the practice, a rationale for supporting student interaction in the science class, and footage of students in actual science classes critiquing each other’s ideas across different types of argumentation activities (e.g., pair feedback on written arguments). These videos also provide a vehicle for helping teachers see the interconnectedness of argument structure and dialogic interactions. For example, in this video, students draw upon evidence to convince their peers.

Figure 2 (Click on image to enlarge). Image of practice and problematizing instruction.

Problematizing instruction

The second feature, problematizing instruction, helps teachers recognize how their current instruction may be different from instruction authentically incorporating the science practices, such as argumentation (Osborne, 2014). As mentioned earlier, our four modules were explicitly designed to address four elements of argumentation that research has found to be particularly challenging for teachers and students (evidence, reasoning, student interactions, and competing claims) (McNeill et al., 2016). Across the four modules, each session title is a key question of practice related to an argumentation challenge, which serves as a guiding question for session activities. The question both identifies the argumentation focus for the session, and also encourages teachers to make connections between this science practice and their current instruction. For example, the fourth session in the Introductory Module is entitled, “How do we support students in interacting with peers during argumentation?” This question focuses on the challenge of student interactions, and all activities are around helping teachers provide support for student interactions in their science class.

Moreover, discussions following different activities in this session prompt teachers to consider challenges their students face. For example, in a discussion following the first activity, “Video & Discussion: Encouraging Student Interactions,” participants are asked: “What are the benefits to having students interact with peers during argumentation tasks?” Questions like these encourage teachers to consider the ways in which incorporating argumentation into their instruction supports student learning (Figure 2).

Offering the student perspective

Teachers are given the opportunity to engage in numerous argumentation activities during sessions from the student perspective. Research has shown it is important for teachers to develop knowledge of how students learn (Lee & Luft, 2008; Park & Oliver, 2008). One way to support teacher understanding of how students learn about argumentation is to have them engage in argumentation activities as a learner themselves. This feature addresses the lack of familiarity and experience many teachers have with argumentation, and allows them to understand the challenges students may encounter. For example, session four in the Introductory Module introduces teachers to the experience of student interactions by having teachers work in groups to collaboratively analyze data from three different studies related to a claim about metabolism (Figure 3). Teachers are encouraged to interact around evidence by asking each other questions, building off of one another’s ideas, critiquing each other’s claims, and persuading one another—all key dialogic aspects of argumentation. Following the activity, teachers are prompted to reflect on their experience of having engaged in this argumentation task as a student (“What did you talk about when you engaged in this task? How did interacting with others influence the argument you developed?”). Afterwards, they shift back to a teacher perspective to discuss instruction, particularly the supports they anticipate their students may need to productively interact with their peers in this argumentation activity (“What types of supports do you think your students might need to engage in this element of argumentation?”).

Figure 3 (Click on image to enlarge). Student perspective.

Encouraging teacher reflection 

The fourth feature we incorporated into the modules is encouraging teacher reflection. Research has shown that professional development supporting teachers’ PCK should provide teachers with opportunities to both enact instructional strategies and opportunities to reflect on those enactments, both individually and as a group (Van Driel & Barry, 2012). Thus, in each session, multiple opportunities for discussion among teachers are provided. Questions prompt teachers to reflect on their own instruction after different activities, such as after viewing a video or engaging in an argumentation task. In the example discussed earlier, numerous opportunities are provided for teachers to engage in sustained reflection on how to support student interactions in their science classroom. For instance, all sessions include an optional extension, which can be used to encourage teachers to further reflect on their argumentation instruction. Session four in the Introductory Module begins with a debriefing of an argumentation task teachers were asked to try with their students following session three. Teachers are encouraged to reflect on a lesson they developed addressing reasoning with their peers, specifically discussing what went well and what was challenging, as well as sharing student writing (Figure 4).

Figure 4 (Click on image to enlarge). Teacher reflection from extension discussion.

Teachers also engage in a reflective discussion following “Activity: Analyzing data with peers.” Specifically, they are prompted to consider, “What type of supports do you think your students might need to engage in this element of argumentation?” Additionally, in a culminating activity for the module, “Discussion: Connections between argumentation elements,” teachers make connections across all four argumentation elements introduced in the session, and consider the strengths of science instruction incorporating these elements, as well as any challenges students may encounter. Such a discussion is meant to support teachers in considering the needs of their students in planning for instruction.

As these examples from just one session illustrate, the four design features underlying this module (providing images of practice, problematizing instruction, encouraging teacher reflection, and offering the student perspective) are synergistic, working together to support teachers in developing their understanding of argumentation and how to incorporate it into their instruction. In particular, the videos (which offer teachers an image of practice) provide the teacher educator with a natural vehicle to facilitate teachers’ ability to engage in two other features, problematizing their instruction and reflecting on their practice. Moreover, although each session focuses on one particular challenge identified in the question framing the session (evidence, reasoning, student interaction, or competing claims), the other challenges are interwoven across different session activities. For example, the focal session described above addressed the challenge of supporting student interactions, but activities also incorporated the structural elements of argumentation, notably student use of evidence and reasoning.

Using the Module

Our experience leading professional development and working with other teacher educators guided our approach to the development of these modules. Though the modules were developed as self-contained units, the fact that these modules are provided online enable these resources to be flexibly used and easily customized.

The first author used the modules to prepare a professional development (PD) session about scientific argumentation for a school district. The district requested a PD session specifically focused on the structural elements of argumentation (i.e., how a claim is supported by evidence and reasoning). The district had a particular goal to better support student writing of science arguments, and requested a focus on reasoning, which they found had been an area of challenge for both teachers and students. Furthermore, because this PD request was designed to support a new district initiative that encompassed a goal for vertical alignment, the audience included teachers of science from grades 4-12 (most of whom were new to argumentation). As such, the goal of the PD was to introduce teachers to argumentation, and to begin the process of modifying instruction to incorporate more opportunities for authentic student argumentation.

Because no individual module aligned with the district’s request and goal of focusing solely on the structural components of argumentation (evidence and reasoning), I identified sessions across the four learning modules that provided a variety of activity types for teachers to learn about evidence and reasoning and consider implications for their instruction. (See the Teacher Learning tab on the toolkit website for more information: http://www.argumentationtoolkit.org/teacher-learning.html). Specifically, I used the first session and the third session from the Introductory Module (What is the role of evidence in a scientific argument? and What is the role of reasoning in a scientific argument?) to introduce teachers to evidence and reasoning. Then, to support teachers in identifying opportunities in their current curriculum and instruction to support student argumentation, I drew upon sessions from different advanced modules, specifically session 3 from the Advanced Module on Evidence and Reasoning (How can you support student use of reasoning in a scientific argument?) and session 1 from the Advanced Module, Designing Rich Argumentation Tasks (How can you design rich argumentation tasks to encourage student use of evidence and reasoning?). Even though the selected sessions and activities were designed to support teacher learning about argument structure, the videos included in these sessions also provided footage of students engaged in argumentation activities. Videos encouraged teachers to problematize their instruction and reflect on their practice to incorporate the dialogic components of argumentation, notably student interaction. For example, the video in the session introducing reasoning not only provides examples of classroom activities that can support student use of reasoning, such as group work, but also provides teachers with footage of students using reasoning in real classrooms engaged in argumentation activities. The discussion questions following this video (“How do the activities featured in the video encourage students to use reasoning?” and “What challenges do your students encounter using reasoning?”) encourage teachers to reflect on this practice and the implications for their own instruction.

As illustrated in this anecdote showing how the modules can be used, the online platform makes them flexible and easily modified to serve different purposes and audiences. For example, the modules are flexible with respect to time, since each module can be delivered as one 3 hour session, or four separate 45 minute sessions, depending upon the timing and format of the PD session. If presented as four separate sessions, optional “extension” activities are included to provide connections across session topics. Furthermore, though designed for a middle school audience, the sessions can be utilized with teachers across grades K-12, and even with a preservice audience. This flexibility is facilitated with references and supports around science content to enable teachers to engage in the argumentation activities regardless of their content knowledge.

Additionally, the modules can be used in any desired combination or order. They were designed to be presented as stand-alone learning experiences, or as a series, with an introductory module and several options for more advanced practice on argumentation. Or, as illustrated by the previous example, teacher educators can organize the learning experience based upon the needs and interests of their audience. Each session is cross referenced by the argumentation element (evidence, reasoning, student interactions, and competing claims) and by the argumentation activity focused on in the session (Figure 5) to facilitate teacher educators in customizing the learning experience.

Figure 5 (Click on image to enlarge). Argumentation element and activity.

Finally, each session can be viewed in one of two ways to allow teacher educators easy access to resources for planning and presenting. Specifically, each session can be displayed on the website as either 1) a scrollable lesson plan, which provides an outline of all activities, with links to session resources, or 2) as a slideshow, which includes any videos at the bottom of the page. Both views offer the same learning experiences to teachers. Additionally, an agenda is provided for each module, which includes tips for facilitators, and time estimates. This document can be edited, allowing facilitators to customize the lesson plan for their session.

Evidence of Success: Teacher Beliefs and Understanding of Argumentation

There is evidence that the types of supports included in our learning modules are desired by teachers and teacher educators who are interested in incorporating the scientific practice of argumentation into classroom teaching. This demand is evident in the number of hits the modules have received. Specifically, since we posted the first module in June 2016, we have had 10,508 unique page views for the teacher learning modules in just over six months (as of January 2017). The last module was posted in late December 2016.

Although we have not yet collected data from teachers who participated in PD using these modules, we can report data about changes in teacher beliefs about argumentation from a pilot of resources for teachers provided in the toolkit, including the videos featured in the teacher learning modules. We explored teacher beliefs about scientific argumentation through a survey consisting of 22 items measuring three aspects of teacher beliefs (self-efficacy, learning goals, and beliefs about student background and ability) after using a web-based teacher’s guide that included videos and other supports. Sample items and consistency ratings for these three scales are reported in Table 3.

Table 3 (Click on image to enlarge)

Teachers’ Beliefs About Scientific Argumentation

Overall, we found significant increases in teachers’ self-efficacy, their learning goals for their students, and beliefs related to student background and ability as a result of learning about argumentation using these supports (Table 4).

Table 4 (Click on image to enlarge)

Changes in Teachers’ Beliefs About Scientific Argumentation

Interviews with teachers about how they used these videos in preparing for instruction offered insights into how teachers interact with these features, resulting in instructional changes. In interviews following their instruction of a focus lesson on argumentation, teachers were asked to comment on how they used the resources to prepare their argumentation instruction. Several teachers commented on the benefits of the videos in helping them develop their own understanding of argumentation and of what it looks like in the classroom. One teacher described how the videos were helpful in providing a clear explanation of the structure of a scientific argument.

[I] watched the video… just to go over what a claim is, because I think I’ve had different definitions of it over, you know, different iterations, the definition over the past three years and these definitions seem very tight, and there’s not a lot of wiggle room with what it means, so that was my biggest concern, is talking about the evidence and talking about the process of making an argument.  

Another teacher found the videos to be particularly helpful in supporting her understanding of what argumentation looks like in a science classroom, and instructional strategies that can facilitate student engagement in the dialogic components of this science practice.

So I did watch the video, and it was more specific in terms of language than the previous ones I had looked at had been, so I did take the time to watch it a second time and freeze the screen and write down some of the questions because it was new language to me, and I just wanted to integrate it more and to, so that I would be able to reinforce it as I was talking to individuals. 

As such, the videos that we included in our teacher learning modules have shown promise in supporting changes in teachers’ beliefs about argumentation, as well as shifts in their instruction around this science practice. This suggests that the modules themselves may have promise to support changes in teachers’ beliefs.

Conclusion and Implications

Our work contributes to bridging the gap between teacher education and the classroom, specifically in helping teachers incorporate the science practice of argumentation into their science classes. Our modules provide teacher educators with a tool to better support teacher learning around argumentation in their professional development efforts. Specifically, in this paper we described the research-based features we incorporated in our design of the modules, and offered contextualized examples of what each of these features look like. Research on argumentation, and personal communication from teacher educators, reveal there is a need for these types of resources. Our teacher learning modules, freely available online, are both flexible and easy to access and use with a variety of teacher audiences, easily modified for particular instructional goals related to argumentation, and engage teachers in meaningful, reflective activities to support their understanding of argumentation.

 

Supplemental Files

Appendix.docx

References

References
Allen, C. D., & Penuel, W. R. (2015). Studying teachers’ sensemaking to investigate teachers’ responses to professional development focused on new standards. Journal of Teacher Education, 66, 136-149.

Berland, L. K., & Reiser, B. J. (2011). Classroom communities’ adaptations of the practice of scientific argumentation. Science Education, 95, 191 – 216.

Bryan, L. A. (2012). Research on science teacher beliefs. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (Vol.1, pp. 477-495). Dordrecht: Springer.

Bybee, R. W. (2014). NGSS and the next generation of science teachers. Journal of Science Teacher Education, 25, 211-221.

Ford, M. J. (2015). Educational implications of choosing “practice” to describe science in the next generation science standards. Science Education, 99, 1041-1048.

Hanuscin, Arnone, & Bautista (2016). Bridging the ‘Next Generation Gap’ – Teacher Educators Enacting the NGSS. Innovations in Science Education, 1(1).

Katsh‐Singer, R., McNeill, K. L., & Loper, S. (2016). Scientific argumentation for all? Comparing teacher beliefs about argumentation in high, mid, and low socioeconomic status schools. Science Education, 100, 410-436.

Kazemi, E., & Hubbard, A. (2008). New directions for the design and study of professional development attending to the coevolution of teachers’ participation across contexts. Journal of Teacher Education, 59, 428-441.

Lee, E., & Luft, J. (2008). Experienced secondary science teachers’ representation of pedagogical content knowledge. International Journal of Science Education, 30, 1343 – 1363.

Marco‐Bujosa, L. M., McNeill, K. L., González‐Howard, M., & Loper, S. (2017). An exploration of teacher learning from an educative reform‐oriented science curriculum: Case studies of teacher curriculum use. Journal of Research in Science Teaching, 54, 141–168.

McNeill, K. L., González-Howard, M., Katsh-Singer, R. & Loper, S. (2016). Pedagogical content knowledge of argumentation: Using classroom contexts to assess high quality PCK rather than pseudoargumentation. Journal of Research in Science Teaching, 53, 261-290.

McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students’ construction of scientific explanations by fading scaffolds in instructional materials. Journal of the Learning Sciences, 15, 153–191.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts and core ideas. Washington, DC: The National Academies Press.

Osborne, J., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41, 994 – 1020.

Osborne, J. (2014). Teaching scientific practices: Meeting the challenge of change. Journal of Science Teacher Education, 25, 177-196.

Park, S., & Oliver, S. (2008). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38, 261 – 284.

Reiser, B.J. (2013). What professional development strategies are needed for successful implementation of the next generation science standards? Invitational Research Symposium on Assessment, K-12 Center at ETS. Retrieved from: http://www.k12center.org/rsc/pdf/reiser.pdf

Sampson, V., & Blanchard, M. R. (2012). Science teachers and scientific argumentation: Trends in views and practice. Journal of Research in Science Teaching, 49, 1122-1148.

Schwarz, C. V., Passmore, C., & Reiser, B. J. (2017). Moving beyond “knowing about” science to making sense of the world. In. C. V. Schwarz, C. Passmore, & B. J. Reiser (Eds.). Helping students make sense of the world using next generation science and engineering practices (3-21). Arlington,

VA: National Science Teachers Association.
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

van den Berg, E., Wallace, J., & Pedretti, E. (2008). Multimedia cases, teacher education and teacher learning. In Voogt, J. & Knezek, G. (Eds.), International Handbook of Information Technology in Primary and Secondary Education (pp. 475-487). New York, NY: Springer.

Van Driel, J. H., & Berry, A. (2012). Teacher professional development focusing on pedagogical content knowledge. Educational Researcher, 41(1), 26 – 28.

Windschitl, M., Schwarz, C., & Passmore, C. (2014). Supporting the implementation of the next generation science standards (NGSS) through research: Pre-service teacher education. Retrieved from: https://narst.org/ngsspapers/preservice.cfm

Zhang, M., Lundeberg, M.A., Koehler, M.J., & Eberhardt, J. (2011). Understanding affordances and challenges of three types of video for teacher professional development. Teaching and Teacher Education, 27, 454-262.

Zohar, A. (2008). Science teacher education and professional development in argumentation. In S. Erduran & M. P. Jimenez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 245–268). Dordrecht: Springer.

 

A Scientist, Teacher Educator and Teacher Collaborative: Innovative Professional Learning Design focused on Climate Change and Lessons Learned from K-12 Classrooms

Citation
Print Friendly, PDF & Email

Stapleton, M.K., & Sezen-Barrie, A. (2017). A scientist, teacher educator and teacher collaborative: Innovative professional learning design focused on climate change and lessons learned from K-12 classrooms. Innovations in Science Teacher Education, 2(4). Retrieved from https://innovations.theaste.org/a-scientist-teacher-educator-and-teacher-collaborative-innovative-professional-learning-design-focused-on-climate-change-and-lessons-learned-from-k-12-classrooms/

by Mary K. Stapleton, Towson University; & Asli Sezen-Barrie, Towson University

Abstract

The new Next Generation Science Standards (NGSS) call for a dramatic shift in science teaching and learning, with a focus on students engaging in science practices as they make sense of natural phenomena. In addition, the NGSS have a significant and explicit focus on climate change. The adoption of these new standards in many states across the nation have created a critical need for on-going professional learning as inservice science educators begin to implement three-dimensional instruction in their classrooms. This paper describes an innovative professional learning workshop on climate change for secondary science teachers, designed by teacher educators and scientists. The workshop was designed to improve teachers’ capacity to deliver effective three-dimensional climate change instruction in their classrooms. We present the structure and goals of the workshop, describe how theories of effective professional learning drove the design of the workshop, and address the affordances and challenges of implementing this type of professional learning experience.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Allen, C. D., & Penuel, W. R. (2015). Studying teachers’ sensemaking to investigate teachers’ responses to professional development focused on new standards. Journal of Teacher Education, 66, 136-149.

Banilower, E., Smith, P.S., Weiss, I.R., Malzahn, K.A., Campbell, K.M., & Weiss, A.M. (2013). Report of the 2012 national survey of science and mathematics education. Chapel Hill, NC: Horizon Research Inc. 1-309.

Bell, R.L., Smetana, L. & Binns, I.  (2005). Simplifying inquiry instruction.  The Science Teacher, 72, 30-33.

Campbell, T., C. Schwarz, & Windschitl, M. (2016). What we call misconceptions may be necessary stepping-stones on a path toward making sense of the world. The Science Teacher, 83, 69–74.

Field, C., Barros, V., Dokken, D., Mach, K., Mastrandrea, M., Bilir, T., et al. (2014). IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York, NY.

Furtak, E., Morrison, D., & Kroog, H. (2014). Investigating the link between learning progressions and classroom assessment. Science Education, 98, 640-673.

Gess-Newsome, J. & Lederman, N.G. (Eds). (1999). Examining pedagogical content knowledge: The construct and its implications. Netherlands: Kluwer Academic Publishers.

Hanuscin, D., Lipsitz, K., Cisterna-Alburquerque, D., Arnone, K. A., van Garderen, D., de Araujo, Z., & Lee, E. J. (2016). Developing Coherent Conceptual Storylines: Two Elementary Challenges. Journal of Science Teacher Education, 27, 393-414.

Hestness, E., McDonald, R. C., Breslyn, W., McGinnis, J. R., & Mouza, C. (2014). Science teacher professional development in climate change education informed by the Next Generation Science Standards. Journal of Geoscience Education, 62, 319-329.

Hollins, E. R. (2015). Rethinking field experiences in preservice teacher preparation: Meeting new challenges for accountability. Routledge: New York.

Janssen, F., Westbroek, H., & Van Driel, J. (2013). How to make innovations practical. Teachers College Record, 115, 070378.

Krajcik, J. (2015). Three-dimensional instruction: using a new type of teaching in the science classroom.  The Science Teacher, 82(8), 50-52.

Marking a Strong Argument. (n.d.). Retrieved from http://slider.gatech.edu/student-edition

McNeill, K.L & Krajcik, J.S. (2012). Supporting grade 5-8 students in constructing explanations in science: the claim, evidence and reasoning framework for talk and writing. Boston, MA: Pearson.

National Research Council. (2012). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

NGSS Lead States. (2013). Next generation science standards:  For states, by states. Washington, DC: The National Academies Press.

Passmore, C.M., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34, 1535-1554.

Reiser, B.J. 2013. What professional development strategies are needed for successful implementation of the Next Generation Science Standards?  Invitational Research Symposium on Science Assessment.  Retrieved from https://www.chemedx.org/system/files/reiser.pdf.

Reiser, B. J. (2014). Designing coherent storylines aligned with NGSS for the K-12 classroom. In National Science Education Leadership Association Meeting (April). Boston, MA.

Reiser, B.J., Michaels, S., Moon, J. Bell, T., Dyer, E., Edwards, K., McGill, T.A.W., Novak, M., Park, A. (2016).  Scaling up three-dimensional science learning through teacher-led study groups across a state.  National Association for Research in Science Teaching Conference, Baltimore, MD.

Roth, W. M., Reis, G., & Hsu, D. P. L. (2008). Authentic science revisited: In praise of diversity, heterogeneity, hybridity. Boston, MA: Sense Publishers.

Sezen-Barrie, A., Shea, N., & Borman, J. H. (2017). Probing into the sources of ignorance: science teachers’ practices of constructing arguments or rebuttals to denialism of climate change. Environmental Education Research. http://dx.doi.org/10.1080/13504622.2017.1330949

Shea, N. A., Mouza, C., & Drewes, A. (2016). Climate Change Professional Development: Design, Implementation, and Initial Outcomes on Teacher Learning, Practice, and Student Beliefs. Journal of Science Teacher Education, 27, 235-258.

Shepardson, D. P., Niyogi, D., Roychoudhury, A., & Hirsch, A. (2012). Conceptualizing climate change in the context of a climate system: implications for climate and environmental education. Environmental Education Research, 18, 323-352.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4-14.

Skeptical Science, (n.d).  Retrieved from https://skepticalscience.com/climate-change-little-ice-age-medieval-warm-period.htm

Sondergeld, T. A., Milner, A. R., & Rop, C. (2014). Evaluating teachers’ self-perceptions of their knowledge and practice after participating in an environmental education professional development program. Teacher Development, 18, 281-302.

Stapleton, M.K., Wolfson, J., Sezen-Barrie, A., & Ellis, R. (2017).  Looking Backward, Looking Forward.  Science Scope, 42(2), 45-53.

Sullivan, S. M. B., Ledley, T. S., Lynds, S. E., & Gold, A. U. (2014). Navigating climate science in the classroom: Teacher preparation, perceptions and practices. Journal of Geoscience Education, 62, 550-559.

Wilson, S.M. (2013). Professional Development for Science Teachers. Science, 340, 310-313.

Windschitl, M. A., & Stroupe, D. (2017). The Three-Story Challenge: Implications of the Next Generation Science Standards for Teacher Preparation. Journal of Teacher Education, 68, 251-261.

Yuan, S. (1995). Postglacial History of Vegetation and River Channel Geomorphology in a Coastal Plain Floodplain.  Diss. The Johns Hopkins University.