Eliciting and Refining Conceptions of STEM Education: A Series of Activities for Professional Development

Citation
Print Friendly, PDF & Email

Dare, E. A. & Ring-Whalen, E. A. (2021). Eliciting and refining conceptions of STEM education: A series of activities for professional development. Innovations in Science Teacher Education, 6(2). Retrieved from https://innovations.theaste.org/eliciting-and-refining-conceptions-of-stem-education-a-series-of-activities-for-professional-development/

by Emily A. Dare, Florida International University; & Elizabeth A. Ring-Whalen, St. Catherine University

Abstract

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education. These activities not only engage teachers in conversations with peers and colleagues in a professional development setting but also enable teachers to reflect on their learning related to STEM education in the context of creating lesson plans and considering future teaching. In addition to describing these activities, we share suggestions related to how these activities may be used in venues outside of professional development.

Introduction

Current policy documents have called for K–12 science classrooms to employ integrated science, technology, engineering, and mathematics (STEM) strategies that provide a more authentic learning environment for students (Honey et al., 2014). Although the Next Generation Science Standards (NGSS; NGSS Lead States, 2013) and state standards that include engineering (Moore et al., 2013) strongly support the incorporation of engineering into science classrooms, the nature of engineering and how to effectively integrate it into science teaching is typically outside of most teachers’ knowledge bases (Cunningham & Carlsen, 2014). Although national policy documents strongly support the integration of STEM education, there remains disagreement on models and effective approaches for integrated STEM instruction (e.g., Breiner et al., 2012; Moore et al., 2020; Martín‐Páez et al., 2019).

Because of this disagreement, there is a need to better understand what integrated STEM education is in order to implement it in practice. The literature reveals a wide variety of approaches that include: STEM as a replacement term for science and mathematics (Breiner et al., 2012; Sanders, 2009), STEM as a pedagogical shift toward an integrated approach (Breiner et al., 2012; English, 2016; Honey et al., 2014; Kelley & Knowles, 2016), curriculum changes that reflect the work of STEM professionals (Breiner et al., 2012; Labov et al., 2010; Sanders, 2009), and curricula that emphasize engineering design challenges (Bryan et al., 2015). Despite these variations in definitions, there are common elements across these approaches to STEM, such as the inclusion of an engaging, real-world context (e.g., Breiner et al., 2012; Brown et al., 2011; Moore et al., 2020); explicit connections between science, technology, engineering, and mathematics and modeling those connections as they would be observed in STEM careers (e.g., English, 2016; Herschbach, 2011; Honey et al., 2014; Kelley & Knowles, 2016; Moore et al., 2020); the intentional development of 21st-century competencies (e.g., Bryan et al., 2015; Honey et al., 2014); and an emphasis on student-centered pedagogies (e.g., Bryan et al., 2015; Breiner et al., 2012; Labov et al., 2010; Sanders, 2009). In short, integrated STEM education is a complex combination of content and pedagogy, which makes it difficult to define.

This creates an additional challenge for teachers who are asked to implement integrated STEM. Professional development (PD) is one way to assist teachers not only in learning integrated STEM education instructional practices but also in helping them conceptualize what integrated STEM education means within their particular context. This is especially important given that “PD programs have the best chance of impact on teacher and student outcomes when the goals of the PD program are aligned with policies at the school, district, and state levels, as well as existing teacher beliefs regarding STEM” (Johnson & Sondergeld, 2015, p. 204). By eliciting teachers’ conceptions of integrated STEM education at the beginning of a STEM-focused PD through drawing conceptual models, facilitators can help teachers move from undefined or vague models to better defined models (Dare et al., 2019; Ring et al., 2017); similar activities have been included in preservice teacher education (Radloff & Guzey, 2016). Furthermore, teachers can reference these drawings during the PD to help them conceptualize integrated STEM curricula and recognize when their conceptual model has changed.

In our previous work analyzing teacher’s conceptual models of STEM, we found that K–12 science teachers’ understanding of what STEM education is varied greatly (Ring et al., 2017). These models ranged from simply using STEM as an acronym to prioritizing science or engineering to focusing on real-world problem-solving. We found that teachers’ conceptions reflected the variety of definitions that exist in the literature (e.g., Bybee, 2013) and that these conceptions can change through PD, curriculum writing, and implementation. Our prior research allowed us to meaningfully redesign previously used activities and design new activities for use in PD settings that would allow teachers to confront their conceptions of integrated STEM education, reflect on those conceptions, and collaborate with others to better define what STEM education is in their specific teaching context.

The work presented here highlights activities designed to elicit STEM conceptions during a week-long PD workshop on integrated STEM education. Informed by our prior work, the purpose of these activities was to elicit teachers’ conceptions of integrated STEM, share and reflect on those conceptions with others, use those conceptions as a foundation to guide the writing of curricular materials for classroom use, and ultimately develop new conceptions of STEM education through reflection. These activities may be used in a variety of settings, and we offer suggestions for alternative implementation.

 

Professional Development Context

The work described here is part of a larger 4-year funded project that seeks to improve the quality of K–12 integrated STEM education in science and engineering classrooms through the development and dissemination of a classroom observation protocol for integrated STEM instruction. The authors are two of the five principal investigators (PIs) on the project. As part of the project, three separate week-long (5-day) PD workshops were offered near the home institutions of project personnel, which include a large Southeastern city (Site 1) and a large Midwestern city (Site 2). One secondary (middle and high school) PD workshop was offered at Site 1, and two separate PD workshops were offered at Site 2: one elementary (K–5) and one secondary (high school). The professional development activities were planned jointly by project personnel from both sites, allowing for site-specific modifications as necessary. The project PIs designed and facilitated the PD with the assistance of several graduate research assistants and science and STEM coordinators from the local school and district. Within the context of the larger project, these workshops provided teachers with a foundational knowledge of integrated STEM; examples of integrated STEM activities, lessons, and units; and dedicated time to develop their own curriculum materials for classroom use. The teachers in these workshops were then expected to participate in classroom observations when they implemented their developed lessons (typically one or two 50-minute class periods) or curricular units (anywhere from week-long units to units that spanned several weeks) the following school year. The observations also allowed project personnel to continue supporting teachers’ learning and implementation of integrated STEM education because observations were followed by post-observation coaching conversations.

Participants. A total of 106 participants across the two sites participated in the three PD workshops (Table 1). Of these participants, 21 teachers participated in the secondary PD at Site 1; 58 teachers, two principals, and five instructional coaches participated in the elementary PD at Site 2; and 15 teachers, two administrators, and three instructional coaches participated in the secondary PD at Site 2. These teachers came from six different school districts. Two of these were large urban school districts, three were large suburban districts, and one was a smaller, rural district. The secondary teachers taught across multiple content areas: There were 12 middle school science teachers, eight biology/life science teachers, seven chemistry teachers, four physical science or physics teachers, one environmental science teacher, one photography teacher, one agriculture teacher, and one orchestra teacher.

 

Table 1

Professional Development Participants

PD participant descriptors across two sites

Our integrated STEM education framework. During the PD, we elicited teachers’ conceptions of integrated STEM education, exposed teachers to different approaches to integrated STEM instruction, actively engaged these teachers in example integrated STEM activities, and supported teachers in developing integrated STEM curricular materials for use in their classrooms. The definition of integrated STEM education that guided our work was adopted from Kelley and Knowles (2016) who defined integrated STEM education as “the approach to teaching the STEM content of two or more STEM domains, bound by STEM practices within an authentic context for the purpose of connecting these subjects to enhance student learning” (p. 3). This definition was selected due to its emphasis on student learning through context and making connections between disciplines and its flexibility as to how many domains were needed to “count” as integrated STEM. To reflect the states’ science standards and district initiatives, activities in the PD fore-fronted science and engineering, but mathematics and technology were integrated into the activities throughout the week.

In addition to the broad definition of STEM education shared above, we used a project-developed integrated STEM framework to guide the workshops’ activities. This framework consists of 13 components (Table 2) identified in the literature as being important within effective integrated STEM instruction (e.g., Breiner et al., 2012; Bryan et al., 2015; Martín‐Páez et al., 2019; Moore et al., 2020). These components have guided the development of the larger project’s observational protocol, which was still under development during the time of the PD. These components were grouped into three separate categories: STEM Concepts and Practices, STEM Pedagogies, and Contextualizing Learning. The concepts of “communicating understanding” and “collaboration” were identified as components that cut across the other three categories. Each of these 13 components was explicitly explored before, during, or immediately following at least one example of the integrated STEM activities in the PD, which is described below.

 

Table 2

Components of Integrated STEM Education Used in Professional Development

Descriptions of components of integrated STEM Education used in PD

Professional development design. The overall design of the PD utilized best practices to actively engage teachers in hands-on integrated STEM instruction as learners, reflect on their learning individually and with others, try out new practices through curriculum work while receiving feedback from peers and facilitators, receive feedback on their teaching, and reflect on their teaching (e.g., Banilower et al., 2007; Capps et al., 2012; Garet et al., 2001; Luft et al., 2020; Supovitz & Turner, 2000); the last of these two practices were incorporated into the coaching support during the school year. The purpose of the PD was not to improve content knowledge but to develop teachers’ understanding of STEM education as a pedagogy, which requires developing a conceptual understanding of integrated STEM as a whole. The collaboration with the teachers’ schools and districts ensured that our PD met their needs (Garet et al., 2001; Johnson & Sondergeld, 2015; Luft et al., 2020). Teachers were asked to come to the PD with curricular materials that they currently used in their classrooms. During the PD, we engaged teachers in modifying those curricular materials to transition them from a science-only focus to one that reflected integrated STEM. Teachers used project-supplied composition notebooks to respond to key reflective prompts throughout the week, which included explicit reflections on STEM conceptions, and to keep track of their own curricular ideas.

 

Conceptualizing Integrated STEM Education in Professional Development

As with most PD workshops, teachers were first introduced to the logistics of the week and what the following school year would look like in relation to the larger project (e.g., continued support through observations and coaching). Before introducing teachers to our STEM framework and a mix of facilitator-designed and published integrated STEM activities, we elicited teachers’ conceptions of STEM education through a series of activities and discussions. The sections that follow detail the activities used, which were revisited throughout the week as a means to reflect upon and revise teachers’ thinking related to STEM. These activities provided a foundation for teachers’ learning throughout the week. Although examples of integrated STEM activities are provided, the purpose of this manuscript is to share activities related to eliciting teachers’ STEM conceptions and to describe how teachers used these conceptions during reflection and curriculum-writing portions of the PD.

Initial STEM conceptions drawings. At the beginning of Day 1, we tasked teachers with creating individual, sketched representations of what integrated STEM education was to them. Our previous work has shown that teachers enter into professional development spaces with their own conceptions of STEM education (Ring et al., 2017). Since the intention of this activity was to elicit each teacher’s conception, we did not provide a definition or give any instruction prior to this exercise. After teachers drew their conceptions, they shared them with their self-selected table teams (approximately four or five members). As they shared, we asked teachers to identify similarities and differences among the various drawings they examined that were then shared in whole-group discussion. This exercise served to demonstrate the variety of conceptions that existed. Following this activity, the teachers responded to two prompts on the backside of their drawing: (1) “How does your STEM model compare to the other models at your table,” and (2) “after seeing other models, would you make any changes to yours?” Once teachers had individually responded to these prompts, they were asked to keep their drawings out for reference during the next activity.

STEM poster activity. After sharing their conceptions about integrated STEM, each teacher was provided with four sticky notes. We asked teachers to write down their ideas related to the roles of science, technology, engineering, and mathematics in STEM education, each on a separate sticky note. Those who wanted to add more than one idea for each area used additional sticky notes. Teachers then added their sticky notes to large poster papers corresponding to each area (science, technology, engineering, or mathematics) hanging around the room. We placed the teachers in four teams, and each team was assigned to one of the large poster papers. Because of the large size of the elementary group at Site 2, there were multiple sets of posters to keep the teams small. At their assigned posters, each team read the sticky notes and then arranged them into team-developed categories that were labeled with marker.

Once each team had created and labeled their categories, teams rotated from poster to poster. While reading through the other posters, we asked teachers to reflect upon what they noticed about the identified categories, note any changes they would make to those categories, and identify how the categories across the posters related to one another, if at all. Once all teams had read through the other three posters, we facilitated a large group discussion in which the teachers shared their reflections, specifically focusing on the relationships across the posters. Teachers were then asked to individually reflect upon what it means to integrate science, technology, engineering, and mathematics using their personal conceptual models from the preceding activity by responding to the following prompt: “Using your model, explain what it means to integrate S-T-E and M.” Finally, the teachers shared their ideas about the integration of S-T-E and M with their small groups, and commonalities among ideas were recorded as a whole group. The large S-T-E-M posters remained in the workshop space for the remainder of the week, and after copies were made, the teachers held on to their individual conceptions of STEM education models, which were used throughout the rest of the week as described below.

Approach to integrated STEM activities. Each day of the PD focused on one or more of the 13 components of our integrated STEM framework that were highlighted in that day’s activities (an example from Site 1 in shown in Table 3). Because of the complexity of STEM education, it was important to slowly introduce these components within the context of example activities. Teachers engaged in a variety of examples of integrated STEM activities as learners followed by discussions about how to implement them into their own classrooms. Many of these activities were developed by project personnel, but some were adopted from published curricula. Appropriate state standards were shared to demonstrate alignment with curricular expectations. For each activity that was introduced, teachers first participated in the activity as students would. This allowed the teachers to encounter the same challenges that their own students might face in the classroom. Afterward, project personnel facilitated whole-group and small-group discussions to allow teachers to reflect both as learners and as educators. Each of the activities included built-in reflection time around the components emphasized during that activity, and each day concluded with a final, deeper reflection related to the days’ focal components of STEM. These reflections were completed individually and collaboratively and were recorded in the teachers’ STEM notebooks to document their growing conceptions of integrated STEM. As part of this, teachers spent time modifying their curriculum materials to reflect what they learned about integrated STEM education throughout the day. Teachers were encouraged to work with others who were focusing on similar science content and discuss ideas with workshop facilitators. The facilitators would frequently prompt teachers to refer back to their conception of STEM drawing as a formative self-assessment of their learning.

 

Table 3

Example Workshop Schedule From Site 1

Example PD schedule divided into morning and afternoon activities across 5 days

For example, after the STEM conceptions activities on Day 1, we introduced teachers to our project’s STEM framework and focused on one component: collaboration. To do this, we used the marshmallow challenge, a popular activity used to emphasize the importance of planning and communicating with peers (Wujec, 2010). After doing the activity as students would and discussing why collaboration was important in this activity, teachers were asked to use their STEM conceptions drawings to decide if this was an integrated STEM activity and, if not, how they might make it one. Teachers were quick to point out that the activity does not explicitly call for the inclusion of science content. They argued the value of an activity like this to engage students in collaboration and problem-solving skills, which could be the basis for introducing engineering. Even without a clear “right answer” of what STEM education is, teachers were able to think critically about what they valued. To this end, teachers reflected on whether or not their initial STEM models were robust enough to determine the difference between a STEM activity that helps students learn STEM content and one meant to develop STEM skills and practices. To end the day, we asked teachers to examine their curricular materials and reflect on where they would include collaboration. As facilitators, we checked in with teachers as they worked and encouraged them to reflect upon the presence of collaboration in their STEM conceptions drawings, modifying them as needed, and then use those drawings to guide their curriculum writing. Although collaboration had been included in some teachers’ initial models, this focus on collaboration prompted others to consider this as a new addition to their model.

This pattern of being introduced to target components of STEM education each day, participating in an example STEM activity, reflecting on that activity, and working on curriculum was repeated on Days 2–4. Day 2 emphasized the importance of real-world problems, STEM-specific technologies, and communicating understanding within the context of integrated STEM activities. As part of this, engineering and the engineering design process were introduced to teachers through an introductory engineering activity (e.g., creating tabletop hovercrafts in the Site 1 PD and reviewing Engineering is Elementary in the Site 2 elementary PD). As on Day 1, the last activity of the day included reflection on the key components and a review of their Day 1 STEM conceptions, modifying them as needed, to work on their curriculum materials.

By Day 3, we had provided the teachers with foundational knowledge of integrated STEM education, arming them with the tools needed to participate in a fully integrated STEM curriculum unit. We used the Save the Penguins curriculum (Schnittka, 2009) to engage teachers in examining the relationship between heat transfer and the engineering design challenge of creating a well-insulated habitat for penguins. This curriculum unit allowed us to emphasize the following components of our integrated STEM framework.

  • Real-world problems: The design challenge was framed broadly by global climate change.
  • STEM content integration: After first learning about the three forms of heat transfer through a series of hands-on, inquiry-based activities, teachers were tasked with using their knowledge of heat transfer to complete the design challenge.
  • Multiple solutions: Teachers worked in small groups to develop prototypes, build and test those prototypes, and then modify their designs to rebuild and retest their prototypes.
  • Evidence-based reasoning: Teachers were tasked with explaining their design solutions using evidence collected through a variety of hands-on activities.

At the end of the activity, we facilitated discussions about these components in connection to Save the Penguins as well as how these elements might be highlighted in (or added to) activities the teachers already use in their classrooms; teachers also made suggestions about alternative contexts that their students might find more relatable than penguins, such as making insulated dog houses. Once more, teachers were asked to consider how this activity compared to their own developing conceptions, modify their conceptions as needed, and work on their selected curriculum materials.

Day 4 started with revisiting the importance of multiple solutions and emphasizing the importance of allowing students to learn from their first designs. We also spent time reflecting on all of the activities from the week and how they could each be presented in ways that developed students’ interest in STEM careers. The afternoon was spent entirely on curriculum development. Because the teachers had been introduced to all 13 components of the integrated STEM framework, they were tasked with incorporating these into their curricular materials, using their modified conceptions and written reflections to guide their work. Many teachers chose to work with peers, even though they were not working on the same materials.

To end the week, Day 5 was spent primarily in unstructured curriculum work time during which teachers worked with each other and the workshop facilitators to continue modifying their curricular materials. We reminded teachers of the 13 components of STEM used during the workshop and encouraged them to use their STEM conceptions, written reflections, and the posters that still hung on the walls as they worked. After sharing the progress on the curricular materials and reviewing logistics for the coming year (including how to share curricular materials within the group), we ended the PD by repeating the STEM conceptions activity.

Revisiting the STEM conceptions activity. In the afternoon of Day 5, we asked teachers to examine their conceptual models and written reflections from Day 1 before drawing a new model of STEM education. We reminded teachers that (just as before) there were no wrong answers. If they felt that their model had not changed, they were not obligated to change it; however, they were required to draw it on a new sheet of paper. Similar to the Day 1 activity, teachers shared their new models with their tablemates and identified similarities and differences across the different models present at their tables. Additionally, we asked the teachers to compare their own two models. We specifically asked them to consider how their own models had changed (if at all) and how they planned to implement their model during the upcoming school year. We asked them to write their responses to the following questions on the back of their second model.

  1. “How does your STEM model from today compare to your previous model?”
  2. “Describe how your STEM thinking has both changed and stayed the same. What do you think or know that is new?”
  3. “What will be your approach to implementing this model into your classroom?”

Although these written reflections were done individually, teachers also shared their reflections with their peers during a whole-group discussion. These final models were collected and copied by facilitators.

 

Outcomes of STEM Conceptions Activities

Unsurprisingly, we observed that participating teachers came to the PD with different ideas related to what STEM education is. Because of this, teachers were able to engage in meaningful discussions with their peers to consider multiple perspectives. For instance, some teachers focused on the presence of multidisciplinary content, some focused on the engineering design process, and others focused on framing STEM as real-world problem-solving. These different models showcased how STEM was conceptualized by teachers as a mix of content and pedagogical considerations. The reflections that arose out of conversations with peers allowed teachers to identify similarities and differences across their conceptions of STEM, positioning them to understand that STEM does not have to be just one thing. Furthermore, they recognized that there were common features valued across the models and that no model was “wrong.” In reviewing the Day 1 reflections, we found that 75% of the 106 teachers noted that they would want to make changes after seeing other models, stressing the importance of multiple “correct” models. This supports the rest of the work during the week in which teachers engaged in activities that encouraged them to revise their thinking. The workshop activities emphasized the constant revision of thinking surrounding STEM education because each activity focused on different components of STEM education from our STEM education framework. At no point did we, as facilitators, suggest that there was one way to “do STEM.” By pointing to their Day 1 models throughout the week, we encouraged teachers to consider whether or not their model was still an accurate representation of their understanding of STEM education and to refine their thinking in the process.

The repeated STEM conceptions activity on Day 5 allowed teachers to consider their learning over the course of the week and think forward to the upcoming school year. Some teachers chose not to modify their drawings, but side-by-side comparisons revealed that 91% of the teachers made changes, many of which included the addition of pedagogical elements from the PD activities. For example, one high school teacher’s drawing changed from a complex model that focused on content to a simple model of STEM education that showcased STEM education as a strategy (Figure 1). One elementary teacher shifted from thinking STEM was equivalent to a linear engineering design process to recognizing that STEM includes real-world problems, collaboration, and multiple solutions (Figure 2). Through these side-by-side comparisons, it is clear that most teachers’ conceptions changed. Furthermore, the inclusion of some of the 13 components of our STEM framework in teachers’ models on Day 5 indicates that teachers saw value in the framework we shared. Because our own STEM framework shared with teachers was not prescriptive, teachers were able to highlight which components were of importance to them in their models.

 

Figure 1

Day 1 and Day 5 conceptions of STEM education from a high school teacher.

Drawings of conceptions of STEM with written reflections

 

Figure 2

Day 1 and Day 5 conceptions of STEM education from an elementary teacher.

Drawings of conceptions of STEM with written reflections

 

Although the first STEM conceptions activity is a modification of an activity that we had previously used in workshops, the “Roles of S-T-E-M” large poster activity was new (Figures 3, 4, 5, and 6). We designed this activity based on our experience in observing how science, technology, engineering, and mathematics are used in lessons tagged as integrated STEM such that often S, T, E, and M are present but not necessarily well-defined or explicitly connected to one another (Dare et al., 2019; Ring-Whalen et al., 2018). The third reflective prompt on Day 1 (“Using your model, explain what it means to integrate S-T-E and M”) aimed to help teachers consider how these roles might play out in their own models. By allowing teachers to first consider the various roles and purposes of science, technology, engineering, and mathematics, they were better prepared to consider how these disciplines might work together when considering an integrated STEM approach in their models. For instance, the Site 1 secondary science teachers conceptualized science in STEM education as the intersection of theory and practice that leads to innovation (Figure 3). They also positioned technology in STEM education as assisting with teaching strategies that provide students with hands-on applications to collect data and communicate. This activity explicitly asked teachers about the connections between S, T, E, and M, which is often not captured in drawn models alone (Dare et al., 2019) but is important when considering lesson planning and implementation.

 

Figure 3

Role of science in STEM poster by the secondary science teachers at Site 1.

Poster showing how practices and theory come together to generate innovation in science

Figure 4

Role of technology in STEM poster by the secondary science teachers at Site 1.

Poster show components of technology: data gathering, teaching strategies, application/hands-on, communication, presentation

Figure 5

Role of engineering in STEM poster by the secondary science teachers at Site 1.

Poster showing components of engineering: principles, problem-solving practices, specific outcomes

Figure 6

Role of mathematics in STEM poster by the secondary science teachers at Site 1.

Poster showing components of mathematics: data, logic, quantification, calculating, defining math

Facilitator Reflection on Activities

As facilitators, this set of activities allowed us to activate the different conceptions of STEM education teachers held before they engaged in STEM activities when they might assume there is one way to “do STEM.” Additionally, they allowed teachers to work with others to understand that STEM education is not just one prescribed way of teaching that has to be conducted in the same manner all the time. Through activities designed to elicit STEM conceptions, teachers engaged in rich conversations that allowed them to explore a variety of conceptions of STEM, thus, leading to a deeper understanding of what STEM can look like in different contexts. These conversations and explicit reflections on the integrated STEM activities helped the teachers further develop their own conceptions of STEM, as indicated by the changes from Day 1 to Day 5. We were able to help the teachers actualize and refine their conceptions of STEM as we guided the them in curriculum writing throughout each day of the PD.

Furthermore, these activities allowed teachers to confront what roles science, technology, engineering, and mathematics play in STEM education in their own classrooms. Our previous work noted that teachers’ interpretations of models of STEM failed to show how to “do STEM” (Dare et al., 2019), so these activities required teachers to specifically consider the mechanisms through which they might integrate across various content areas. This helped the teachers identify places where science, technology, engineering, and mathematics can be integrated more naturally, which resulted in conversations about what, specifically, that integration can look like. These conversations were important in helping the teachers develop curricula for their own classrooms that not only included two or more of the STEM disciplines but also included various elements addressed in the PD, such as collaboration and solving real-world problems.

Implementing these activities was not without challenges. Some teachers began the week looking for the “correct” way to “do STEM” and were initially disappointed that they would not be provided one answer, nor would they be blindly led through examples of integrated STEM curricula. Our approach required teachers to consider their own ideas and reflect on their learning. Additionally, the conceptions elicitation activities were inherently challenging and cognitively demanding tasks because they forced individuals to interrogate something that they were not necessarily confident about. Reminding the teachers that there was no wrong answer was key in eliminating some of their fears associated with being wrong; these fears were further ameliorated by sharing ideas in small groups first before opening up to the large group. Our openness to discussion, constant challenging of ideas, and adoption of high-quality PD practices (e.g., peer collaboration, engaging in activities as students, and dedicated curricular work time) allowed us to push teachers to question others and reflect on their own learning, which proved successful.

Teacher feedback solicited on the last day demonstrated that the overall design of the PD was well-received. Although differences existed across the three workshops, the positive feedback was echoed. For instance, one secondary science teacher from Site 1 shared:

 

The theory combined with the modeling followed by action and reflection made the PD very effective. I feel very confident in my ability to integrate STEM in my classroom because of the format in which this PD was presented. I also loved the time that we had to develop units and lessons that integrate STEM.

 

Site 2 was no different. The positive feedback from secondary and elementary teachers at Site 2 was very similar. One secondary science teacher shared the following:

 

Thank you for a great week of learning. I was very happy with the workshop and what I learned. Thank you for the time to work on lessons/units that are applicable to what we will do. The time to chat with others helped A LOT!

 

Elementary teachers at Site 2 also valued their new knowledge:

 

The time to collaborate and discuss our learning with colleagues was incredibly helpful. It allowed us to take the new information and apply it to our individual units, schools, etc. It also allowed us to digest the information and ask questions in a safe environment.

 

From these examples, it is clear that the ability to directly have a take-away product that teachers could immediately use in their classrooms and the conversations with others was beneficial.

Furthermore, these types of activities allowed us to address these very visual conceptions in the moment and to refer back to them throughout the PD to reflect on and refine their understanding of STEM. As they participated in the workshop activities, teachers often referenced the large poster papers that hung in the room as a reminder of different ways to incorporate each of the STEM disciplines while they worked on developing their own lesson plans. Additionally, when teachers requested assistance during curriculum writing, we frequently asked them to revisit their conceptions and consider if they needed modification or how they were being actualized in their planning. Full curriculum materials and observations are still being collected as part of the larger project; however, we anticipate that this may result in more cohesive and more well-integrated lessons and units. Future research will address how teachers’ conceptions of STEM were actualized in their curricular materials and implementation.

 

Implications for Future Practice

These activities were used primarily with inservice teachers, but they can also be used with administrators, preservice teachers, and teacher educators to better parse out what STEM education means and how to enact it. In schools and districts moving to become STEM schools or STEM districts, these activities could be used to develop a unified vision for STEM within the school or district, which is important for making forward progress. Participating administrators then have an opportunity to gain a realistic sense of what is being asked of their teachers when tasked with developing integrated STEM lessons and implementing them in the classroom. The conversations these activities promote are useful in helping to define STEM education within bounded contexts.

These activities can also be used for research, the primary motivation in the initial creation of the STEM conceptions activity (Ring et al., 2017). Post-PD comparisons of the teachers’ conceptions on Day 1 of the PD to their conceptions on Day 5 of the PD can help facilitators measure and evaluate the impact of the professional development’s activities, which aligns with our own future research plans. This research could then allow facilitators to adjust the activities to better serve the needs of professional development participants. Understanding the conceptions of STEM education held by teachers will allow administrators, professional development facilitators, and others involved in improving STEM education to better support teachers implementing STEM in their classrooms.

Acknowledgments

This work was supported by the National Science Foundation under Award Numbers 1854801, 1812794, and 1813342. The findings, conclusions, and opinions herein represent the views of the authors and do not necessarily represent the view of personnel affiliated with the National Science Foundation.

References

Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2015). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds), STEM road map: A framework for integrated STEM education (pp. 23–37). Routledge. https://doi.org/10.4324/9781315753157-3

Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3–11. https://doi.org/10.1111/j.1949-8594.2011.00109.x

Brown, R., Brown, J., Reardon, K., & Merrill, C. (2011). Understanding STEM: Current perceptions. Technology and Engineering Teacher, 70(6), 5–9.

Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. NSTA Press.

Cunningham, C. M., & Carlsen, W. S. (2014) Teaching engineering practices. Journal of Science Teacher Education, 25(2), 197–210. https://doi.org/10.1007/s10972-014-9380-5

Dare, E. A., Ring-Whalen, E. A., & Roehrig, G. H. (2019). Creating a continuum of STEM models: Exploring how K-12 science teachers conceptualize STEM education. International Journal of Science Education, 41(12), 1701–1720. https://doi.org/10.1080/09500693.2019.1638531

English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3, Article 3. https://doi.org/10.1186/s40594-016-0036-1

Garet, M. S., Porter, A. C. , Desimone, L., Birman, B. F., & Yoon, K. S. (2001). What makes professional development effective? Results from a national sample of teachers. American Education Research Journal, 38(4), 915–945. https://doi.org/10.3102/00028312038004915

Herschbach, D. R. (2011). The STEM initiative: Constraints and challenges. Journal of STEM Teacher Education, 48(1), 96–122. https://doi.org/10.30707/JSTE48.1Herschbach

Honey, M., Pearson, G., & Schweingruber, H. (Eds.). (2014). STEM integration in K–12 education: Status, prospects, and an agenda for research. National Academies Press. https://doi.org/10.17226/18612

Johnson, C. C., & Sondergeld, T. A. (2015). Effective STEM professional development. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 203–210). Routledge.

Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3, Article 11. https://doi.org/10.1186/s40594-016-0046-z

Labov, J. B., Reid, A. H., & Yamamoto, K. R. (2010). Integrated biology and undergraduate science education: A new biology education for the twenty-first century? CBE—Life Sciences Education, 9(1), 10–16. https://doi.org/10.1187/cbe.09-12-0092

Luft, J. A., Diamond, J. M., Zhang, C., & White, D . Y. (2020). Research on K-12 STEM professional development programs: An examination of program design and teacher knowledge and practice. In C. C. Johnson, M. J. Mohr-Schroeder, T. J. Moore, & L. D. English (Eds). Handbook of research on STEM education (pp. 361–374). Routledge. https://doi.org/10.4324/9780429021381-34

Martín‐Páez, T., Aguilera, D., Perales‐Palacios, F. J., & Vílchez‐González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799–822. https://doi.org/10.1002/sce.21522

Moore, T. J., Johnston, A. C., & Glancy, A. W. (2020). STEM integration: A synthesis of conceptual frameworks and definitions. In C. C. Johnson, M. J. Mohr-Schroeder, T. J. Moore, & L. D. English (Eds). Handbook of research on STEM education (pp. 3–16). Routledge. https://doi.org/10.4324/9780429021381-2

Moore, T. J., Tank, K. M., Glancy, A. W., Kersten, J. A., & Ntow, F. D. (2013). The status of engineering in the current K-12 state science standards (research to practice). Paper presented at the 2013 ASEE Annual Conference & Exposition, Atlanta, GA. https://doi.org/10.18260/1-2–22619

NGSS Lead States. (2013). Next generation science standards: For states, by states. National Academies Press. https://doi.org/10.17226/18290

Radloff, J., & Guzey, S. (2016). Investigating preservice STEM teacher conceptions of STEM education. Journal of Science Education and Technology, 25(5), 759–774. https://doi.org/10.1007/s10956-016-9633-5

Ring, E. A., Dare, E. A., Crotty, E. A., & Roehrig, G. H. (2017). The evolution of teacher conceptions of STEM education throughout an intensive professional development experience. Journal of Science Teacher Education, 28(5), 444–467. https://doi.org/10.1080/1046560X.2017.1356671

Ring-Whalen, E., Dare, E., Roehrig, G., Titu, P., & Crotty, E. (2018). From conception to curricula: The role of science, technology, engineering, and mathematics in integrated STEM units. International Journal of Education in Mathematics, Science and Technology, 6(4), 343–362. https://www.ijemst.net/index.php/ijemst/article/view/257

Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20–26.

Schnittka, C. G. (2009). Save the penguins STEM teaching kit: An introduction to thermodynamics and heat transfer. Auburn University. http://www.auburn.edu/~cgs0013/ETK/SaveThePenguinsETK.pdf

Wujec, T. (2010, February). Build a tower, build a team [Video]. TED Conferences.  https://www.ted.com/talks/tom_wujec_build_a_tower_build_a_team?language=en

Reflection in Action: Environmental Education Professional Development with Two Cohorts

Citation
Print Friendly, PDF & Email

Madden, L., Ammentorp, L., Heddy, E., Stanton, N., & McCotter, S. (2021). Reflection in action: Environmental education professional development with two cohorts. Innovations in Science Teacher Education. Retrieved from https://innovations.theaste.org/reflection-in-action-environmental-education-professional-development-with-two-cohorts/

by Lauren Madden, The College of New Jersey; Louise Ammentorp, The College of New Jersey; Eileen Heddy, The College of New Jersey; Nicole Stanton, The College of New Jersey; & Suzanne McCotter, The College of New Jersey

Abstract

This article shares lessons learned from a 2-year environmental education professional development initiative with two cohorts. Each cohort consisted of school-based teams of elementary teachers. The professional development included a series of five workshops aimed at integrating environmental education across the curriculum, and each teacher team developed and implemented a school-based project to put these ideas into practice. The project team modified their approach between Cohorts 1 and 2 based on strengths and shortcomings of the first experience. Key takeaways to inform future professional development efforts include ensuring the timeframe of the project allows teachers to build momentum in their work, recruiting teams of teachers with diverse classroom experiences, and including presenters who can offer tangible and actionable ideas to use in the classroom.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Álvarez-García, O., Sureda-Negre, J., & Comas-Forgas, R. (2015). Environmental education in pre-service teacher training: A literature review of existing evidence. Journal of Teacher Education for Sustainability, 17(1), 72–85. https://doi.org/10.1515/jtes-2015-0006

Ashmann, S., & Franzen, R. L. (2017). In what ways are teacher candidates being prepared to teach about the environment? A case study from Wisconsin. Environmental Education Research, 23(3), 299–323. https://doi.org/10.1080/13504622.2015.1101750

Banilower, E. R., Heck, D. J., & Weiss, I. R. (2007). Can professional development make the vision of the Standards a reality? The impact of the National Science Foundation’s Local Systemic Change through Teacher Enhancement Initiative. Journal of Research in Science Teaching, 44(3), 375–395. https://doi.org/10.1002/tea.20145

Bryk, A. S., Sebring, P. B., Allensworth, E., Luppescu, S., & Easton, J. Q.(2010). Organizing schools for Improvement: Lessons from Chicago. University of Chicago Press. https://doi.org/10.7208/chicago/9780226078014.001.0001

Crim, C., Moseley, C., & Desjean-Perrotta, B. (2017). Strategies toward the inclusion of environmental education in educator preparation programs: Results from a national survey. School Science & Mathematics, 117(3–4), 104–114. https://doi.org/10.1111/ssm.12211

Datnow, A. (2011). Collaboration and contrived collegiality: Revisiting Hargreaves in the age of accountability. Journal of Educational Change, 12(2), 147–158. https://doi.org/10.1007/s10833-011-9154-1

Desjean-Perrotta, B., Moseley, C., & Cantu, L. E. (2008). Preservice teacher’s perceptions of the environment: Does ethnicity or dominant residential experience matter? The Journal of Environmental Education, 39(2), 21–31. https://doi.org/10.3200/JOEE.39.2.21-32

Dyment, J. E., Davis, J. M., Nailon, D., Emery, S., Getenet, S., McCrea, N., & Hill, A. (2014). The impact of professional development on early childhood educators’ confidence, understanding and knowledge of education for sustainability. Environmental Education Research, 20(5), 660–679. https://doi.org/10.1080/13504622.2013.833591

European Commission. (2014, June). The Teaching and Learning International Survey (TALIS) 2013: Main findings from the survey and implications for education and training policies in Europe. https://ec.europa.eu/assets/eac/education/library/reports/2014/talis_en.pdf

Holdsworth, S., Wyborn, C., Bekessy, S., & Thomas, I. (2008). Professional development for education for sustainability: How advanced are Australian universities? International Journal of Sustainability in Higher Education, 9(2), 131–146. https://doi.org/10.1108/14676370810856288

Johnson, S. M. (2015). Will VAMs reinforce the walls of the egg-crate school? Educational Researcher, 44(2), 117–126. https://doi.org/10.3102/0013189X15573351

Moseley, C., Desjean-Perrota, B., & Crim, C. (2010). Exploring preservice teachers’ mental models of the environment. In A. M. Bodzin, B. S. Klein, & S. Weaver (Eds.), The inclusion of environmental education in science teacher education (pp. 209–223). Springer. https://doi.org/10.1007/978-90-481-9222-9_14

Parise, L. M., & Spillane, J. P. (2010). Teacher learning and instructional change: How formal and on-the-job learning opportunities predict change in elementary school teachers’ practice. The Elementary School Journal, 110(3), 323–346. https://doi.org/10.1086/648981

Powers, A. (2004). Teacher preparation for environmental education: Faculty perspectives on the infusion of environmental education into preservice methods courses. The Journal of Environmental Education, 35(3), 3–11.

Ronfeldt, M., Farmer, S. O., McQueen, K., & Grissom, J. A. (2015) Teacher collaboration in instructional teams and student achievement. American Educational Research Journal, 52(3), 475–514. https://doi.org/10.3102/0002831215585562

Schliefer, D., Rinehart, C., & Yanisch, T. (2017) Teacher collaboration in perspective: A guide to research. Spencer Foundation and Public Agenda. http://www.in-perspective.org/pages/teacher-collaboration-a-guide-to-research

Yavetz, B., Goldman, D., & Pe’er, S. (2014). How do preservice teachers perceive ‘environment’ and its relevance to their area of teaching? Environmental Education Research, 20(3), 354–371. https://doi.org/10.1080/13504622.2013.803038

From Theory to Practice: Funds of Knowledge as a Framework for Science Teaching and Learning

Citation
Print Friendly, PDF & Email

St. Clair, T. & McNulty, K. (2021). From Theory to Practice: Funds of Knowledge as a Framework for Science Teaching and Learning. Innovations in Science Teacher Education, 6(2). Retrieved from https://innovations.theaste.org/from-theory-to-practice-funds-of-knowledge-as-a-framework-for-science-teaching-and-learning/

by Tyler St. Clair, Longwood University; & Kaitlin McNulty, Norwood-Norfork Central School

Abstract

The phrase "funds of knowledge" refers to a contemporary science education research framework that provides a unique way of understanding and leveraging student diversity. Students’ funds of knowledge can be understood as the social relationships through which they have access to significant knowledge and expertise (e.g., family practices, peer activities, issues faced in neighborhoods and communities). This distributed knowledge is a valuable resource that might enhance science teaching and learning in schools when used properly. This article aims to assist science methods instructors and secondary classroom teachers to better understand funds of knowledge theory and to provide numerous examples and resources for what this theory might look like in practice.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Aschbacher, P. R., Li, E., & Roth, E. J. (2010). Is science me? High school students’ identities, participation and aspirations in science, engineering, and medicine. Journal of Research in Science Teaching, 47(5), 564–582. https://doi.org/10.1002/tea.20353

Barton, A. C. (with Ermer, J. L., Burkett, T. A., & Osborne, M. D.). (2003). Teaching science for social justice. Teachers College Press.

Bhabha, H. (1994). The location of space. Routledge.

Bian, L., Leslie, S.-J., & Cimpian, A. (2017). Gender stereotypes about intellectual ability emerge early and influence children’s interests. Science, 355(6323), 389–391. https://doi.org/10.1126/science.aah6524

Chambers, D. W. (1983). Stereotypic images of the scientist: The Draw‐a‐Scientist Test. Science Education, 67(2), 255–265. https://doi.org/10.1002/sce.3730670213

Ciechanowski, K., Bottoms, S., Fonseca, A. L., & St. Clair, T. (2015). Should Rey Mysterio drink Gatorade? Cultural competence in afterschool STEM programming. Afterschool Matters, 21, 29–37. http://www.niost.org/images/afterschoolmatters/asm_2015_spring/Rey_Mysterio.pdf

Cvencek, D., Meltzoff, A. N., & Greenwald, A. G. (2011). Math–gender stereotypes in elementary school children. Child Development, 82(3), 766–779. https://doi.org/10.1111/j.1467-8624.2010.01529.x

Moje, E. B., Ciechanowski, K. M., Kramer, K., Ellis, L., Carrillo, R., & Collazo, T. (2004). Working toward third space in content area literacy: An examination of everyday funds of knowledge and discourse. Reading Research Quarterly, 39(1), 38–70. https://doi.org/10.1598/RRQ.39.1.4

Moll, L. C., Amanti, C., Neff, D., & Gonzalez, N. (1992). Funds of knowledge for teaching: Using a qualitative approach to connect homes and classrooms. Theory Into Practice, 31(2), 132–141. https://doi.org/10.1080/00405849209543534

Saifer, S., Edwards, K., Ellis, D., Ko, L., & Stuczynski, A. (2011). Culturally responsive standards-based teaching: Classroom to community and back (2nd ed.). Corwin Press.

Whitworth, B. A., & Bell, R. L. (2013). Physics portfolios: A picture of student understanding. The Science Teacher, 80(8), 38–43. https://doi.org/10.2505/4/tst13_080_08_38

Supporting Middle and Secondary Science Teachers to Implement Sustainability-Themed Instruction

Citation
Print Friendly, PDF & Email

Mark, S. L. (2021). Supporting Middle and Secondary Science Teachers to Implement Sustainability-Themed Instruction. Innovations in Science Teacher Education, 6(1). Retrieved from https://innovations.theaste.org/supporting-middle-and-secondary-science-teachers-to-implement-sustainability-themed-instruction/

by Sheron L. Mark, PhD, University of Louisville, College of Education and Human Development, 1905 S 1st Street, Louisville, KY 40292

Abstract

In today’s society, we face many complex environmental, social, and economic challenges that can be addressed through a lens of sustainability. Furthermore, our efforts in addressing these challenges must be collective. Science education is foundational to preparing students with the knowledge, skills, and dispositions to engage in this work in professional and everyday capacities. This article describes a teacher education project aimed at preparing middle and secondary preservice and alternatively certified science teachers to teach through a lens of sustainability. The project was embedded within a middle and secondary science teaching methods course. Work produced by the teacher candidates, including case-study research presentations and week-long instructional plans, is described.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Barnett, R. (2011). Environmental issues, Louisvile, KY. Kentucky Institute for the Environment and Sustainable Development.

Bullard, R. D. (Ed.). (1996). Unequal protection: Environmental justice and communities of color. Sierra Club Books.

Bullard, R. D. (2000). Dumping in Dixie: Race, class, and environmental quality (3rd ed.). Westview Press.

Colucci-Gray, L., Perazzone, A., Dodman, M., & Camino, E. (2013). Science education for sustainability, epistemological reflections and educational practices: From natural sciences to trans-disciplinarity. Cultural Studies of Science Education, 8(1), 127–183. https://doi.org/10.1007/s11422-012-9405-3

Corsey, G. (2019, Oct 17). Rubbertown chemical plant fined $100,000 in settlement with city of Louisville over ‘repeat’ violations. WDRB. https://www.wdrb.com/news/rubbertown-chemical-plant-fined-in-settlement-with-city-of-louisville/article_d18c203a-f04d-11e9-98fc-03a59bdf27cb.html

Mark, S. L. (2021). Preparing for inclusivity and diverse perspectives on social, political, and equity issues in higher education. College Teaching, 69(2), 78-81. https://doi.org/10.1080/87567555.2020.1820433

McIntyre, B. D., Herren, H. R., Wakhungu, J., & Watson, R. T. (Eds.). (2009). Agriculture at a crossroads: International Assessment of Agricultural Knowledge, Science and Technology for Development: Synthesis Report. International Assessment of Agricultural Knowledge, Science and Technology for Development. https://www.gaiafoundation.org/app/uploads/2017/09/Agriculture-at-a-crossroads-Synthesis-report-2009Agriculture_at_Crossroads_Synthesis_Report.pdf

Jolly, A. (2017, July 19). The search for real-world STEM problems. Education Week. https://www.edweek.org/tm/articles/2017/07/17/the-search-for-real-world-stem-problems.html

Lemonick, M. D. (2009). Top 10 myths about sustainability. Scientific American, 19(1s), 40–45.  https://doi.org/10.1038/scientificamericanearth0309-40

LouisvilleKY.gov. (n.d.). Rubbertown air toxics risk assessment. https://louisvilleky.gov/government/air-pollution-control-district/rubbertown-air-toxics-risk-assessment

Mark, S. L. (2016). Psychology of working narratives of STEM career exploration for non-dominant youth. Journal of Science Education and Technology, 25(6), 976–993. https://doi.org/10.1007/s10956-016-9646-0

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press. https://doi.org/10.17226/13165

NGSS Lead States. (2013). Next generation science standards: For states, by states. National Academies Press. https://doi.org/10.17226/18290

Rodriguez, A. J. (2015). What about a dimension of engagement, equity, and diversity practices? A critique of the Next Generation Science Standards. Journal of Research in Science Teaching, 52(7), 1031–1051. https://doi.org/10.1002/tea.21232

Saldaña, J. (2015). The coding manual for qualitative researchers (3rd ed.). Sage.

Smith, E. (2015, November 25). An environmental injustice tour of West Louisville. Leo Weekly. https://www.leoweekly.com/2015/11/an-environmental-injustice-tour-of-west-louisville/

Teaching Tolerance. (2019). Let’s talk! Facilitating critical conversations with students. The Southern Poverty Law Center. https://www.tolerance.org/sites/default/files/2021-01/TT-Let-s-Talk-Publication-January-2020.pdf

United Nations Development Programme. (2015). Sustainable development goals. https://www.undp.org/content/dam/undp/library/corporate/brochure/SDGs_Booklet_Web_En.pdf

 

 

 

 

Using Critical Case Studies to Cultivate Inservice Teachers’ Critical Science Consciousness

Citation
Print Friendly, PDF & Email

Crabtree, L.M., & Stephan, M. (2021). Using critical case studies to cultivate inservice teachers’ critical science consciousness. Innovations in Science Teacher Education, 6(1). Retrieved from https://innovations.theaste.org/using-critical-case-studies-to-cultivate-inservice-teachers-critical-science-consciousness/

by Lenora M. Crabtree, University of North Carolina Charlotte; & Michelle Stephan, University of North Carolina Charlotte

Abstract

Culturally relevant and responsive science instruction includes support of students’ socio-political, or critical, consciousness. A lack of experience with marginalization, and limited attention to critical perspectives in science content and methods courses, however, may leave educators ill-equipped to address intersections of diversity, equity, and science instruction. Curriculum is needed that supports critical consciousness development among science teachers and their students. We describe an innovation, a critical inquiry case study, designed to address this essential facet of culturally relevant pedagogy. Design research methodology guided our development of an interrupted, historical case study employed as part of a four-day professional development workshop for secondary science teachers. In addition to provoking critical awareness and agency, the case study was designed to highlight ways that science itself may create or perpetuate inequities, or serve as a tool for liberation, a content-specific construct we call critical science consciousness. Implementation of the critical case study and participating teachers’ interactions with case materials are described. In addition, we highlight learning goals developed to support critical science consciousness and provide insights into ways teachers exhibited growth in each area. Teachers report heightened understanding of the role science plays in perpetuating inequities, transformations in ways they think about systemic inequities that impact students and families, and growing awareness of the possibilities inherent in teaching science for liberation.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Allchin, D. (2000). How not to teach historical cases in science. Journal of College Science Teaching30(1), 33.

Atwater, M. M., Freeman, T. B., Butler, M. B., & Draper-Morris, J. (2010). A case study of science teacher candidates’ understandings and actions related to the culturally responsive teaching of science. International Journal of Environmental and Science Education, 5, 287-318.

Bollett, A. (1992). Politics and pellagra: The epidemic of pellagra in the U.S. in the early twentieth century. The Yale Journal of Biology and Medicine, 65, 211-221.

Brown, B. A., Boda, P., Lemmi, C., & Monroe, X. (2019). Moving culturally relevant pedagogy from theory to practice: Exploring teachers’ application of culturally relevant education in science and mathematics. Urban Education, 54, 775-803.

Campbell, A., Skvirsky, R., Wortis, H., Thomas, S., Kawachi, I., & Hohmann, C. (2014). NEST 2014: Views from the trainees – Talking about what matters in efforts to diversify the STEM workforce. CBE-Life Sciences Education, 13, 587-592.

Chacko, E. (2005). Understanding the geography of pellagra in the United States: The role of social and place-based identities. Gender, Place & Culture12, 197-212.

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.

Crenshaw, K. W. (1990). Mapping the margins: Intersectionality, identity politics, and violence against women of color. Stanford Law Review, 43, 1241.

DeCoito, I., & Fazio, X. (2017). Developing case studies in teacher education: Spotlighting socio-scientific issues. Innovations in Science Teacher Education, 2(1). Retrieved from https://innovations.theaste.org/developing-case-studies-in-teacher-education-spotlighting-socioscientific-issues/

Erduran, S., & Dagher, Z. R. (2014). Reconceptualizing the nature of science for science education. Dordrecht, The Netherlands: Springer.

Etheridge, E. (1972). The butterfly caste: A social history of pellagra in the South. Westport, CT: Greenwood Publishing.

Friere, P. (2000). Pedagogy of the oppressed. New York, NY: Bloomsbury Academic.

Garibay, J. (2015). STEM students’ social agency and views on working for social change: Are STEM disciplines developing socially and civically responsible students? Journal of Research in Science Teaching, 52, 610-632.

Giroux, H. (2011). On critical pedagogy. New York, NY: Bloomsbury.

Goldberger, J. (1916). The transmissibility of pellagra: Experimental attempts at transmission to the human subjects. Public Health Reports, 31, 3159-3173.

Goldberger, J., Waring, C. H., & Willets, D. G. (1915). The prevention of pellagra: A test of diet among institutional inmates. Public Health Reports (1896-1970), 3117-3131.

Goldberger, J., & Wheeler, G. A. (1920). The experimental production of pellagra in human subjects by means of diet. In J. Goldberger (Ed.), Goldberger on pellagra. (pp. 54-94). Baton Rouge, LA: Louisiana State University Press.

Goldberger, J., Wheeler, G., & Sydenstricker, E. (1920). A study of the relation of diet to pellagra incidence in seven textile-mill communities of South Carolina in 1916. Public Health Reports, 35, 648-713.

Goldberger, J., Wheeler, G., & Sydenstricker, E. (1920). A study of the relation of family income and other economic factors to pellagra incidence in seven cotton-mill villages of South Carolina in 1916. Public Health Reports, 35, 2673-2714.

Gruenewald, D. A. (2003). The best of both worlds: A critical pedagogy of place. Educational researcher32(4), 3-12.

Herreid, C., Schiller, N., & Herreid, K. (2012). Science stories: Using case studies to teach critical thinking. Arlington, VA: NSTA Press.

Horton, K. (2015). Martyr of Loray Mill: Ella May and the 1929 textile workers strike in Gastonia, North Carolina. Jefferson, NC: McFarland and Company, Inc.

Johnson, C. C. (2011). The road to culturally relevant science: Exploring how teachers navigate change in pedagogy. Journal of Research in Science Teaching48, 170-198.

Ladson-Billings, G. (1995). Toward a theory of culturally relevant pedagogy. American Educational Research Journal, 32, 465-491.

Ladson-Billings, G. (2000). Put up or shut up: The challenge of moving from critical theory to critical pedagogy (A formative assessment). In D. Hursh & E. W. Ross (Eds.), Democratic social education: Social studies for social change. (pp. 149-164). New York, NY: Routledge.

Ladson-Billings, G. (2011). Yes, but how do we do it? Practicing culturally relevant pedagogy. In J. Landsman & C. Lewis (Eds.), White teachers/diverse classrooms: Creating inclusive schools, building on students’ diversity and providing true educational equity. (pp. 33-46). Sterling, VA: Stylus.

Ladson-Billings, G. & Tate IV, W. (1995). Toward a critical race theory of education. Teacher’s College Record97(1), 47-68.

Marks, H. (2003). Epidemiologists explain pellagra: gender, race, and political economy in the work of Edgar Sydenstricker. Journal of the History of Medicine and Allied Sciences, 58(1), 34-55.

Madkins, T., & de Royston, M. (2019). Illuminating political clarity in culturally relevant science instruction. Science Education, 103, 1319-1346.

NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.

Rajakumar, K. (2000). Pellagra in the United States: a historical perspective. Southern Medical Journal, 93, 272-277.

Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14.

Simon, M. (2000). Research on mathematics teacher development: The teacher development experiment. In A. E. Kelly & A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 335-359). Hillsdale, NJ: Lawrence Erlbaum Associates Publishers.

Stephan, M., & Cobb, P. (2013). Teachers engaging in mathematics design research. In T. Plomp, & N. Nieveen (Eds.), Educational design research – Part B: Illustrative cases (pp. 277-298). Enschede, the Netherlands: SLO.

Suriel, R. L., & Atwater, M. M. (2012). From the contribution to the action approach: White teachers’ experiences influencing the development of multicultural science curricula. Journal of Research in Science Teaching, 49, 1271-1295.

Thoman, D.B., Brown, E.R., Mason, A.Z., Harmsen, A.G., & Smith, J.L. (2015). The role of altruistic values in motivating underrepresented minority students for biomedicine. BioScience, 65, 183-188.

Underwood, J. B., & Mensah, F. M. (2018). An investigation of science teacher educators’ perceptions of culturally relevant pedagogy. Journal of Science Teacher Education29, 46-64.

 

A District-University Partnership to Support Teacher Development

Citation
Print Friendly, PDF & Email

Wade-Jaimes, K., Counsell, S., Caldwell, L., & Askew, R. (2020). A district-university partnership to support teacher development. Innovations in Science Teacher Education, 5(4). Retrieved from https://innovations.theaste.org/a-district-university-partnership-to-support-teacher-development/

by Katherine Wade-Jaimes, University of Memphis; Shelly Counsell, University of Memphis; Logan Caldwell, University of Memphis; & Rachel Askew, Vanderbilt University

Abstract

With the shifts in science teaching and learning suggested by the Framework for K-12 Science Education, in-service science teachers are being asked to re-envision their classroom practices, often with little support. This paper describes a unique partnership between a school district and a university College of Education, This partnership began as an effort to support in-service science teachers of all levels in the adoption of new science standards and shifts towards 3-dimensional science teaching. Through this partnership, we have implemented regular "Share-A-Thons," or professional development workshops for in-service science teachers. We present here the Share-A-Thons as a model for science teacher professional development as a partnership between schools, teachers, and university faculty. We discuss the logistics of running the Share-A-Thons, including challenges and next steps, provide teacher feedback, and include suggestions for implementation.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Counsell, S. (2011). GRADES K-6-Becoming Science” Experi-mentors”-Tenets of quality professional development and how they can reinvent early science learning experiences. Science and Children49(2), 52.

Ingersoll, R. E. (2004). Who controls teachers’ work? Power and accountability in America’s schools. Cambridge, MA: Harvard University Press.

Kennedy, M. M. (1999). Form and Substance in Mathematics and Science Professional Development. NISE brief3(2), n2.

Luft, J. A., & Hewson, P. W. (2014). Research on teacher professional development programs in science. Handbook of research on science education2, 889-909.

National Research Council (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academy Press.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.

NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

Opfer, V. D., & Pedder, D. (2011). Conceptualizing teacher professional learning. Review of educational research81, 376-407.

Palmer, D. (2004). Situational interest and the attitudes towards science of primary teacher education students. International Journal of Science Education26, 895-908.

Shapiro, B., & Last, S. (2002). Starting points for transformation resources to craft a philosophy to guide professional development in elementary science. Professional development of science teachers: Local insights with lessons for the global community, 1-20.

Supovitz, J. A., & Turner, H. M. (2000). The effects of professional development on science teaching practices and classroom culture. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching37, 963-980.

Tennessee State Board of Education. (n.d.). Science. Retrieved from https://www.tn.gov/sbe/committees-and-initiatives/standards-review/science.html

Wilson, S. M., & Berne, J. (1999). Chapter 6: Teacher Learning and the Acquisition of Professional Knowledge: An Examination of Research on Contemporary Professlonal Development. Review of research in education24(1), 173-209

 

Collaborating with Virtual Visiting Scientists to Address Students’ Perceptions of Scientists and their Work

Citation
Print Friendly, PDF & Email

Grossman, B.T., & Farland-Smith, D. (2020). Collaborating with virtual visiting scientists to address students’ perceptions of scientists and their work. Innovations in Science Teacher Education, 5(3). Retrieved from https://innovations.theaste.org/collaborating-with-virtual-visiting-scientists-to-address-students-perceptions-of-scientists-and-their-work/

by Brandon T. Grossman, University of Colorado Boulder; & Donna Farland-Smith, Ohio State University

Abstract

The idea that middle school students hold stereotypic representations or impressions of scientists is not new to the field of science education (Barman, 1997; Finson, 2002; Fort & Varney, 1989; Steinke et al., 2007). These representations may match the way scientists are often portrayed in the media in terms of their race (i.e., white), gender (i.e., male), the way they dress (i.e., lab coat, glasses, wild hair), their demeanor (i.e., nerdy, eccentric, anti-social), and where they work (i.e., in a laboratory by themselves). Bringing scientists into classrooms to collaborate with students and teachers has been shown to positively influence students’ perceptions of scientists and their work (Bodzin & Gerhinger, 2001; Flick, 1990). However, the planning and collaboration involved in this in-person work can be challenging, complex, and time consuming for both teachers and visiting scientists. Advances in classroom technologies have opened up new opportunities for disrupting problematic representations and supporting students in developing more expansive perceptions of science and scientists. This paper explores the collaboration between a middle school science teacher, five visiting scientists, and a science teacher educator around the development and implementation of a week long virtual visiting scientist program for middle school students. The impact the program had on the teacher’s ongoing practice and on students’ self-reported perceptions of science and scientists is also examined.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Angell, C., Henriksen, E., Isnes, K., & Isnes, A. (2003). Why learn physics? Others can take care of that! Physics in Norwegian Education: Content-perceptions-choices. Science Education Perspectives, Research & Development Oslo: Akademisk, 165-198.

Barman, C. (1997). Students’ views of scientists and science: Results from a national study. Science and Children, 35(1), 18-23.

Bodzin, A. & Gehringer, M. (2001). Breaking science stereotypes: Can meeting actual scientists change students’ perceptions of scientists? Science & Children, 38, 24-27.

Erb, T. O. (1981). Attitudes of early adolescents toward science, women in science, and science careers. Middle School Research Selected Studies, 6, 108-118.

Farland‐Smith, D. (2009). Exploring middle school girls’ science identities: Examining attitudes and perceptions of scientists when working “side‐by‐side” with scientists. School Science and Mathematics109, 415-427.

Finson, K.D. (2002). A multicultural comparison of draw-a-scientist test drawings of eighth graders. Paper Presented at the Annual Meeting of the International Conference of the Association of Educators of Teachers of Science, Charlotte, NC.

Flick, L. (1990). Scientist in Residence program: Improving children’s images of science and scientists. School Science Mathematics, 90, 205-214.

Fort, D.C. & Varney, H.L. (1989). How students see scientists: Mostly male, mostly white, mostly benevolent. Science & Children, 26 (8), 8-13.

Gettys, L. D., & Cann, A. (1981). Children’s perceptions of occupational sex stereotypes. Sex Roles, 7, 301-308.

Lindahl, B. (2003). Pupils’ responses to school science and technology? A longitudinal study of pathways to upper secondary school. Göteborg Studies in Educational Sciences, 196, 1-18.

Maltese, A. V., & Tai, R. H. (2010). Eyeballs on the fridge: Sources of early interest in science. International Journal of Science Education, 32, 669-685.

Steinke, J., Lapinski, M.K., Crocker, N., Zietsman-Thomas, A., Williams, Y., Evergreen, S.H., & Kuchibhotla, S. (2007). Assessing media influences on middle school-aged children’s perceptions of women in science using the Draw-A-Scientist Test (DAST). Science Communication, 29, 35-64.

 

Adapting a Model of Preservice Teacher Professional Development for Use in Other Contexts: Lessons Learned and Recommendations

Citation
Print Friendly, PDF & Email

Park Rogers, M., Carter, I., Amador, J., Galindo, E., & Akerson, V. (2020). Adapting a model of preservice teacher professional development for use in other contexts: Lessons learned and recommendations. Innovations in Science Teacher Education, 5(1). Retrieved from https://innovations.theaste.org/adapting-a-model-of-preservice-teacher-professional-development-for-use-in-other-contexts-lessons-learned-and-recommendations/

by Meredith Park Rogers, Indiana University - Bloomington; Ingrid Carter, Metropolitan State University of Denver; Julie Amador, University of Idaho; Enrique Galindo, Indiana University - Bloomington; & Valarie Akerson, Indiana University - Bloomington

Abstract

We discuss how an innovative field experience model initially developed at Indiana University - Bloomington (IUB) is adapted for use at two other institutions. The teacher preparation programs at the two adapting universities not only differ from IUB, but also from each other with respect to course structure and student population. We begin with describing the original model, referred to as Iterative Model Building (IMB), and how it is designed to incorporate on a variety of research-based teacher education methods (e.g., teaching experiment interviews and Lesson Study) for the purpose of supporting preservice teachers with constructing models of children’s thinking, using this information to inform lesson planning, and then participating in a modified form of lesson study for the purpose of reflecting on changes to the lesson taught and future lessons that will be taught in the field experience. The goal of these combined innovations is to initiate the development of preservice teachers’ knowledge and skill for focusing on children’s scientific and mathematical thinking. We then share how we utilize formative assessment interviews and model building with graduate level in-service teachers at one institution and how the component of lesson study is adapted for use with undergraduate preservice teachers at another institution. Finally, we provide recommendations for adapting the IMB approach further at other institutions.

Introduction

There is a clear consensus that teachers must learn to question, listen to, and respond to what and how students are thinking (Jacobs, Lamb, & Philipp, 2010; NRC, 2007; Russ & Luna, 2013).  With this information teachers can decide appropriate steps for instruction that will build on students’ current understandings and address misunderstandings.  At Indiana University – Bloomington (IUB) we received funding to rethink our approach to the early field experience that our elementary education majors take in order to emphasize this need for developing our preservice teachers’ knowledge and abilities to ask children productive questions (Harlen, 2015), interpret their understanding, and respond with appropriate instructional methods to develop students’ conceptual understanding about the topics being discussed (Carter, Park Rogers, Amador, Akerson, & Pongsanon, 2016).  Our field experience model titled, Iterative Model Building (IMB), is taken in a block with the elementary mathematics methods and science methods courses, and as such half of the field experience time (~5-6 weeks) is devoted to each subject area.  Over the course of the semester, the preservice teachers attend local schools for one afternoon a week.  In teams of four to six, the preservice teachers engage with elementary students through interviews and the teaching of lessons, and then experience various modes of reflection to begin developing an orientation towards teaching mathematics and science that is grounded in the notion that student thinking should drive instruction (National Research Council, 2007).  Thus, the IMB approach consists of four components that include weekly formative assessment interviews with children, discussions regarding models of the children’s thinking from the weekly interviews, lesson planning and teaching, and small group lesson reflections similar in nature to Lesson Study (Nargund-Joshi, Park Rogers, Wiebke, & Akerson., 2012; Carter et al., 2016). The intent of our approach is to teach preservice teachers to not only attend to student thinking, but to learn how to take this information and use it when designing lessons so they will make informed decisions about appropriate instructional strategies.

In this article we describe not only the original IMB approach, but also demonstrate the flexibility in the use of its components  with descriptions of how Authors 2 and 3 (Ingrid and Julie) have adapted aspects of the IMB to incorporate into their science and mathematics teacher education courses at different institutions.  Although this journal focuses on innovations for science teacher education, at the elementary level many teacher educators are asked to either teach both mathematics and science methods, or work collaboratively with colleagues in mathematics education, as students are often enrolled in both content area methods courses during the same semester.  Therefore, we believe sharing our stories of how this shared science and mathematics field experience model was initially developed and employed at IUB, but has been modified for use at two other institutions, has the potential for demonstrating how the components of the model can be used in other contexts.

To begin, we believe it is important to disclose that Ingrid and Julie, who made the adaptations we are sharing, attended or worked at IUB and held positions on the IMB Project for several years during the funded phases of research and development.  When they left IUB for academic positions, they took with them the premise of the IMB approach as foundational to developing quality mathematics and science teachers.  However, the structure of their current teacher education programs are not the same as at IUB, and thus they adapted the IMB approach to fit their institutional structure while trying to staying true to what they believed were core aspects of the approach for quality teacher development.

We begin with sharing an overview of the components of the IMB approach followed by descriptions from Ingrid and Julie about the context and course structure where they implement components of IMB.  In addition, we share examples of how their students discuss K-12 students’ mathematical and scientific ideas and relate this to instructional decision-making.  Through sharing our stories of adaptation of the IMB approach, we aim to inspire other teacher educators to consider how they may incorporate aspects of this approach into their professional development model for preparing or advancing teachers’ knowledge for teaching in STEM related disciplines.

Overview of IMB Approach – Indiana University (IUB)

As previously mentioned, IMB includes four components: (i) developing preservice teachers’ questioning abilities to analyze students’ thinking through the use of formative assessment interviews (FAIs); (ii) constructing models of students’ thinking about concepts that are asked about in the interviews (i.e., Model Building); (iii) developing and teaching lessons that take into consideration the evolving models of children’s thinking about the concepts being taught (i.e., Act of Teaching); (iv) learning to revise lessons using evidence gathered about children’s thinking from the lesson taught (i.e., Lesson Study). Although these components may not appear to be innovative to those in the field of teacher preparation, the unique feature of the IMB model is the iterative process, and weekly combination of all four components, within an early field experience for elementary education majors that we believe demonstrate innovative practice in preparing science and mathematics elementary teachers.  In addition, the field experience at IUB applies this four-step iterative process in the first 5-6 weeks with respect to teaching mathematics concepts, then continues for an additional 5-6 weeks on science concepts.  In the next few paragraphs, each of the IMB components are described in more detail.  We have grouped components according to those that Ingrid and Julie have adopted for use at their institutions.

Formative Assessment Interviews and Model Building

Formative assessment interviews (FAIs) are modified ‘clinical interviews’ that are aimed at understanding students’ conceptualizations of scientific phenomenon or mathematics problems (Steffe & Thompson, 2000).  From these video-recorded interviews, the preservice teachers identify short snippets that illustrate elementary students explaining their thinking about what a concepts is, how it works, and how they solved for it.  These explanations are then used to try to develop a predictive model to help the teachers consider how the students might respond to a related phenomenon, problem, or task (Norton, McCloskey, & Hudson, 2012).  The Model Building sessions require the preservice teachers to consider what is known about the students’ thinking on the concept or problem, based on the specific evidence given in the snippet of video, and identify what other information would be helpful to know. See Akerson, Carter, Park Rogers, & Pongsanon (2018) for further details on the purpose, structure and ability of preservice teachers to participate in a task where they are asked to make evidence-based predictions regarding students future responses to relate content (i.e., anticipate the student thinking).

With respect to the IMB approach, a secondary purpose of the FAI and Model Building sessions is to develop preservice teachers’ knowledge and abilities to think about how to improve their questioning of students’ thinking within the context of their teaching. This relates to being able to develop their professional noticing skills; a core aspect identified in the research literature (Jacobs, et al., 2010; van Es & Sherin, 2008) and critical to fostering the expert knowledge teachers possess (Shulman, 1987). See ‘Resources’ for examples of the post FAI Reflection Form (Document A) and Model Building Form (Document B) preservice teachers complete at IUB as part of their field experience requirements.

Act of Teaching and Lesson Study

Each week the teams develop a lesson plan using the information gathered from the FAIs, Model Building sessions, and as time goes on, their experience of teaching previous lessons to the students in their field classroom.  With respect to the mathematics portion of the field experience, the mathematics lessons are developed in conjunction with the field experience supervisor from week to week.  However, given the additional time that science has, because the science teaching in the field does not start until halfway through the semester, a first draft of all five science lessons are completed as part of the science methods course. Once the switch is made to science in the field, the preservice teachers then revise the drafted lessons from week to week using the information gathered through the IMB approach and with the guidance of the field instructor.

During the teaching of the lesson, two to three members of each team lead the instruction and the other two to three members of the team move around the room amongst the elementary students observing and gathering information about what the students are saying and doing related to the lesson objectives.  After the teaching experience, all members come together and follow the IMB’s modified lesson study approach that is adapted from the Japanese Lesson Study model (Lewis & Tsuchida, 1998)[1].  Using the Lesson Study Form developed for use in the IMB, the different members of the teaching team reflect on what the children understood about the concepts taught in the lesson and propose revisions for that lesson based on the children’s understandings and misunderstandings.  Possible strategies related to these understandings are also discussed with respect to the next lesson to be taught in the series of lessons.  Supporting them in this reflective process is the evidence some members of the team recorded using the Lesson Observation Form (see ‘Resources’, Document C), as well as what those who taught the lesson assessed while teaching.  The Lesson Study Form (see ‘Resources’, Document D) guides this evidence-based, collaborative, and reflective process.

Stories of Adaptation

In the following sections we describe how Ingrid and Julie have adapted components of the IMB approach for use in their teacher education programs.  To keep with the flow of how we described the IMB approach above, we begin with Julie’s story as she adapted the FAI and Model Building components for use at her institution.  Following her story is Ingrid’s, and her adaptation of the teaching and Lesson Study components of the IMB approach.  While neither of these stories demonstrates an adaptation of the complete IMB approach, demonstrating that type of transfer is not our intent with this article.  Rather, we want to share how aspects of the IMB approach could be adapted together for use in other institutional structures.  Table 1 provides a side-by-side comparison of how the IMB components were adapted for use at our different institutions to meet the needs of our students in our different contexts.

Table 1 (Click on image to enlarge)
Comparison of IMB components across Institutions

Julie’s Story of Adaptation at the University of Idaho (UI)

In the final two years of the five year IMB, Julie was a postdoctoral researcher and IMB manager for IMB. In this capacity, she taught the field experience course and coordinated with other instructors of the course. At the same time, she worked with participants after they had completed the field experience and moved to their student teaching or actual teaching placements. Julie was also involved with writing a manual to support others to implement the IMB field experience process.

At her current institution, Julie has incorporated FAIs and Model Building into a graduate course on K-12 mathematics education. The university is a medium-size doctoral granting institution in the upper Northwest of the United States. The course, for which the IMB approach has been adapted, engages masters and doctoral students in exploring: a) connections between research literature and practice (Lambdin & Lester, 2010; Lobato & Lester, 2010), b) the cognitive demand of tasks (Stein, Smith Henningsen, & Silver, 2009), and c) professional noticing (Jacobs et al., 2010; Sherin, Jacobs, & Philipp, 2011). The fully online course lasts sixteen weeks and students engage in weekly modules around these three core foci. Students in the course are primarily practicing teachers from across the state in which the university resides.

The IMB process of engaging teachers in FAIs and Model Building is followed in this course; however, the process spans over a longer period with a whole semester devoted solely to mathematics. Each person designs two FAIs on a specific mathematical topic and completes a Model Building session for each interview. This process is slightly different than the IMB approach because there are fewer students in the graduate class, and since many are practicing K-12 classroom teachers, they have access to students with whom they can easily conduct the FAIs. Despite the teacher population and logistical differences between IUB and UI, Julie used the supporting documents and implemented them in a manner very similar to how they were initially designed and employed for the IMB approach at IUB. For example, at UI each graduate student/teacher selects appropriate mathematics content for the interview based on the standards and learning objectives that are age appropriate for the K-12 student they will interview. They then plan a goal for the interview, along with five problematic questions to be asked during the interview and related follow-up questions. Based on the second focus of the graduate course, they are encouraged to consider the cognitive demand of the tasks they include in their questions. The interview is audio recorded and the graduate students are asked to reflect on the questions outlined on the FAI Reflection Form (see ‘Resources’, Document A).  Referring specifically to the second question on the reflection form, one graduate student responded, “During my post-FAI analysis of the student work and audio, my noticing, once again, improved as I began to consider the relationship between the student’s misconceptions and teaching strategies.” Comments like this were commonly found across the FAI reflection forms, indicating the value of this interview experience in preparing teachers mathematical knowledge of content and students’ understanding of the content (Ball, Thames, & Phelps, 2008).

Following the first FAI, the graduate students are tasked to create a model of the student’s thinking that again mirrors the model-building process of the IMB approach (see ‘Resources,’ Document B). To do this, they are asked to listen to their audio recording and select a clip that highlights what the student says or does as evidence of how the student thinks about particular ideas. They transcribe the segment of audio and conduct an analysis on what the student knows, does not know, and what further information would be helpful. As an example, the following task was given during one FAI conducted by a graduate student — . Going through the Model Building process, the graduate student who gave this question in their FAI highlighted the following portion of their transcript, and provided the accompanying image of the student’s work in solving this question.

Student: I did that because the equal sign is right there.  And so because these numbers are supposed to be at the beginning but they switched them around to the end and then you would add them together to get nine and then you would do plus two and then you write your answer (write 11 underneath the box).

Teacher: How could we check that this (points to the left side of the equation) equals this (points to the right side of the equation?  Is there a way we could check that?

Student: Umm… what do you mean?

Teacher:  So, I saw that you added these numbers together and placed the nine here.  Could we check or is there a way to check that these two things added together equals these numbers added together?

Student: I guess you could just add them together.

Teacher: Do they come out equal?

Student: No because this is eleven (points to left side of equation).  And then this goes three, four, five, six, seven, eight, nine.  Oh! So it goes eleven like that and then eleven, twelve, thirteen, like that and then that will equal nine.

Teacher: So I saw a light bulb go off.  Is that going to change he number you put in there (points to the box)?

Student: So if was eleven, wait, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, twenty-one, twenty-two and that equals twenty-two.  And that is your real answer.

Building on this evidence, the graduate student wrote the following model of the student’s thinking with this problem.  This model is the graduate student’s attempt at explaining the student’s thinking with the evidence provided from the task.

Given a numeric equation with values on each side of the equation but a missing value on one side (e.g. 17+5=___+4), the student added the numbers on one side of the equation and placed that sum into the blank space. The student then continued executing computations by placing another equal sign and adding the newly determined answer with the existing value on that side of the equation. This same action happened in two different tasks with the missing value on the left and right side of the equation. Thus, the student does not conceptually understand the meaning of the equal sign and/or the concept of equality. She does not understand that the equal sign describes the relationship between two expressions and that the correct answer should create two equal expressions.  Instead, the student views the equal sign as an indicator to perform computations to find answers.

This model describes what the student knows and understands with respect to different sides of an equation.

Following this first round of FAIs and Model Building, the graduate students then repeat this entire process again, with the same student. However, before the second round, the graduate students have an opportunity to first share their models and thinking in online discussion boards and receive written instructor feedback. Their peers are also required to comment and engage in dialogue with them through the virtual discussions. With the second FAI, the intent is for the mathematical content to align with the content of the first interview, but focus on revealing deeper understandings of this content from the same student. For example, if the first FAI asked questions that broadly addressed fractional understanding at grade three, and the graduate student recognized some misconceptions related to part-whole relationships and understanding, then the second FAI may be designed to focus entirely on part-whole relationships.  The purpose of the second FAI is to dive deeper into a child’s thinking about the concept to obtain a greater understanding of how the child conceptualizes part and whole.

As the graduate students conducted the series of two FAIs and two Model Building exercises, they focused on the same K-12 student to provide an in-depth understanding of that student’s knowledge. As a result, they were then asked to deeply study what they had learned about that student’s mathematical thinking and focus on that student as a case study. This is a component that is not included in the original IMB process.  Julie elected to add this component of a case study to provide her graduate students the opportunity to revisit both cycles of the FAIs and Model Building processes and formulate some ideas around supporting the student based on evidence from interactions across the two cycles. As a part of the case study, they write a formal paper about the student that includes an analysis of the students’ thinking and makes recommendations for supporting the students’ understanding in the classroom context—these components stem from the research literature on professional noticing and the importance of attending to thinking, interpreting thinking, and making instructional decisions of how to respond (Jacobs et al., 2010). In the final component of the case study paper, the graduate student situates the student’s understanding within the broader mathematics education literature. Therefore, Julie has adapted the FAI and Model Building process of the IMB to engage graduate students in the act of professional noticing through a specific focus on one child as a case study (Jacobs et al., 2010).  The following comment from one of the case study reports illustrates the value of this adapted experience for one student, but the same sentiment was echoed by others.

The student thinking uncovered during the formative assessment interviews and the learning from this course on noticing, cognitive demand, and teacher knowledge combined together to profoundly influence on my views of mathematics instruction. Slowing down to thoughtfully probe a struggling student’s thinking revealed so much more than my prior noticing ability would have allowed.

Ingrid’s Story of Adaptation at Metropolitan State University of Denver (MSU Denver)

Ingrid joined the IMB as a graduate teaching and research assistant in the second year of implementation. In her first year with the IMB, she instructed a section of the field experience with preservice elementary teachers. Later on in her doctoral program, she taught the affiliated science methods course that is taken in the cluster with the field experience, but was no longer an instructor of the field experience.  During this time however, she remained on the IMB as a research assistant. Therefore, throughout her time on the IMB project, Ingrid worked on many facets of the IMB and was integral in developing procedures and protocols for teaching the IMB approach.

At her current institution, Ingrid has adapted the Act of Teaching and Lesson Study components of the IMB, infusing it into her undergraduate elementary science and health methods course. Her institution is a large urban commuter campus with a large majority of students being undergraduates. The student body is diverse and most are from the expansive metropolitan area. For their field experience, which combines science, health, and mathematics, each preservice teacher is placed in an elementary classroom for 45 hours per semester. In most cases, this is usually the fourth field experience these preservice teachers have participated in for their program. The science and health methods course meets face-to-face for 15 weeks of classes and incorporates a teaching rehearsal experience in the methods course to provide the preservice teachers with the opportunity to practice a lesson they have planned and the Lesson Study component of the IMB approach before completing the teaching experience in the field with children.

The preservice teachers at MSU Denver are placed in separate classrooms for their field experience, thus they plan different lessons and teach the lessons independently.  Despite this independent teaching experience, Ingrid has tried to maintain the collaborative integrity of the Lesson Study component of the IMB by pairing preservice teachers that are placed at the same school or nearby schools.  The purpose of this pairing is so they can serve as peer observers for each other and participate in a shared Lesson Study experience. Unfortunately, this request cannot always be made, and in some instances the preservice teachers work with the mentor classroom teacher through the Act of Teaching and Lesson Study components.

Before the preservice teachers begin their teaching cycle in the field however, Ingrid has her preservice teachers participate in a type of teaching rehearsal (Lampert et al., 2013).  The preservice teachers are placed into teams of four or five and together they develop a learning plan (similar to a lesson) but with a focus on just the first three Es of a Learning Cycle (Engage, Explore, and Explain) and the learning objective.  Preservice teachers usually focus on science, but in some cases they elect to teach a health or engineering lesson. Two groups are then brought together to serve as the different members of the teaching cycle.  When one team is teaching, one member of the other team serves as the peer observer completing the Lesson Observation Form (see ‘Resources’, Document C) and all remaining members of the other group are acting as elementary students for the teaching of the lesson. The group then switches and they repeat the experience for another lesson. Following each rehearsal the two groups then walk through the Lesson Study Form and complete it for each rehearsed lesson.  Ingrid believes taking her students through this rehearsal of planning a lesson, teaching it, and practicing with the forms helps the preservice teachers to be more successful in all aspects of the Act of Teaching and Lesson Study when they conduct it in their smaller pairings and in the context of their field experience classrooms.

Due to the complex structure of field placement at Ingrid’s institution, with it being a commuter-based university serving a large urban/suburban area, Ingrid has made more adaptations to the IMB approach and documents than Julie, some of which are described above. Additional adaptations however, include Ingrid providing feedback on the each preservice teacher’s lesson and then having preservice teachers revise the lesson using this feedback, and having the preservice teacher partners participating in a Pre-Observation Conference.  The purpose of this conference is help the preservice teachers who are partnered for the Act of Teaching and Lesson Study (or the preservice teacher and the mentor teacher) to understand the learning objectives of the lesson and the intentions of the preservice teacher for structuring the lesson in the manner they did.  In addition, there is a section called “look-fors” that directs the preservice teachers to anticipate what the children should be able to do by the end of the lesson (with respect to the learning objective) and what evidence will be gathered to determine this goal was met. This is intended to support the preservice teachers to focus on students’ thinking in the Act of Teaching and Lesson Study processes in the field. The pair completes one Pre-Observation Conference Form (see ‘Resources’, Document E) together for each partner’s lesson. To complete the Act of Teaching and Lesson Study cycle, each preservice teacher is required to submit a packet to document the experience that includes: the Pre-Observation Conference Form, the Lesson Observation Form completed by their partner, their collaborative Lesson Study Form, a revised lesson that incorporates the color-coded revisions suggested in the Lesson Study, and a personal reflection paper about what they took away from the experience.

Lastly, Ingrid’s Act of Teaching/Lesson Study cycle concludes with a debriefing about the experience with all students in the class. She focuses much of the conversation on asking the preservice teachers to share what they reflected on in their individual papers about the experience and she guides the discussion with questions such as,

  • What did you think about the peer observation process?
  • How did participating in lesson study support your growth as a teacher?
    • What parts of the lesson study process were particularly helpful for you?
  • What would you do differently if you could do this again?
  • How did lesson study support you in focusing on students’ thinking?
  • What have you learned from the lesson study process that you will take with you in your future classroom?

From this class discussion she is able to glean how they view the whole process as supporting the preservice teachers’ understanding of how to focus their attention on children’s scientific thinking and use this information to inform their future instruction. ​

Reflecting on Our Stories of Adaptation: Lessons Learned

At Julie’s institution (University of Idaho [UI]), implementation using FAIs and Model Building have shown to be beneficial for the graduate students, as most of them are practicing classroom teachers. One accommodation from the IMB model is the time span for the FAIs and Model Building. In the modified version, two cycles are spread over six weeks, as opposed to having a new cycle each week. Additionally, one graduate student interviews one student in K-12, as opposed to working in pairs. This has afforded opportunities for greater flexibility with scheduling and diving in deeper around a specific mathematical topic. However, the graduate student has only one student with whom they work and do not develop a broader understanding of various students, which may lessen their opportunity for understanding the thinking of multiple students. Additionally, at UI, every graduate student selects the grade level and the student with whom they will work. The FAIs and Model Building then focus on their selected student and topic, which restricts collaboration across the graduate students and learning from one another; whereas with the original IMB model, the same mathematics topic (e.g., number sense) is covered by each team.  This modification affords teams experiencing the full IMB model the opportunity to learn from each other within their team, but also across the teams to learn about content progressions. Therefore, a possible limitation of the modification at UI is that every graduate student has a different topic and they are unable to share and discuss students’ thinking and ideas about a similar mathematical domain. Determining ways to work around this limitation depends on the intentions of the course instructor/teacher educator for using FAIs and Model Building.  For Julie, her focus is on developing individual teachers’ professional noticing, thus the limitations in collaborating with others does not prevent her from meeting her intentions.

Another accommodation from the IMB model is that Julie is unable to attend the FAI recordings in person unlike the field instructors at IUB who are present weekly.  The online nature of Julie’s course provided the graduate students with flexibility in accessing students and scheduling the recordings at times throughout the school day that worked for them and the students.  However, being disconnected to the context limited Julie’s abilities, she believes, in providing more targeted or individualized feedback regarding specific student’s thinking.  The inclusion of the case study however, is how Julie works around the limited contextual understanding she feels she has and it affords her the opportunity to dig more into an understanding of the ‘whole’ child that her graduate students’ are presenting to her.  The case study, while it includes evidence from the FAI and Model Building cycles, is only a portion of what is required for the case study paper.  Therefore, we suggest the FAI and Model Building be done not in isolation but merged with other tasks that can help foster deeper professional noticing, such as Julie has done with her Case Study assignment.

With respect to Ingrid’s story of adaptation at MSU Denver, the implementation of the IMB’s modified lesson study has been positively received. As previously described, two accommodations made by Ingrid were the implementation of a modified teaching rehearsal experience and the development of the Pre-Observation Conference Form (see ‘Resources’, Document E).  Considering her field placement arrangements, she learned she needed to include both of these modifications to give the preservice teachers practice with both the Act of Teaching and Lesson Study components before doing it in the field.  Also, because the preservice teachers are not placed in the same classroom (unlike IUB) they need the opportunity to first review each other’s lesson (i.e., Pre-Observation Conference) so they had some idea of what to expect when observing each other teach.

Overall, the preservice teachers at Ingrid’s institution mentioned they enjoy the “lower stakes” atmosphere of being observed by a peer (when possible) rather than a university supervisor and the opportunity to discuss possible revisions to the lesson with a peer considering their different participatory perspectives.  This arrangement can create a challenge however, as not all preservice teachers may provide the same level of constructive criticism for revising the lesson.  Ingrid has attempted to address this challenge by first providing the teaching rehearsal experience in class so students can gain experience in her methods course on how to complete the forms and provide constructive feedback on a lesson.

 Recommendations

There is consensus across both science and mathematics teacher education that for effective teaching to occur teachers must learn to recognize and build on students’ ideas and experiences (Bransford, Brown, &Cocking, 1999; Kang & Anderson, 2015, NRC, 2007; van Es & Sherin, 2008).  Considering this goal, preparation programs often design opportunities for prospective teachers to question and analyze students’ thinking, and when possible do so within the context of teaching science.  However, few programs offer a systematic and iterative experience such as the IMB approach, and this is due in part to the structural variation in teacher education programs and the varied constraints of these different models.  As Zeichner and Conklin (2005) explain,

there will always be a wide range of quality in any model of teacher education….The state policy context, type of institution, and institutional history and culture in which the program is located; the goals and capabilities of the teacher education faculty, and many other factors will affect the character and quality of programs (p. 700).

Therefore, our intent with this article is to show the potential for taking well-recognized practices for teacher education, such as those used in the IMB approach, and demonstrate how they can be combined for use in other science and mathematics teacher education models.  In particular, we wanted to highlight the adaptations made by Ingrid and Julie because their institutions and learner populations are very different from those where the IMB approach was initially developed, and this sort of variation in context is rarely described in the research (Zeichner & Conklin, 2005).  Despite the vast program differences at our three institutions, Ingrid and Julie were able to adapt key aspects of the IMB approach to fit the context and needs of their learners.

More specifically, although we recognize that individually the four aspects of the IMB approach are not innovative, it is the potential for combining features of the IMB, as Authors 2 and 3 have shared, that we believe demonstrates the innovation and potential of the IMB approach for impacting science and mathematics teacher learning. As such, we offer the following recommendations from lessons we have learned through our adaptive processes, with the hope of inspiring others to consider how they may combine features of the IMB for use at their institutions.

  1. Understand your own orientation toward teacher preparation. Begin with selecting aspects of the IMB approach that most align with your own beliefs as to core practices for developing teachers’ cognition about learning to attend to students’ thinking to inform practice. Ingrid and Julie made their selections based on what they viewed as critical practices given the professional development needs of their student teachers (i.e., their population of teacher), as well as the purpose of their course.
  2. Don’t lose sight of the goal! Make modifications to the sample documents provided (see Resources) or provide additional support documents (e.g., the Pre-Observation Conference form designed by Ingrid) to guide preservice or inservice teachers’ cognition of how to uncover K-12 students’ ideas and reflect on their ideas in order to identify rich and appropriate learning tasks.
  3. Choose the strategies that best fit your context. If some components of the IMB approach will not fit into your current program or university structure, select the one that will fit and be most appropriate for your own students and situation. The goal is to help preservice and inservice teachers understand their students’ thinking, and whatever strategies can best work for you and your students given your context are the ones to include.
  4. Remember that improvement is an iterative process. Continue to adapt and refine the approach as needed for your context. Once you have selected the aspect or aspects of IMB that you think will be most impactful, continue to reflect on and obtain feedback about the process from the students with whom you work, and then make modifications to support your goals.
  5. Collaboration is valuable and can take many forms. At the core of the IMB approach is the belief that collaboration leads to better understandings about learning to teach science and mathematics. Whether collaborating to plan, teach, and reflect on lessons taught, or the sharing of models of students’ thinking and engaging through discussion boards online, the notion of collaboration is still at the core of each of our pedagogical approaches to working with teachers. We recognize the structure of various institutions teacher education programs/courses may make it difficult to afford students the opportunity to collaborate in the same physical space (classroom, or school), as did Julie; however, it is worth exploring what technologies your institution may offer to arrange other means of collaborating in synchronous and asynchronous spaces.

[1] For further details comparing these two models of Lesson Study see Carter et al. (2016).

Supplemental Files

IMB-Supplementary-Materials.pdf

References

Akerson V.L., Carter I.S., Park Rogers, M.A. & Pongsanon, K. (2018). A video-based measure of preservice teachers’ abilities to predict elementary students’ scientific reasoning. International Journal of Education in Mathematics, Science and Technology (IJEMST), 6(1), 79-92. DOI:10.18404/ijemst.328335

Ball, D.L., Thames, M.H., Phelps, G.C. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59, 389-407.

Carter, I. S., Park Rogers, M. A., Amador, J. M., Akerson, V. L., & Pongsanon, K. (2016). Utilizing an iterative research-based lesson study approach to support preservice teachers’ professional noticing.  Electronic Journal of Science Education, 20 (8). Retrieved from http://ejse.southwestern.edu/article/view/16434/10861

Harlen, W. (2015). Teaching science for understanding in elementary and middle schools. Portsmouth, NH: Heinemann.

Jacobs, V., Lamb, L., & Philipp, R. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169-202.

Kang, H., & Anderson, C. W. (2015). Supporting preservice science teachers’ ability to attend and respond to student thinking by design. Science Education, 99, 863-895.

Lambdin, D., & Lester, F. (Eds.). (2010). Teaching and learning mathematics: Translating research for elementary school teachers. National Council of Teachers of Mathematics: Reston, Virginia.

Lampert, M., Franke, M., Kazemi, E., Ghousseini, H., Turrou, A., Beasley, H., & Crowe, K. (2013). Keeping it complex: Using rehearsals to support novice teacher learning of ambitious teaching. Journal of Teacher Education, 64, 226–243.

Lewis, C.C., & Tsuchida, I. (1998). A lesson is like a swiftly flowing river: How research lessons improve Japanese education. American Educator, 22(4), 12-14, 50-52.

Lobato, J., & Lester, F. (Eds.). (2010). Teaching and learning mathematics: Translating research for secondary school teachers. National Council of Teachers of Mathematics: Reston, Virginia. [Student should make decision based on area of interest/expertise]

Nargund-Joshi, V. Park Rogers, M. A. Wiebke, H., Akerson, V. L. (2012, March).  Re-thinking early field experiences for the purpose of preparing elementary preservice teachers’ pedagogical content knowledge.  National Association for Research in Science Teaching (NARST), Indianapolis, IN.

National Research Council. (2007).  Taking science to school: Learning and teaching science in grades K-8.  Committee on Science Learning, Kindergarten Through Eighth Grade. Richard A. Duschl, Heidi A. Schweingruber, and Andrew W. Shouse, Editors.  Board on Science Education, Center for Education.  Division of Behavioral and Social Sciences and Education.  Washington, DC: The National Academies Press.

Norton, A., McCloskey, A., & Hudson, R. A. (2011). Prediction assessments: Using video-based predictions to assess prospective teachers’ knowledge of students’ mathematical thinking. Journal of Mathematics Teacher Education, 14, 305-325.

Russ, R., & Luna, M. (2013). Inferring teacher epistemological framing from local patterns in teacher noticing. Journal of Research in Science Teaching, 50, 284-314.

Sherin, M. G., Jacobs, V., & Philipp, R. (Eds.). (2011). Mathematics teacher noticing: Seeing through teachers’ eyes. Routledge: New York.

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-23.

Steffe, L., & Thompson, P. (2000). Teaching experiment methodology: Underlying principles and essential elements. In A. E. Kelley & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 267-306). Mahwah, NJ: Lawrence Erlbaum Associates.

Stein, M. K., Smith, M. S., Henningsen, M. A., & Silver, E. (2009). Implementing standards-based mathematics instruction: A casebook for professional development. Teachers College Press: New York.

van Es, E. A., & Sherin, M. G. (2008). Mathematics teachers’ “learning to notice” in the context of a video club. Teaching and Teacher Education, 24, 244–276.

Zeichner, K. M., & Conklin, H. G.  (2005). Teacher education programs. In M. Cochran-Smith & K. M. Zeichner (Eds.), Studying teacher education: The report of the AERA panel on research and teacher education (pp. 645-736). Mahwah, NJ: Lawrence Erlbaum Associates.

Science Units of Study with a Language Lens: Preparing Teachers for Diverse Classrooms

Citation
Print Friendly, PDF & Email

Heineke, A.J., & McTighe, J. (2019). Science units of study with a language lens: Preparing teachers for diverse classrooms. Innovations in Science Teacher Education, 4(3). Retrieved from https://innovations.theaste.org/science-units-of-study-with-a-language-lens-preparing-teachers-for-diverse-classrooms/

by Amy J. Heineke, Loyola University Chicago; & Jay McTighe, McTighe & Associates Consulting

Abstract

Recent educational policy reforms have reinvigorated the conversation regarding the role of language in the science classroom. In schools, the Next Generation Science Standards have prompted pedagogical shifts yielding language-rich science and engineering practices. At universities, newly required performance-based assessments have led teacher educators to consider the role of academic language in subject-specific teaching and learning. Simultaneous to these policy changes, the population has continued to diversify, with schools welcoming students who speak hundreds of different languages and language varieties at home, despite English continuing as the primary medium of instruction in science classrooms. Responding to these policy and demographic shifts, we have designed an innovation to prepare teachers and teacher candidates to design instruction that promotes students’ disciplinary language development during rigorous and meaningful science instruction. We add a language lens to the widely used Understanding by Design® framework, emphasizing inclusion and integration with what teachers already do to design science curriculum and instruction, rather than an add-on initiative that silos language development apart from content learning. This language lens merges the principles of culturally and linguistically responsive practice with the three stages of backward instructional design to support educators in designing effective and engaging science instruction that promotes language development and is accessible to the growing number of students from linguistically diverse backgrounds.

Introduction

In science classrooms spanning urban, suburban, and rural regions, students enter with ever diversifying cultural and linguistic backgrounds (National Clearinghouse for English Language Acquisition, 2010). In the context of the United States, 20% of students speak a language other than English at home, with half of these students considered English learners (ELs) due to still-developing English proficiency as measured by standardized tests of listening, speaking, reading, and writing (Linquanti & Cook, 2013; National Center for Educational Statistics, 2015). Despite the benefits of linguistic diversity in schools, these demographic shifts provide unique challenges for science teachers, who typically mediate students’ scientific learning, understanding, and achievement using the English language (Lee, Quinn, & Valdés, 2013). To ensure that students have equitable access to science content, teachers must consider and account for language in their daily classroom instruction (Heineke & McTighe, 2018).

Concurrent to the diversification of schools, science education as a field has embraced a vision of students learning and doing science through language-rich scientific and engineering practices, as evidenced by the Framework for K-12 Science Education (National Research Council [NRC], 2013) and Next Generation Science Standards (NGSS; NGSS Lead States, 2013). Indeed, the shift to the NGSS has resulted in instructional foci on science and engineering practices that simultaneously involve both scientific sense-making and language use (e.g., asking questions, constructing explanations, communicating information; Quinn, Lee, & Valdés, 2010). The resulting practice-oriented classroom thus serves as a rich language-learning and science-learning setting where science teachers are not perceived as language teachers but rather “supporters of the language learning that occurs in a content-rich and discourse-rich classroom environment” (Quinn et al., 2010, p. 1). Since the shift to the NGSS, scholars have indicated that explicit emphasis on language development is indicative of high-quality science instruction that effectively supports all students’ learning, including ELs (e.g., Lee, Llosa, Jiang, Haas, O’Connor, & Van Boonem, 2016; Maerten, Rivera, Ahn, Lanier, Diaz, & Lee, 2016; Zwiep & Straits, 2013). But achieving this practice requires concomitant teacher education that prepares science teachers to integrate language in instructional design and implementation (e.g., Stoddart, Solís, Tolbert, & Bravo, 2010; Tolbert, Stoddart, Lyon, & Solís, 2014).

Seeking to respond to the diversifying student population and changing educational policy context of teaching content and language in disciplinary classrooms, we have added a language lens to Understanding by Design® framework that already supports the design of effective instruction in thousands of schools across the country and world. Understanding by Design (UbD) prompts educators to design rigorous and authentic instruction that deepens students’ learning and understanding by beginning with the end in mind (Wiggins & McTighe, 2005). Curriculum designers progress through stages of instructional design – defining learning goals in Stage 1, designing assessments in Stage 2, and planning instruction in Stage 3 – as a means to promote meaningful learning that transfers to contexts beyond the classroom. In this article, we introduce the UbD framework with a language lens in the context of science teacher education. We (a) sketch the components of UbD with a language lens, (b) detail the integration of this approach to prepare teachers, (c) introduce the learning and application of two science teachers, and (d) share recommendations for implementation in science teacher education.

Backward Design for Learning and Language Development

UbD with a language lens uses the existing design framework, but adds a language lens using principles of culturally and linguistically responsive practice to prioritize diverse students while planning instruction that mediates the disciplinary learning and language development of all students (Heineke & McTighe, 2018). In this way, we begin with students, embracing and responding to their unique backgrounds, abilities, strengths, and needs. Grounded in culturally responsive pedagogy (Gay, 2010) and linguistically responsive teaching (Lucas, Villegas, & Freedson-González, 2008), the pre-planning component centers on getting to know learners to prompt dynamic instructional design that taps into students’ background knowledge and experiences, including language backgrounds and proficiencies. Reflecting the foundational basis of responsive and rigorous science instruction, practitioners need to recognize the diversity of students, including students’ language backgrounds, cultural background knowledge, and previous science learning and experiences. In this way, pre-planning involves amassing and analyzing data on students, including formal data (e.g., cumulative files, standardized test scores) and anecdotal data (e.g., observations, conversations).

Following pre-planning, Stage 1 begins with the end in mind by prompting educators to identify the desired results of the unit, including goals for transfer, meaning, and acquisition. Based on established goals (i.e., NGSS), transfer goals prompt students to transfer and use scientific learning beyond focal units of study, meaning goals involve students grappling with essential questions to build deep understandings about scientific concepts, principles, and processes, and acquisition goals focus on related knowledge and skills, which serve as building blocks to achieve larger transfer and meaning goals.

When adding the language lens to Stage 1, we maintain the rigor of scientific learning goals, which promotes the high expectations for all students at the heart of this approach. But science prompts complex and nuanced uses of language, including discipline-specific words, phrases, sentence structures, and text features (see Table 1). In this way, while upholding the high expectations for all students’ disciplinary learning, we want to explicitly target the development of pertinent scientific language, which fosters students’ academic language development and ensures equitable access to content. To accomplish this in instructional design, we (a) analyze the complex and demanding language that students need to achieve the unit’s transfer and meaning goals and (b) target the development of that language by writing objectives focused on language functions (e.g., analyze, critique) and language features (e.g., vocabulary, sentence structures, text features), as well as involving multiple language domains (i.e., listening, speaking, reading, writing; see Heineke & McTighe, 2018 for more information).

Table 1 (Click on image to enlarge)
Examples of Language Designs in Science

Stage 2 of UbD centers on designing assessments for students to demonstrate progress toward the unit goals defined in Stage 1. The focal point of unit assessments, performance tasks prompt students to engage in authentic situations that require transfer of scientific learning to real-world problems and practices. As a part of these experiences, students take on particular roles (e.g., scientist, meteorologist, engineer) and use understandings of scientific concepts and processes in simulated situations aligned to the unit’s learning goals. In addition to performance tasks, supplementary evidence involves students demonstrating learning across units via various measures (e.g., tests, quizzes, academic prompts; Wiggins & McTighe, 2005).

When adding the language lens on Stage 2, the goal is to design and integrate assessments that (a) capture data on both scientific learning and language development, and (b) provide equitable access for all students to demonstrate understanding (Heineke & McTighe, 2018). In this way, units should include performance tasks that are language-rich, culturally responsive, and linguistically accessible. When designed for authenticity, scientific performance tasks are naturally language-rich, as students interact with peers to discuss and solve problems (i.e., listening, speaking), as well as research and share findings via presentations, proposals, dioramas, or other products (i.e., reading, writing). To ensure all students can actively participate, tasks should (b) be culturally relevant to engage learners and not require prerequisite background knowledge, and (b) have linguistic scaffolds to ensure all students can contribute and demonstrate progress regardless of language background or proficiency. In addition to performance tasks, supplementary assessments are integrated to holistically capture students’ abilities, strengths, and needs in both science and language learning.

Table 2 (Click on image to enlarge)
GRASPS Task Framework with Language Lens

In Stage 3 of UbD, teachers design learning plans that authentically facilitate student learning and understanding as aligned to Stage 1 goals and Stage 2 assessments. This includes the learning plan, which involves hands-on experiences with real-world application and differentiation based on students’ backgrounds, abilities, and needs, as well as formative assessment embedded in instruction to glean students’ learning across the unit of study. When adding the language lens to Stage 3, we strategically plan instruction to achieve unit goals, including those for disciplinary language development, while responding to the unique and diverse needs of students (Heineke & McTighe, 2018). When planning the learning trajectory of science units, the language lens prompts consideration and purposeful integration of (a) students’ cultural and linguistic background knowledge, (b) collaborative, cognitively demanding tasks that involve listening, speaking, reading, and writing in English and students’ home languages, (c) complex texts that are culturally relevant and linguistically accessible, and (d) differentiated scaffolds and supports based on students’ language backgrounds, proficiency levels, and learning preferences (Herrera, 2016; Walqui & vanLier, 2010).

Preparing Teachers for Backward Design with a Language Lens

In addition to serving as a template to design instruction for K-12 students, UbD with a language lens provides teacher educators with an approach to prepare teachers to support diverse students’ language development in science instruction. In this section, we share ways to tackle this work with teachers in training, including in-class activities and resources for building the language lens on instructional design (for more detailed information, see Heineke, Papola-Ellis, Davin, & Cohen, 2018a).

Introducing science teachers to UbD with a language lens begins with buy-in. Science teachers are typically prepared as content experts with the pedagogical content knowledge to mediate students’ scientific learning (Shulman, 1986). Because of the very nature of schools, where English as a Second Language (ESL) and English Language Arts teachers maintain the primary responsibility for teaching language, science teachers might need convincing of their role in supporting students’ language development. We have found the most poignant way to achieve buy-in is having teachers begin by exploring data related to students’ linguistic diversity. When looking at formal data like home language surveys and English proficiency scores (e.g., ACCESS), teachers recognize students’ diverse backgrounds and proficiency levels. We then have them probe the multi-faceted nature of individual learners by collecting formal and anecdotal data on students’ background knowledge, cognitive strategies, language preferences, and scientific knowledge and self-efficacy (Collier & Thomas, 2007; Herrera, 2016). Our goal is for teachers to recognize diversity, paired with the need to maintain high expectations for all.

In Stage 1, we center efforts on deconstructing teachers’ and candidates’ linguistic blind spots. Science teachers are experts within particular disciplines, such as physics, chemistry, or biology, and in the context of the United States, many are also native English speakers. Taken together, teachers may not recognize the demanding, discipline-specific language that students need to access and engage in learning and understanding. To develop teachers’ understandings through empathy, we begin by simulating what students might experience linguistically in the science classroom, asking teachers to read highly complex articles from peer-reviewed journals (e.g., Journal of Chemical & Engineering Data) and use them to engage in a particular task (e.g., making a scientific argument using text-based evidence). We then provide specific tools and examples of disciplinary language demands to help teachers uncover linguistic blind spots, such as WIDA’s framework (2012) for academic language at word, sentence, and discourse levels, WestEd’s detailed taxonomy of academic language functions (AACCW, 2010), and Understanding Language’s overview of NGSS language demands (Quinn et al., 2010). Finally, after building empathy and awareness for the language lens in science teaching and learning, we move into analyzing unit-specific language demands and selecting those that are important, aligned, prevalent, and versatile to scientific content to then draft language-focused objectives.

In Stage 2, we want to teachers to embrace the value of performance tasks in promoting and measuring learning, understanding, and language development (Heineke & McTighe, 2018; Wiggins & McTighe, 2005). This begins by getting teachers to critically evaluate the traditional testing tools that may dominate their current repertoires. We use actual assessments, such as a summative paper-and-pencil test for a unit provided in the science textbook, to analyze for cultural and linguistic biases based on pre-planning data. Once biases are determined, we discuss the need to assess students’ scientific knowledge and skills without requiring a set level of language proficiency or privileging any particular cultural background knowledge. This then springboards into the exploration of performance tasks as the preferred approach to unit assessment, specifically probing ideas within three language-rich categories (i.e., oral, written, displayed). We then use the GRASPS framework with a lens on language (Heineke & McTighe, 2018; Wiggins & McTighe, 2005) for teachers to design performance tasks that align with students’ cultural background knowledge and scaffold access based on learners’ language proficiency (see Table 2). We use WIDA tools to determine developmentally appropriate language functions (i.e., Can-do descriptors; WIDA, 2016) and integrate authentic scaffolds (i.e., graphic, sensory, interactive; WIDA, 2007) to provide students’ equitable access to participate in the performance task.

For Stage 3, we want to build from what educators already know, such as inquiry-based science activities or EL-specific instructional strategies. In our experience working with teachers and candidates, this facet may be familiar based on previous coursework or professional preparation. The key is emphasizing not using a strategy for strategy’s sake, but selecting, organizing, and aligning instructional events and materials based on pre-planning data, Stage 1 goals, and Stage 2 assessments. Flexible based on the professional expertise and experience of the participants, adding a language lens to this stage centers on educators exploring the above facets (e.g., background knowledge, collaborative tasks, complex and relevant texts, differentiated supports) with the primary aim to build awareness of available approaches and resources that can enhance their current pedagogy and practice as science teachers (e.g., bilingual resources, amplification of complex texts). In addition to providing the space to explore high-quality, language-rich approaches and resources for various scientific disciplines, we model how to apply and integrate tools that align to the learning goals of instructional units of study.

The Language Lens in Action: A Closer Look at Two Science Teachers

Let’s exemplify this approach by looking at the instructional design work of two focal science teachers, who participated in a grant-funded professional development series on UbD with a language lens (see Heineke et al., 2018a, 2018b). Using the activities and resources detailed above, these teachers collaborated with colleagues across grades and disciplines to learn about UbD with a language lens and apply learning to their science classrooms.

Bridget, Elementary Science Teacher

Bridget was a sixth-grade science teacher at Wiley Elementary School, a K-6 elementary school with 1200 students in the urban Midwest. With the support of her assistant principal, she secured data to understand the culturally and linguistically diverse student population, including home language surveys and language proficiency tests (i.e., ACCESS). By exploring these data, Bridget learned that the majority of Wiley students spoke another language and approximately 45% of students were formally labeled as ELs. She was not surprised to see that Spanish was the majority language spoken by families, followed by Arabic, but learned about the rich array of linguistic diversity in the community with languages including French, Urdu, Tagalog, Bosnian, Hindi, Bengali, Farsi, Yoruba, Serbian, Romanian, Malay, Gujarati, Korean, Mongolian, and Burmese. Bridget also discerned that 50 of her 54 sixth graders used another language at home, including 10 labeled as ELs with 5 dual-labeled as having special needs.

Bridget chose to work on the first science unit of the school year on space systems, which merged science, engineering, and mathematics principles with the goal for sixth graders to use data and models to understand systems and relationships in the natural world. Per the suggestion of the instructor, she brought a previous unit draft to apply her evolving understandings of UbD with a language lens. Having already deconstructed her expert blind spot to flesh out the conceptual understandings pertinent to science standards and transfer goals, she considered her linguistic blind spot with the support of the instructor and other science educators. Bridget found having examples of science language demands (see Table 1) to be helpful in this process, using the categories and types of word-, sentence-, and discourse-level demands to analyze the disciplinary language her students needed to reach Stage 1 goals, including vocabulary (e.g., gravitational pull), nominalization (e.g., illuminate/illumination), idioms (e.g., everything under the sun), sentence structures (e.g., compare/contrast), and informational text features (e.g., diagrams). After pinpointing these knowledge indicators, she used data on her students’ language proficiency to draft skill indicators with attention to particular language functions (e.g., explain, compare) and domains (e.g., reading, writing).

After adding specific knowledge and skill indicators for language development in Stage 1, Bridget then shifted her attention to Stage 2 assessments. Following exploration of a multitude of language-rich performance task options, including those that prioritize oral, written, and displayed language (Heineke & McTighe, 2018), she decided to redesign her primary unit assessment using the GRASPS framework with a language lens (see Table 2). The resultant Mars Rover Team task (see supplemental unit) aimed to engage her sixth graders in authentic and collaborative practice with components strategically designed to promote disciplinary language use across domains (e.g., listening and speaking in teams, reading data tables, writing presentations) and scaffold for students’ language proficiency (e.g., drawings, technology, small groups). She planned to evaluate the resultant tasks for precise disciplinary language, including the vocabulary, nominalization, and other language features pinpointed in Stage 1 goals. In addition to the performance task, Bridget also added the collection of supplemental evidence to the unit of study, specifically aiming to collect and evaluate data on students’ scientific language development via journal prompts, personal glossaries, and resultant artifacts.

The final facet of the professional development focused on Stage 3, where Bridget revised the unit’s learning plan to target demanding disciplinary language, integrate students’ cultural backgrounds, and differentiate for multiple language proficiencies. Having embraced an inquiry-based approach to teaching science, she already had frequent opportunities for students to collaboratively engage in hands-on exploration and application of scientific concepts. By participating in language-focused professional development, she enriched students’ inquiry by adding opportunities for them to use their home languages as resources for learning, as well as tap into culturally specific background knowledge. For example, she modified her use of space mission notebooks to include personal glossaries for students to document pertinent scientific language, including translations into their home languages. Bridget also sought out and incorporated complex and culturally relevant texts, such as space-related myths, legends, and folktales from students’ countries of origin in Asia, Africa, and South America. Designed with her unique and diverse students in mind, the Stage 3 learning plan outlined her instructional trajectory for students to successfully achieve unit goals.

Jillian, Secondary Science Teacher

Jillian was a science teacher at Truman High School, a neighborhood public high school situated in a vibrantly diverse community in the urban Midwest. She began by exploring the rich diversity of her workplace, learning that 80% of the 1350 students use a language other than English home, representing 35 different languages. Spanish was the primary home language spoken, and 75% of the student body identified as Latina/o, but from countries spanning North, South, and Central America, as well as the Caribbean. Jillian also discovered that of that larger group of bilingual students, 25% are labeled as ELs, spanning a range of proficiency levels across language domains and including both newcomers to the United States and long-term ELs who had enrolled in neighborhood schools since the primary grades.

Jillian decided to focus on a weather and climate unit previously drafted for her earth and space science class. Working with other secondary teachers and using graphic organizers of academic language functions (AACCW, 2010) and features (WIDA, 2012), Jillian analyzed the unit’s transfer and meaning goals for language demands. She noted that her students would need to (a) interpret scientific evidence requiring diverse text features like maps, graphs, and charts, (b) describe weather using words that may be familiar from other contexts (e.g., humidity, temperature), (c) compare climates between local and global settings using distinct measurement systems (i.e., Fahrenheit, Celsius). From that analysis, she pinpointed the linguistic knowledge that her students would need to develop to access the larger learning goals, including weather-based text features and vocabulary terms and comparative sentence structures. She then refined skill indicators to target her students’ language development simultaneous to content, including analyzing weather-related data, interpreting weather patterns, and comparing climates. In this way, Jillian maintained the rigor of scientific learning while adding a lens on disciplinary language development to the Stage 1 goals.

Jillian wanted to design a performance task aligned to unit goals. After analyzing the paper-and-pencil test used by the previous earth science teacher, she realized the need to design an authentic, language-rich task that actively engaged her students in listening, speaking, reading, and writing focused on the disciplinary topics of weather and climate. Reflecting the instructor’s consistent messaging regarding responsive practice, she aimed to tap into her students’ rich sources of background knowledge, including their various global experiences and multilingual backgrounds. Using the GRASPS framework, she drafted a performance task where learners take on roles as potential weather reporters who use multiple sources of evidence to describe how weather affects human life around the globe. Students needed to use disciplinary language (in English and home languages) to compare and contrast how weather and climate influenced one facet of human life in various contexts. To ensure she had data to measure progress toward all Stage 1 goals, Jillian integrated opportunities to collect supplementary evidence throughout the unit.

After refining her goals and assessments with a language lens, Jillian wanted a learning plan that was rigorous, engaging, and interesting for her diverse students. Based on pre-planning data, she wove in students’ cultural and linguistic background knowledge. She began with a context-specific hook, prompting students to compare their city with other locations they had lived or traveled, and continued this strand by using global inquiry teams to analyze weather by continent and expert groups based on learners’ various countries of origin. Jillian then used approaches and resources explored during workshops to attend to disciplinary language, including consistent teacher modeling and student application with strategic scaffolds, such as sentence frames and graphic organizers. Having used the UbD template throughout the process of learning and applying the language lens, she completed a unit with a consistent and deliberate lens on scientific language. In this way, Jillian strategically designed experiences to support learners in reaching unit goals for learning and language development.

Conclusions & Recommendations

UbD with a language lens aims to provide all students with equitable access to rigorous learning and language development (Heineke & McTighe, 2018). By adding a language lens to the widely used UbD framework, educators learn to maintain the rigor of science teaching and learning while attending to disciplinary language demands (Heineke & McTighe, 2018; Lee et al., 2013). This timely innovation in science teacher education corresponds with current policy initiatives in K-12 schools and universities, including the NGSS that emphasize language-rich scientific and engineering practices (NGSS Lead States, 2013) and the Teacher Performance Assessment (edTPA) that prioritizes academic language embedded in content instruction (SCALE, 2018). In line with these broad policy shifts that bolster the role of language in science teaching and learning, this framework can be used with K-12 in-service and pre-service teachers, whether approached through professional development or university coursework.

Application in Practice

We originally designed and implemented this approach through a grant-funded, professional development project with in-service teachers working in 32 public schools in the urban Midwest, which included Bridget, Jillian, and other teachers spanning elementary, middle, and high schools in culturally and linguistically diverse communities (see Heineke et al., 2018a for more details on the project). Findings indicated that teachers, as well as participating school and district leaders, developed awareness and knowledge of discipline-specific language development, pedagogical skills to effectively integrate language in content instruction, and leadership abilities to shape implementation in their unique educational settings (Heineke et al., 2018b). By integrating the language lens into the existing UbD template, of which they were already familiar and comfortable in using, teachers embraced language development as a part of their regular teaching repertoires, rather than an add-on initiative.

We are currently integrating this approach into a university pre-service teacher education program, and our preliminary work indicates close alignment between the edTPA and UbD with a language lens. Of the many rubrics that are used to assess teacher candidates on the edTPA, over half directly relate to the components of the approach shared above, including planning for content understandings, knowledge of students, supporting academic language development, planning assessment, analyzing student learning, analyzing students’ academic language understanding and use, and use of assessment to inform instruction (SCALE, 2018). In addition to our previous research with in-service teachers, we plan to collect data on the implementation of UbD with a language lens with pre-service teachers, investigating how the approach and related professional learning experiences facilitate understandings, knowledge, skills, and dispositions for supporting language development in the science classroom.

Suggestions for Implementation

Based on our experiences in designing and implementing this approach, we have suggestions for science teacher educators who endeavor to prepare teachers and candidates for instructional design with a language lens. First, use the UbD template as a common tool to mediate both learning and application, adding the language lens to what educators already know and understand as sound instructional design (see Heineke & McTighe, 2018 as a potential resource to mediate teachers’ learning). Next, utilize the expertise of the educators themselves and build capacity more broadly across schools and programs, prompt collaborative learning and application in science-specific groups of teachers and candidates, as well as more diverse conglomerations of educators to promote co-planning and co-teaching with ESL, special education, or STEM teachers (see Heineke et al., 2018a). Finally, to avoid the conceptualization of language as an add-on initiative, integrate the language lens into science methods coursework and professional development for teacher candidates and teachers, respectively.

When approaching this professional learning in either coursework or professional development, we recommend expending ample efforts to initially build the needed buy-in that science teachers indeed play a role in supporting students’ language development. Since the educational institution has long maintained silos that separate language and content, those need to be broken down for educators to embrace learning and application to practice. Awareness of the role of the language in scientific learning can support these efforts, which can be effectively developed via simulations that build educators’ empathy for students’ interaction with discipline-specific language. When teachers are put in the position of students, such as needing to maneuver complex journal articles, they begin to recognize the need to attend to language in science teaching. Finally, emphasize the importance of students’ assets and teachers’ high expectations. The purpose of the language lens is not to reduce rigor in the science classroom, but rather to enhance instruction and provide equitable access for all learners.

References

Assessment and Accountability Comprehensive Center at WestEd (AACCW). (2010). Language for achievement: A framework for academic English language [Handout]. San Francisco, CA: WestEd.

Collier, V. P., & Thomas, W. P. (2007). Predicting second language academic success in English using the prism model. In J. Cummins & C. Davison (Eds.), International handbook of English language teaching, Part 1 (pp. 333–348). New York: Springer.

Gay, G. (2010). Culturally responsive teaching: Theory, research, and practice (2nd ed.). New York: Teachers College Press.

Heineke, A., & McTighe, J. (2018). Using Understanding by Design in the culturally and linguistically diverse classroom. Alexandria, VA: ASCD.

Heineke, A. J., Papola-Ellis, A., Cohen, S., & Davin, K. (2018a). Linguistically responsive professional development: An apprenticeship model. Improving Schools, 21, 32-47.

Heineke, A. J., Papola-Ellis, A., Davin, K. J., Cohen, S., Roudebush, A., Wright-Costello, B., & Fendt. C. (2018b). Language matters: Developing educators’ expertise for English learners in linguistically diverse communities. Language, Culture, and Curriculum. DOI: 10.1080/07908318.2018.1493493

Herrera, S. G. (2016). Biography-driven culturally responsive teaching (2nd ed.). New York: Teachers College Press.

Lee, O., Quinn, H., & Valdés, G. (2013). Science and language for English language learners in relation to Next Generation Science Standards and with implications for Common Core State Standards for English language arts and mathematics. Educational Researcher, 0013189X13480524.

Lee, O., Llosa, L., Jiang, F., Haas, A., O’Connor, C., & Van Booven, C. D. (2016), Elementary teachers’ science knowledge and instructional practices: Impact of an intervention focused on English language learners. Journal of Research on Science Teaching, 53, 579–597.

Linquanti, R., & Cook, H. G. (2013). Toward a “common definition of English learner”: Guidance for states and state assessment consortia in defining and addressing policy and technical issues and options. Washington, DC: Council of Chief State School Officers.

Lucas, T., Villegas, A. M., & Freedson-González, M. (2008). Linguistically responsive teacher education: Preparing classroom teachers to teach English language learners. Journal of Teacher Education, 59, 361-373.

Maerten-Rivera, J., Ahn, S., Lanier, K., Diaz, J., & Lee, O. (2016). Effect of a multiyear intervention on science achievement of all students including English language learners. Elementary School Journal, 116, 600–624.

National Center for Education Statistics. (2015). EDFacts file 141, Data Group 678; Common Core of Data, “State Nonfiscal Survey of Public Elementary and Secondary Education.” Table 204.27.

National Clearinghouse for English Language Acquisition. (2010). The growing number of English learner students 1998/99 – 2008/09. Washington, DC: Author.

National Research Council. (2013). Next generation science standards: For states, by states. Washington, DC: National Academies Press.

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: The National Academies Press.

Quinn, H., Lee, Okhee, & Valdés, G. (2010). Language demands and opportunities in relation to Next Generation Science Standards for English language learners: What teachers need to know. Understanding language: Language, literacy, and learning in the content areas. Palo Alto, CA: Stanford University.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4-14.

Stanford Center for Assessment, Learning, and Equity (SCALE). (2018). edTPA: Making good choices. Retrieved from https://www.edtpa.com/Content/Docs/edTPAMGC.pdf

Stoddart, T., Solís, J. L., Tolbert, S., & Bravo, M. (2010). A framework for the effective science teaching of English language learners in elementary schools. In D. Sunal, C. Sunal, & E. Wright (Eds.), Teaching Science with Hispanic ELLs in K-16 Classrooms. Albany, NY: Information Age Publishing.

Tolbert, S., Stoddart, T., Lyon, E. G., & Solís, J. (2014). The Next Generation Science Standards, Common Core State Standards, and English Learners: Using the SSTELLA framework to prepare secondary science teachers. Issues in Teacher Education, 23, 65-89.

Walqui, A., & van Lier, L. (2010). Scaffolding the academic success of adolescent English language learners: A pedagogy of promise. San Francisco: WestEd.

WIDA. (2007). English language proficiency standards and resource guide. Madison, WI: Author. Retrieved from https://www.wida.us/get.aspx?id=4

WIDA. (2012). Amplification of the English language development standards: Kindergarten–grade 12. Madison, WI: Author. Retrieved from https://www.wida.us/get.aspx?id=540

WIDA. (2016). Can-do descriptors: Key uses edition, grades K–12. Madison, WI: Author. Retrieved from https://www.wida.us/get.aspx?id=2043

Wiggins, G. P., & McTighe, J. (2005). Understanding by design. Alexandria, VA: ASCD.

Zwiep, S. G., & Straits, W. J. (2013). Inquiry science: The gateway to English language proficiency. Journal of Science Teacher Education, 24, 1315-1331.

Learning About Science Practices: Concurrent Reflection on Classroom Investigations and Scientific Works

Citation
Print Friendly, PDF & Email

Basir, M.A. (2019). Learning about science practices: Concurrent reflection on classroom investigations and scientific works. Innovations is Science Teacher Education, 4(2). Retrieved from https://innovations.theaste.org/learning-about-science-practices-concurrent-reflection-on-classroom-investigations-and-scientific-works/

by Mo A. Basir, University of Central Missouri

Abstract

The NRC (2012) emphasizes eight science practices as a constitutive part of science teaching and learning. Pre-service teachers should be able to perform those practices at least in an introductory-level science investigation. Additionally, they also need to be able to elicit and interpret those science practices in the work of students. Through the integration of doing science and reading about how scientists do science, this article provides a practical teaching approach encouraging critical thinking about science practices. The instructional approach emphasizes on performing science practices, explicitly thinking about how students and scientists do science, and reflecting on similarities and differences between how students and scientists perform science practices. The article provides examples and tools for the proposed instructional approach.

Introduction

What if science teachers had a scientist friend who invited them to go with her on a scientific expedition? Wouldn’t it be interesting and exciting? What would they learn during the trip? After returning from the scientific adventure, what could they tell their students about their firsthand experiences? Don’t you think that what they would learn during the field trip could help them make science exciting and accessible to students? Even though such a thrilling experience may not occur for every educator, books about the lives and activities of scientists can take science teachers on a similar trip. Texts about scientists and their research can describe how a scientist becomes engaged with a topic of her/his study, wonders about a set of complicated questions, and devotes her/his life to these issues. This article is intended to illustrate how we could integrate these kinds of texts into inquiry-oriented lessons and how they can increase the effectiveness of the science methods or introductory science courses.

Learning about real scientific and engineering projects can help students develop an understanding of what scientists do. In science textbooks, most of the time students encounter exciting and well-established scientific facts and concepts generated by the science community, but rarely read and learn about how scientists work or generate new knowledge in science (Driver, Leach, & Millar, 1996). Helping students learn scientific practices, science teachers/educators often utilizes inquiry-oriented lessons. The National Research Council (NRC) has defined K-12 science classrooms as places in which students perform science and engineering practices while utilizing crosscutting concepts and disciplinary core ideas (2012). One of the conventional approaches to meet such expectations is to develop a series of model lessons that involve and engage students in some science investigations.

Some years ago, I started a methods course beginning with these ideas and collected data investigating any changes in classroom discourses (Basir, 2014). Results of that qualitative study revealed no significant change in classroom discourse regarding science and engineering practices. Analysis of the results revealed a list of common patterns and challenges about student learning in the courses. My students had vague ideas about what it means to develop and use a model, make a hypothesis, and construct a science argument. Analysis of their reflections also revealed that the keywords associated with the eight science practices (see Appendix I) were not traceable in their written discourses about their science investigations; they had difficulties recognizing those eight practices in their science inquiry. Trying to resolve these challenges was my motive to revise this methods course. In the following, I first describe how the wisdom of practice in science education helped me develop an idea to change the course and how that idea transformed into an instructional strategy. Then, I use examples to illustrate results of this instructional strategy. The presented instructional approach aids students using NGSS framework accurately when they reflect on their science practices and consequently learn science practices more effectively. Hopefully, this could have a positive effect on their science teaching.

Framework

The apprenticeship model (getting engaged in science inquiry while being coached by a master teacher) has been emphasized as a practical and useful approach for learning and teaching science since decades ago (e.g., NRC, 2000). NRC (2000) defined science inquiry by introducing a set of abilities for a process of science inquiry and NRC (2012) has placed more emphasis on those abilities and call them the eight science practices (see Appendix I for the comparison between the set of abilities and the eight science practices). The eight science practices as defined by NRC (2012) and those abilities for science inquiry as defined by NRC (2000) are very similar. However, as Osborne (2014) asked, in what sense the notion of inquiry as defined by NRC (2000) differs from the science practices defined by NRC (2012). One reason, among others, is about the call for more transparency on the articulation of what classroom science inquiry is or what students need to experience during an inquiry-oriented lesson (Osborne, 2014). Aiming to develop such transparency in methods courses for prospective teachers, we may need to consider some complementary instruction to the apprenticeship model. This means that while teachers and students follow the apprenticeship model of teaching and learning, they need to become more conscious about and cognizant of science practices. As a complement to the apprenticeship model of instruction, to some extent, many instructional methods can help students learn science investigations by learning about history and/or nature of science (Burgin & Sadler, 2016; Erduran & Dagher, 2014; McComas, Clough, & Almazroa, 2002; Schwartz, Lederman, & Crawford, 2004), refining their investigative skills (e.g., Hackling & Garnett, 1992; Foulds & Rowe, 1996), conducting context-based science investigation using local newspapers or local environmental issues (e.g., Barab & Luehmann, 2003; Kuhn & Müller, 2014 ), and becoming cognizant of what/how they do science (e.g., Smith & Scharmann,2008).

In the context of higher education, active learning as an instructional approach provides multiple opportunities for students to initially do activities during class and subsequently analyze, synthesize, evaluate, and reflect on what they did during those activities (Bonwell & Eison, 1991). This latter aspect of active learning, critical thinking, plays a significant role in the effectiveness of teaching (Cherney, 2008; Bleske-Rechek, 2002; Smith & Cardaciotto, 2011) and usually is a missing component in the mentioned context. Unlike the regular introductory university-level science courses, in the context of science teacher preparation, it is a common practice to ask students to write a reflection about what/how they do activities. What has been less emphasized in this context is to provide a framework and benchmark helping students to systematically reflect on their science investigation (Ellis, Carette, Anseel, & Lievens, 2014).

The stories or case studies about how actual scientists do science can function as a benchmark for students who do classroom science investigations. Comparing an authentic science study with a student-level science project can make students aware of possible deficiencies and missing components in their classroom inquiry. Presumably inspired by medical science, case study teaching approaches have been utilized for teaching science (Herried, 2015; Tichenor 2013) and showing promising effects on student learning (Bonney, 2015; Tichenor, 2013). Specifically, science educators have developed many case studies for how to teach science—many of these cases related to science methods are available at National Center for Case Study Teaching in Science (NCCSTS; http://sciencecases.lib.buffalo.edu/cs/).

In this paper, I describe how particular kinds of case studies, the stories of contemporary scientists and their projects, can be used as a complementary teaching component to inquiry-oriented instruction. The objective is to provide an environment in which students could see the “sameness and difference” (Marton, 2006) between what they do and what scientists do. They could use the stories about actual science investigations as a benchmark for reflecting on what they do in the science classroom.

Concurrent Reflections as an Instructional Strategy

Drawing on the reviewed literature, I developed a three-phase instructional approach (Figure 1). In each phase of the instruction, students are assigned with specific task and concurrently reflect on that task. In the first phase, students have multiple opportunities to do science investigations, compare and contrast how they did across the small groups, recognize and interpret the eight science practices in their work, and document their reflection about how they do science on the offered template (Figure 2). This activity helps students conceptualize the eight practices implicitly embedded in those inquiry-oriented lessons. In the second phase, students read and reflect on a case study (i.e., a book about a scientist and her/his project). By reading about scientists and scientific projects, students have the opportunities to discern first-hand instances of the eight science practices. In the third phase, students compare those first-hand investigations done by real scientists, as benchmarks, with what they do in inquiry-oriented lessons and accordingly critically reflect on how to improve their science practices.

Figure 1 (Click on image to enlarge). Illustrates the suggested learning cycle.

Figure 2 (Click on image to enlarge). Template for comparing instances of science practices (SP) in different contexts.

Discussing the Suggested Learning Strategy by an Example

In the following, a three-session lesson (about 4.5 hours) based on this instructional approach is presented. Currently, this lesson is included in one of my science courses (how to do straightforward scientific research). The course is a general education course open to all majors, and secondary and middle-level pre-service teachers are required to take the course. In my previous institution, a similar lesson was included in a science course required for prospective elementary teachers.

Phase One: Doing and Reflecting on Science Practices

In this phase of the learning cycle, students conduct a science investigation and are asked to match the eight science practices with different components of their science inquiry. Students are required to document their interpretations in the provided template (Figure 2). Students are given a worksheet for investigating electromagnet. The very first question in the worksheet is about drawing an electromagnet. This question aims to check how much they know about electromagnets. Figure 3 shows five student responses to the mentioned question. These are typical responses at the beginning of this investigation. Most students know little about electromagnets. After receiving these responses, I put students in small groups and made sure that each group had at least one student who drew a relatively correct preliminary model of an electromagnet. Due to space limitation, only four of the eight science practices have been discussed in the following.

Figure 3 (Click on image to enlarge). Illustrates how students drew the model of an electromagnet as their initial idea.

Asking Questions. Students, as a group of four, were given different size batteries, nails, wire, and paper clips. They were supposed to make an electromagnet and then they were given a focus question: how you can change the power of the electromagnet. Some groups had difficulty building and/or using their electromagnet due to issues such as a lousy battery, open circuit, not enough loop, trying to pick up a too heavy metal object by the electromagnet. With minor help from me, they were able to build the electromagnet. Some groups developed yes-no questions (i.e., does the number of loops affect the electromagnet?). I helped them revise their question by adding a “how” to the beginning of their question. Typical questions that students came up with which focused the small group investigations were: How does the voltage of the battery affect the power of the electromagnet? How does the amount of wire around the nail affect the strength of the electromagnet? How does the insulation of the wire affect the power of the electromagnet?

Developing and Using Models. Scientists utilize scientific models and discourses to explain the observed phenomena. However, students usually use vernacular discourses instead of using science/scientific models for explaining a phenomenon. Students needed to develop a hypothesis related to the questions they asked. Here are two typical hypotheses that student groups came up with: 1) making the loops tighter and the wire would have a stronger effect on the nail and in turn, the electromagnet would become more robust, or 2) a bigger battery would make the electromagnet stronger. When (at reflection time) students were asked to think and explicitly mention any models they used, they sometimes talked about the picture of the electromagnet that they drew as a model of the electromagnet (Figure 2). Nonetheless, they typically didn’t see the role of their mental model in the hypotheses they made. With explicit discussion, I helped them to rethink why they generated those hypotheses (i.e., bigger battery or more loops, more powerful magnet). I expected them to mention some of the simple electromagnetic rules learned in science courses; however, most of the hypotheses stem from their vernacular discourses rather than science/scientific discourses. Through discussion with small groups and the whole classroom, I invited them to think about the background knowledge they utilized for making those hypotheses. We discussed the possible relationship between their hypotheses and the vernacular discourses such as “bigger is more powerful,” “more is more powerful,” or “the closer the distance, the stronger interaction”—These vernacular discourses are like general statements that people regularly use to make sense of the world around them. If we use a bigger battery and more wire, then we will have a stronger magnet.” Later, as they collected data, they realized that the vernacular ideas did not always work, a 9-volt battery may not provide as much power as a 1.5-volt D battery.

Constructing Explanations. The relation between different variables and their effects on the strength of an electromagnet is a straightforward part of the investigation. However, most of the groups were not able to explain why the number of wire loops affects the power of the electromagnet, or why uninsulated wire does not work. One of the common misconceptions students hold is the thought that uninsulated wire lets electricity go inside the nail and makes the nail magnetic by touch. I did not tell them why that idea was not correct and then motivated them to explicitly write their thought in the template (Figure 4).

Engaging in Argument from Evidence. We had different kinds of batteries, so one of the groups focused on the relationship between voltage and the electromagnet power. Through investigation, they realized that a 9-volt battery did not necessarily increase the strength of the electromagnet in comparison with a D battery. Another group focused on the relation of the number of cells and the electromagnet power. I encouraged them to discuss and compare the results of their studies and find out the relation of batteries and the power of the electromagnet. However, neither group had students with enough science background on electromagnetism to develop better hypotheses.

Phase Two: Reading and Reflecting on How Scientists Perform Science Practices

As mentioned before, we can use many different kinds of texts about scientists and their projects for this instructional approach. Table 1 suggests some book series appropriate for the proposed strategy. For instance, “Sower series” can help students to learn about historical figures in science and their investigation or “scientist in the filed” is about contemporary scientists and their projects. Stronger than Steel (Heos & Comins, 2013) from the scientist in the field series is discussed to illustrate how we can use these books in the classroom in the following.

Table 1 (Click on image to enlarge)
Suggested Textbooks Describing Scientists’ Biography and Their Projects


The summary of the book. Stronger than Steel is about Randy Lewis, his team, and his long-term research project about spider silk. Randy’s early research questioned the structure of the spider silk: how spider silk could be so strong and at the same time so flexible. By applying the well-established models and methods for the analysis of the matter, Randy and his team were able to develop an explanation for why spider silk is both strong flexible at the same time. They found out that the particular spider silk they analyzed was made of two proteins; a combination of these two proteins is responsible for super flexibility and strength of the spider silk. Building on genetic theory, the research team examined spider DNA. It took them about three years to isolate two genes associated with the proteins responsible for the strength and flexibility of the spider silk. Familiar with the transgenic models, in the late 1990s, Randy’s team designed bacteria producing the main ingredient of the spider silk, the two proteins mentioned before. In the next step, they injected those specific spider genes into goat embryos and achieved incredible results. Some of the transgenic goats were able to produce the spider silk proteins, but of course not like Spiderman. The transgenic goats are very similar to regular goats, but their body produces extra spider silk proteins in their milk. Randy’s team milked the transgenic goats, processed the milk, separated the spider silk proteins, and finally spun the spider silk fibers from the mixture of those two proteins. Currently, they are working to find alternative organisms that could produce spider silk more efficiently than transgenic spider goats. They are working on two other organisms: silkworms, which are masters in making silk and alfalfa, which is a plant that produces much protein.

As can be seen in this summary, the book has many examples of eight science practices from the first-hand science projects (i.e., the research questions about making spider silk, the theory-driven hypothesis explaining the possibility of using transgenic methods and making silk from goats). We can use different reading strategies in this phase of the instruction. I often have students submit answers to a set of guided questions as they read the books. The objective here is to motivate students to match and interpret the eight science practices in the work of the scientists as described in the case study. Table 2 illustrates some of the reflections that students submitted on the reflection template (Figure 2) after reading the book.

Table 2 (Click on image to enlarge)
Instances of Science Practices as Interpreted by Students

Phase Three: Comparing and Reflecting on How Scientists and Students Perform Science Practices

In this phase of the learning cycle, students had small-group activity comparing the instances of the science practices in the case study with the instances of science practices in their electromagnet investigation. We also had a whole-classroom discussion coordinated by me.

Asking questions. Randy utilized transgenic and genetic models to do the investigation. Students were asked to think about the research questions that led Randy’s work. Here are the typical responses students came up with: Why is spider silk is so strong and flexible at the same time? What spiders’ genes are related to spiders’ ability to produce silk? Can other organisms produce spider silk? How can other creatures produce spider silk? We discussed how the questions in Randy’s project are model-based and theory-laden. Then students examined their electromagnet questions and tried to transform them into model-based and theory-laden questions.

Figure 4 depicts how student questions changed and improved after the mentioned discussion. We discussed that if we used the magnetic field model to describe what was happening around a magnet, then we could have asked how to increase the magnetic field at the tip of the nail. By discussing the formula related to the magnetic field and the amount of electric current, students were able to ask a question about the relation of electric current and power of electromagnet instead the relation of voltage of batteries and the power of electromagnet.

Figure 4 (Click on image to enlarge). Illustrates the changes in student groups, A and B, before and after of the case study.

Developing and Using Models. Based on the transgenic model, Randy’s team hypothesized that if they put those two genes in a goat embryo the goat body is going to produce those two proteins and possibly the goat milk is going to contain those two proteins. I led the whole classroom discussion focusing on how students’ hypotheses, similar to the transgenic goat project, should be based on science/scientific knowledge. I emphasized that they need to replace their vernacular discourses, described above, with simple electromagnetic models. In this phase, students were either asked to do some library research to review electromagnetic laws and formulas, or given a handout including rules and formulas related to electromagnets (the version of the worksheet designed for the elementary pre-service teachers is less demanding). Students had an opportunity to revise their vernacular ideas about electromagnets. For instance, they discussed the formula (B=μ0I/2πr) that illustrates factors affecting the magnetic field around a straight wire with electric current. They saw that the magnetic field around the wire is inversely related to the distance from the wire. We discussed how this formula is connected to the vernacular idea that the less distance from the electromagnet, the more powerful electromagnet. They also examined the formula related to the magnetic field in the center of a loop (B=μ0I/2R), which shows that the power of an electromagnet increases when the electric current increases in a circuit. With this formula, they can better explain why doubling the number of batteries increases the strength of the electromagnet or develop a hypothesis as to why D-batteries make a more powerful electromagnet than 9-volt batteries. For instance, one of the small groups initially claimed, “If we use a bigger battery and more wire, then we will have a stronger magnet.” After going through the complete lesson, they revised their claim, “If there is a stronger current, then the magnet force will increase.”

Constructing Explanations. As a part of the structured reflection on the case study, students were supposed to recognize scientific explanations that Randy’s team developed. Here are some of the scientific explanations we discussed in our class: Randy’s team used the biomaterial models to understand the structure of spider silk. They figured out why spider silk is so strong and at the same time so flexible. They described how two essential proteins make the spider silk, one makes the silk stronger than steel, and another make it as elastic as rubber. Using the genetic models, they had the understanding that specific genes carry the information for the production of particular proteins. So, after a two-year examination of the spider genes, eventually, they pinpointed the two specific genes and developed an explanation of how/why those two genes are responsible for making those proteins. These discussed scientific explanations provided a rich context and a benchmark for students to improve their explanations about electromagnet. The model-based explanations in Randy’s project encouraged students to use simple electric and magnetic laws and tools for developing explanations about the electromagnet investigation. For instance, looking at the hypothesis that group A and B made (Figure 4), we could see that both initial hypotheses look like a claim with no explanation (i.e., the more wire on the nail, the more powerful the electromagnet). However, after the discussion about Randy’s project, both groups added some model-based explanations to their claims. In the revised version of their work, by measuring the electric current, group A figured out that why a 6-volt battery created a stronger magnetic field than a 9-volt battery. Group B used the formula for electric resistance to explain why electric current would increase in the coil. They also used a multimeter and Tesla meter for measuring electric current and magnetic field for collecting supporting data.

As part of their homework, students were asked to reflect on how their explanation was changed during this lesson. Some of them emphasized the role of scientific background knowledge and the tools they used in the second round of the investigation. One of them said:

In the second explanation, we had more background knowledge about the subject, so we were better able to develop a hypothesis that was backed by a scientific theory. This led to more accurate results. We also used tools that measured the exact amount of electric current and the exact magnetic strength in the second experiment.

It is important to mention that student-teacher discussion essentially facilitated the use of background knowledge in the second round of the investigation. One of the students mentioned:

One of the explanations comes from the knowledge that we brought (which is none, or little knowledge of magnetism). The other explanation utilizes the outside knowledge that Dr. Mo presented us with. The equation that explained what makes a magnet stronger. We were then able to adjust the explanation to be more accurate.

Engaging in Argument from Evidence. Some of the discussed points from the case study that are related to engaging in argument from evidence are typically either mentioned in student reflection or suggested by me. Randy’s team used the genetic theory arguing for the relation between alfalfa, silkworms, and goats. Then they collected empirical data and developed evidence for that argument. Randy’s team developed a strong argument from evidence to convince the funding agencies for exploring the alternative methods for production of spider silk. Randy is also engaged in the debate from evidence to support the claim that transgenic research is beneficial to our society. He argues that although this kind of investigation could be misused (i.e., designer babies or spread of transgenic animals in natural environments), the beneficial aspects of transgenic research are immense.

In comparison with Randy’s work, we discussed how science goes beyond the walls of the science labs and how science, society, and technology are mutually related—one of the eight aspects of NOS based on NGSS is “science is a human endeavor.” Regarding this relationship in the context of the electromagnet investigation, through whole-class discussion, we came up with some library research questions: how a Maglev works or how electromagnetic field/wave possibly could have some possible sides effects on the human brain.

Furthermore, Randy’s work provided an environment for us to have a discussion related to the coordination of theory and evidence, which is another aspect of NOS based on NGSS: “science models, laws, mechanisms, and theories explain natural phenomena.” In return, the discussion helped students use scientific knowledge and tools for developing hypotheses. In the first round of investigation, students asked questions and developed explanations with little attention to scientific knowledge, a required component for asking scientific question and explanation. In the second round, they used scientific laws, units, and sensors to develop their hypotheses (compare before- and after-condition of the hypotheses in figure 3). The discussion about Randy’s work helped them to be conscious about the coordination of scientific background knowledge and making hypothesis and explanation. As shown in Table 3, in response to a question on the group assignment, group A mentioned:

When we read about Randy’s investigation, we understood that sometimes it is necessary to draw from the knowledge that already exists on the topic. For example, Randy knew that bacteria could be used to produce penicillin. In our electromagnet investigation, once Dr. … showed us the slides, we knew that electrical current influenced the strength of the magnet. With this knowledge, we created a better hypothesis of what was happening.

Table 3 (Click on image to enlarge)
Instances of Student Response to a Reflective Group Assignment at the End of the Lesson

Discussion and Conclusion

This article seeks ways to improve pre-service teacher learning about NGSS’ eight science practices. This learning objective can be accomplished in the suggested learning cycle (Figure 1). As discussed, in the first phase, when students work on their science investigation, what naturally comes out of students’ work are vernacular discourses, based on their mental models used in their daily life practices, rather than science models and discourses. As Windschitl, Thompson, and Braaten (2008) put it, one of the fundamental problems with student science investigation is the modeless inquiry (i.e., students conduct investigations without utilizing scientific models). Here students managed to investigate variables that affect the power of an electromagnet such as the kind of battery, number of loops, size of the nail, and diameter of the loops. At this stage, however, they were not able to utilize science models to explain “why” those variables affect the strength of the electromagnet.

In the second phase, due to the authenticity of the scientific project described in the case study, it was easy for students to recognize instances of the eight science practices in that project. Through reflection, students realized that the scientific investigation in the case study was vastly built on scientific models and theories.

In the third phase, through the negotiation process between the students and teacher and by comparing their work with Randy’s work, a majority of the students became cognizant of the fact that the electromagnetic models were almost absent in their initial electromagnet investigation. Randy’s project functioned as a benchmark assisting pre-service teachers to compare their work with the benchmark and revise their science practices. Additionally, the comparison between classroom science and actual scientists’ work provided an environment for discussion about some aspects of NOS such as the relation of science-society-technology, and the coordination of theory-evidence. In return, those discussions helped students improve their electromagnet investigation.

As a limitation of the presented strategy, it can be asked, what would happen if the case study was eliminated? Students would go through the electromagnet investigation, then I would give students the background knowledge about electromagnet, and then students would do the investigation for the second time. Probably, due to doing a similar investigation two times, we should expect some improvement in the quality of their investigation. However, the case study functioned as a benchmark and guidance. During the discussion about Randy’s work, students became cognizant of the critical role of background knowledge, modeling, and scientific lab technology for doing science. Importantly, they realized that for making hypotheses, observation and collecting data is not enough; they need to bring scientific knowledge to the table to develop a hypothesis. Accordingly, it seems that the case study provided a productive environment for students to do science investigation and learn about the eight science practices.

As Hmelo-Silver (2006) stated, scaffolding improves student learning when it comes to how and why to do the tasks. The discussed structured reflection can help students learn how and why they conduct science investigations and encourage them to critically think and talk about science practices (nature of science practices). Going through multiple inquiry-oriented lessons provides an environment for students to do the NGSS eight science practices described. To develop a thorough understanding of those practices, however, students need to repeatedly think critically to discern instances of science practices from what they do, compare them with a benchmark, and find out a way to improve their science practices. By going through the concurrent reflection embedded in all three phases of the suggested instructional strategy, prospective teachers experienced the fact that classroom science investigations should go beyond a “fun activity” (Jimenez-Aleixandre, Rodriguez, & Duschl, 2000) and the vernacular discourses that they know, and must be based on scientific knowledge, models, and technology, and explicitly relate to society.

Acknowledgment

I would like to show my gratitude to James Cipielewski and Linda Pavonetti for sharing their wisdom with me during the initial phase of this project.

Supplemental Files

Appendix-1.png

References

Basir, M.A. (2014). Pre-service Teacher Discourses: Vernacular Versus Formal Science Learning Discourses. Paper presented at NARST 2014.

Barab, S. A., & Luehmann, A. L. (2003). Building sustainable science curriculum: Acknowledging and accommodating local adaptation. Science Education, 87(4), 454-467.

Bleske-Rechek, A. L. (2002). Obedience, conformity, and social roles: Active learning in a large introductory psychology class. Teaching of Psychology, 28(4), 260-262.

Bonney, K. M. (2015). Case study teaching method improves student performance and perceptions of learning gains. Journal of microbiology & biology education, 16(1), 21.

Bonwell, C.C., and Eison, J.A. (1991). Active learning: Creating excitement in the classroom. Washington, DC: Jossey-Bass.

Burgin, S. R., & Sadler, T. D. (2016). Learning nature of science concepts through a research apprenticeship program: A comparative study of three approaches. Journal of Research in Science Teaching53, 31-59.

Cherney, I. D. (2008). The effects of active learning on students’ memories for course content. Active Learning in Higher Education9, 152-171.

Driver, R., Leach, J., & Millar, R. (1996). Young people’s images of science. London: McGraw-Hill International.

Ellis, S., Carette, B., Anseel, F., & Lievens, F. (2014). Systematic reflection: Implications for learning from failures and successes. Current Directions in Psychological Science, 23(1), 67-72.

Erduran, S., & Dagher, Z. R. (2014). Reconceptualizing nature of science for science education. In Reconceptualizing the Nature of Science for Science Education (pp. 1-18). Springer Netherlands.

Foulds, W., & Rowe, J. (1996). The enhancement of science process skills in primary teacher education students. Australian Journal of Teacher Education21(1), 2.

Hackling, M., & Garnett, P. (1992). Expert—Novice differences in science investigation skills. Research in Science Education22, 170-177.

Heos, B., & Comins, A. (2013). Stronger than Steel. Boston, MA: Houghton Mifflin Book for Children.

Herreid, C. F. (2015). Testing with case studies. Journal of College Science Teaching, 44(4), 66-70.

Jimenez-Aleixandre, M., Rodriguez, A., & Duschl, R. A. (2000). ‘‘Doing the lesson’’ or ‘‘doing science’’: Argument in high school genetics. Science Education, 84, 287–312.

Kuhn, J., & Müller, A. (2014). Context-based science education by newspaper story problems: A study on motivation and learning effects. Perspectives in Science2(1-4), 5-21.

Marton, F. (2006). Sameness and difference in transfer. The Journal of the Learning Sciences, 15, 499-535.

McComas, W. F., Clough, M. P., & Almazroa, H. (2002). The role and character of the nature of science in science education. In McComas, W.F., The nature of science in science education (pp. 3-39). New York, NY: Springer.

National Research Council. (2000). Inquiry and the national science education standards. Washington, D.C.: National Academy Press.

National Research Council. (2007). Taking Science to School: Learning and Teaching Science in Grades K-8. Duschl, H.A. Schweingruber, and A.W. Shouse. Washington, DC: The National Academies Press.

National Research Council. (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies.

Schwartz, R. S., Lederman, N. G., & Crawford, B. A. (2004). Developing views of nature of science in an authentic context: An explicit approach to bridging the gap between nature of science and scientific inquiry. Science education88, 610-645.

Smith, C. V., & Cardaciotto, L. (2011). Is Active Learning Like Broccoli? Student Perceptions of Active Learning in Large Lecture Classes. Journal of the Scholarship of Teaching and Learning, 11(1), 53-61.

Smith, M. U., & Scharmann, L. (2008). A multi-year program developing an explicit reflective pedagogy for teaching pre-service teachers the nature of science by ostention. Science & Education17, 219-248.

Tichenor, L. L. (2013). Assessing Learning Outcomes of the Case Study Teaching Method. In R. E. Yager, Exemplary College Science Teaching (pp. 91-106). Arlington, VA: NSTA Press.

Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science education, 92, 941-967.