Adapting a Model of Preservice Teacher Professional Development for Use in Other Contexts: Lessons Learned and Recommendations

by Meredith Park Rogers, Indiana University - Bloomington; Ingrid Carter, Metropolitan State University of Denver; Julie Amador, University of Idaho; Enrique Galindo, Indiana University - Bloomington; & Valarie Akerson, Indiana University - Bloomington

We discuss how an innovative field experience model initially developed at Indiana University - Bloomington (IUB) is adapted for use at two other institutions. The teacher preparation programs at the two adapting universities not only differ from IUB, but also from each other with respect to course structure and student population. We begin with describing the original model, referred to as Iterative Model Building (IMB), and how it is designed to incorporate on a variety of research-based teacher education methods (e.g., teaching experiment interviews and Lesson Study) for the purpose of supporting preservice teachers with constructing models of children’s thinking, using this information to inform lesson planning, and then participating in a modified form of lesson study for the purpose of reflecting on changes to the lesson taught and future lessons that will be taught in the field experience. The goal of these combined innovations is to initiate the development of preservice teachers’ knowledge and skill for focusing on children’s scientific and mathematical thinking. We then share how we utilize formative assessment interviews and model building with graduate level in-service teachers at one institution and how the component of lesson study is adapted for use with undergraduate preservice teachers at another institution. Finally, we provide recommendations for adapting the IMB approach further at other institutions.

Science Units of Study with a Language Lens: Preparing Teachers for Diverse Classrooms

by Amy J. Heineke, Loyola University Chicago; & Jay McTighe, McTighe & Associates Consulting

Recent educational policy reforms have reinvigorated the conversation regarding the role of language in the science classroom. In schools, the Next Generation Science Standards have prompted pedagogical shifts yielding language-rich science and engineering practices. At universities, newly required performance-based assessments have led teacher educators to consider the role of academic language in subject-specific teaching and learning. Simultaneous to these policy changes, the population has continued to diversify, with schools welcoming students who speak hundreds of different languages and language varieties at home, despite English continuing as the primary medium of instruction in science classrooms. Responding to these policy and demographic shifts, we have designed an innovation to prepare teachers and teacher candidates to design instruction that promotes students’ disciplinary language development during rigorous and meaningful science instruction. We add a language lens to the widely used Understanding by Design® framework, emphasizing inclusion and integration with what teachers already do to design science curriculum and instruction, rather than an add-on initiative that silos language development apart from content learning. This language lens merges the principles of culturally and linguistically responsive practice with the three stages of backward instructional design to support educators in designing effective and engaging science instruction that promotes language development and is accessible to the growing number of students from linguistically diverse backgrounds.

Learning About Science Practices: Concurrent Reflection on Classroom Investigations and Scientific Works

by Mo A. Basir, University of Central Missouri

The NRC (2012) emphasizes eight science practices as a constitutive part of science teaching and learning. Pre-service teachers should be able to perform those practices at least in an introductory-level science investigation. Additionally, they also need to be able to elicit and interpret those science practices in the work of students. Through the integration of doing science and reading about how scientists do science, this article provides a practical teaching approach encouraging critical thinking about science practices. The instructional approach emphasizes on performing science practices, explicitly thinking about how students and scientists do science, and reflecting on similarities and differences between how students and scientists perform science practices. The article provides examples and tools for the proposed instructional approach.

Theory to Process to Practice: A Collaborative, Reflective, Practical Strategy Supporting Inservice Teacher Growth

by Martha Inouye, University of Wyoming; & Ana Houseal, University of Wyoming

To successfully implement the Next Generation Science Standards (NGSS), more than 3.4 million in-service educators in the United States will have to understand the instructional shifts needed to adopt these new standards. Here, based on our recent experiences with teachers, we introduce a professional learning (PL) strategy that employs collaborative video analysis to help teachers adjust their instruction to promote the vision and learning objectives of the Standards. Building on effective professional development characteristics, we created and piloted it with teachers who were working on making student thinking visible. In our setting, it has been effective in providing relevant, sustainable changes to in-service teachers' classroom instruction.

Taking Our Own Medicine: Revising a Graduate Level Methods Course on Curriculum Change

by Rudolf V. Kraus, Rhode Island College; & Lesley J. Shapiro, Keene State College

Implementing the Next Generation Science Standards presents challenges for practicing teachers. This article presents our reflection on creating and revising a class designed to teach inservice teachers about curriculum change and the Next Generation Science Standards. In its initial iteration, the course was designed to address the intellectual and practical aspects of this change in standards. Interaction with teachers, as well as gathered course reflections, indicated that addressing the process of curriculum change is both a practical task and an emotional one.

Rigorous Investigations of Relevant Issues: A Professional Development Program for Supporting Teacher Design of Socio-Scientific Issue Units

by Amanda Peel, University of Missouri; Troy D. Sadler, University of Missouri; Patricia Friedrichsen, University of Missouri; Andrew Kinslow, University of Missouri; & Jaimie Foulk, University of Missouri

Socio-scientific issues (SSI) are complex problems with unclear solutions that have ties to science concepts and societal ideas. These complexities make SSI ideal contexts for meaningful science teaching and learning. Although the student benefits of SSI in the classroom have been established, there is a literature gap pertaining to teacher preparation and support for SSI teaching and learning, and the design of SSI units. In order for successful and meaningful SSI incorporation in science classrooms, teachers need professional development (PD) experiences that scaffold their understanding of the complexities associated with SSI teaching and learning. As such, our team designed and implemented a PD program with explicit examples and design tools to support teachers as they engaged in learning about SSI teaching and learning. Additionally, our PD program supported teachers as they designed their own SSI units for classroom implementation. We describe our PD process for supporting in-service secondary biology, chemistry, and environmental science teachers as they learned about SSI instruction and co-designed their SSI units.

Before our work with this group of teachers began, our research team designed and implemented SSI units, and these results informed development of the SSI-TL framework. The SSI-TL framework has been helpful as we continue to design and structure new SSI units, so we made it a central aspect of the PD to guide what SSI teaching should entail. This framework and other tools were used to support teachers as they designed their own SSI units. The PD was successful in that all groups designed SSI units, and many were able to implement in their classes. The teachers indicated the PD was effective from their perspective and they learned about issues and practices. Specific feedback around scaffolding tools we provided indicated the tools helped teachers navigate the design process.

A Blended Professional Development Model for Teachers to Learn, Implement, and Reflect on NGSS Practices

by Emily A. Dare, Michigan Technological University; Joshua A. Ellis, Michigan Technological University; & Jennie L. Tyrrell, Michigan Technological University

In this paper we describe a professional development project with secondary physics and physical science teachers. This professional development supported fifteen teachers in learning the newly adopted Next Generation Science Standards (NGSS) through integrating physical science content with engineering and engineering practices. Our professional development utilized best practices in both face-to-face and virtual meetings to engage teachers in learning, implementing, and reflecting on their practice through discussion, video sharing, and micro-teaching. This paper provides details of our approach, along with insights from the teacher participants. We also suggest improvements for future practice in professional development experiences similar to this one. This article may be of use to anyone in NGSS or NGSS-like states working with either pre- or in-service science teachers.

An Innovative Integrated STEM Program for PreK-6 Teachers

by Pamela S. Lottero-Perdue, Towson University; Sarah Haines, Towson University; Honi J. Bamberger, Towson University; & Rommel J. Miranda, Towson University

In this article, we describe an innovative, 6-course, 18-credit post-baccalaureate certificate (PBC) program for pre-kindergarten through grade six teachers (PreK-6) in Integrated Science, Technology, Engineering and Mathematics (iSTEM) Instructional Leadership. Here, the acronym, “iSTEM,” refers to education that not only addresses each of the S, T, E and M subjects, but also emphasizes the connections among them. We collaboratively contributed to the development of the program, and teach courses within it. The program graduated its pilot cohort of teachers in 2015, is running its second cohort, and is recruiting for a third. The article summarizes the program’s origins and integration approach and key aspects of program design. Those key aspects include: make-up of the program team; a deliberate course sequence; decrease in structure (and increase in more open-ended, student-centered learning approaches) over time in the program; and movement in the program from growth as an iSTEM teacher towards growth as iSTEM teacher leader. Each of the courses is described in greater detail, followed by a discussion of program assessment and evaluation. The article concludes with our reflections about the program’s challenges and successes thus far.

Supporting Science Teachers In Creating Lessons With Explicit Conceptual Storylines

by Dante Cisterna, University of Nebraska-Lincoln; Kelsey Lipsitz, University of Missouri; Deborah Hanuscin, Western Washington University; Zandra de Araujo, University of Missouri; & Delinda van Garderen, University of Missouri

We describe a four-step strategy used in our professional development program to help elementary science teachers recognize and create lesson plans with coherent conceptual storylines. The conceptual storyline of a lesson refers to sequencing its scientific concepts and activities to help students develop a main scientific idea and, often, is an implicit component of a lesson plan. The four steps of this learning strategy are, 1) Building awareness of conceptual storylines; (2) Analyze the coherence of the conceptual storyline of existing lessons; (3) Creating an explicit conceptual storyline as part of the planning process; and (4) Promote conceptual coherence throughout the storyline. We provide examples of how these steps were developed in our professional development program as well as evidence of teachers’ learning. We also discuss practical implications for using conceptual storylines in professional development for science teachers.

Designing and using multimedia modules for teacher educators: Supporting teacher learning of scientific argumentation

by Lisa Marco-Bujosa, Boston College; Maria Gonzalez-Howard, University of Texas, Austin; Katherine McNeill, Boston College; & Suzanna Loper, Lawrence Hall of Science, University of California-Berkeley

In this article, we describe the design and use of multimedia modules to support teacher learning of the practice of scientific argumentation. We developed four multimedia modules, available online for use in professional development or preservice classes, incorporating research-based features designed to support teacher learning of argumentation. Specifically, the features underlying the design of the modules include: (1) providing images of practice, (2) problematizing instruction, (3) offering the student perspective, and 4) encouraging teacher reflection. Each module supports teacher educators in engaging teachers in learning about argumentation through activities utilizing these features. We describe the rationale for designing multimedia teacher learning modules that incorporate these features. We also describe how these features are incorporated into learning activities by focusing on one session from one module. We then illustrate the utility of these modules by providing one example of how these resources can assist teacher educators to support particular district goals around argumentation by adapting and modifying the modules. This article features the ways these online modules are an innovative support for teacher learning, by providing multimedia resources and the opportunity for increased user flexibility. Finally, we discuss some preliminary findings around teachers’ use of the features in these learning modules.