Collaborating with Virtual Visiting Scientists to Address Students’ Perceptions of Scientists and their Work

by Brandon T. Grossman, University of Colorado Boulder; & Donna Farland-Smith, Ohio State University
Abstract

The idea that middle school students hold stereotypic representations or impressions of scientists is not new to the field of science education (Barman, 1997; Finson, 2002; Fort & Varney, 1989; Steinke et al., 2007). These representations may match the way scientists are often portrayed in the media in terms of their race (i.e., white), gender (i.e., male), the way they dress (i.e., lab coat, glasses, wild hair), their demeanor (i.e., nerdy, eccentric, anti-social), and where they work (i.e., in a laboratory by themselves). Bringing scientists into classrooms to collaborate with students and teachers has been shown to positively influence students’ perceptions of scientists and their work (Bodzin & Gerhinger, 2001; Flick, 1990). However, the planning and collaboration involved in this in-person work can be challenging, complex, and time consuming for both teachers and visiting scientists. Advances in classroom technologies have opened up new opportunities for disrupting problematic representations and supporting students in developing more expansive perceptions of science and scientists. This paper explores the collaboration between a middle school science teacher, five visiting scientists, and a science teacher educator around the development and implementation of a week long virtual visiting scientist program for middle school students. The impact the program had on the teacher’s ongoing practice and on students’ self-reported perceptions of science and scientists is also examined.

Connecting Preservice Teachers and Scientists Through Notebooks

by Ingrid Carter, Metropolitan State University of Denver; & Sarah Schliemann, Metropolitan State University
Abstract

The use of science notebooks in an elementary methods course can encourage preservice teachers’ engagement in collaborative work and participation in science through writing (Morrison, 2008). In this paper we describe how we, a teacher educator and a scientist, collaborated to focus on how scientists use notebooks in their work, and how this compares and contrasts to how notebooks can be used in both a preservice elementary methods course and in the elementary classroom. We describe our facilitation of notebooks with preservice teachers and how we emphasize professional scientists’ use of notebooks. Additionally, we offer recommendations based on our experiences in our collaboration and facilitation of notebook use with preservice teachers. Our intention is to provide recommendations that can be applied in a variety of university contexts, such as emphasizing the Science and Engineering Practices and the Nature of Science, including discussion about the work of professional engineers, and making connections to literacy.

A Framework for Science Exploration: Examining Successes and Challenges for Preservice Teachers

by Keri-Anne Croce, Towson University
Abstract

Undergraduate preservice teachers examined the Science Texts Analysis Model during a university course. The Science Texts Analysis Model is designed to support teachers as they help students prepare to engage with the arguments in science texts. The preservice teachers received instruction during class time on campus before employing the model when teaching science to elementary and middle school students in Baltimore city. This article describes how the preservice teachers applied their knowledge of the Science Texts Analysis Model within this real world context. Preservice teachers’ reactions to the methodology are examined in order to provide recommendations for future college courses.

Adapting a Model of Preservice Teacher Professional Development for Use in Other Contexts: Lessons Learned and Recommendations

by Meredith Park Rogers, Indiana University - Bloomington; Ingrid Carter, Metropolitan State University of Denver; Julie Amador, University of Idaho; Enrique Galindo, Indiana University - Bloomington; & Valarie Akerson, Indiana University - Bloomington
Abstract

We discuss how an innovative field experience model initially developed at Indiana University - Bloomington (IUB) is adapted for use at two other institutions. The teacher preparation programs at the two adapting universities not only differ from IUB, but also from each other with respect to course structure and student population. We begin with describing the original model, referred to as Iterative Model Building (IMB), and how it is designed to incorporate on a variety of research-based teacher education methods (e.g., teaching experiment interviews and Lesson Study) for the purpose of supporting preservice teachers with constructing models of children’s thinking, using this information to inform lesson planning, and then participating in a modified form of lesson study for the purpose of reflecting on changes to the lesson taught and future lessons that will be taught in the field experience. The goal of these combined innovations is to initiate the development of preservice teachers’ knowledge and skill for focusing on children’s scientific and mathematical thinking. We then share how we utilize formative assessment interviews and model building with graduate level in-service teachers at one institution and how the component of lesson study is adapted for use with undergraduate preservice teachers at another institution. Finally, we provide recommendations for adapting the IMB approach further at other institutions.

Introducing ‘Making’ to Elementary and Secondary Preservice Science Teachers Across Two University Settings

by Shelly R. Rodriguez, The University of Texas, Austin; Steven S. Fletcher, St. Edwards University; & Jason R. Harron, The University of Texas, Austin
Abstract

‘Making’ describes a process of iterative fabrication that draws on a DIY mindset, is collaborative, and allows for student expression through the creation of meaningful products. While making and its associated practices have made their way into many K-12 settings, teacher preparation programs are still working to integrate making and maker activities into their courses. This paper describes an end-of-semester maker project designed to introduce preservice science teachers to making as an educational movement. The project was implemented in two different higher education contexts, a public university secondary STEM introduction to teaching course and a private university elementary science methods course. The purpose of this article is to share this work by articulating the fundamental elements of the project, describing how it was enacted in each of the two settings, reviewing insights gained, and discussing possibilities for future iterations. The project’s instructional strategies, materials, and insights will be useful for those interested in bringing making into science teacher preparation.

Keywords: constructionism; making; preservice; project-based; science education

Lessons Learned from Going Global: Infusing Classroom-based Global Collaboration (CBGC) into STEM Preservice Teacher Preparation

by M. Kate York, The University of Texas at Dallas; Rebecca Hite, Texas Tech University; & Katie Donaldson, The University of Texas at Dallas
Abstract

There are many affordances of integrating classroom-based global collaboration (CBGC) experiences into the K-12 STEM classroom, yet few opportunities for STEM preservice teachers (PST) to participate in these strategies during their teacher preparation program (TPP). We describe the experiences of 12 STEM PSTs enrolled in a CBGC-enhanced course in a TPP. PSTs participated in one limited communication CBGC (using mathematics content to make origami for a global audience), two sustained engaged CBGCs (with STEM PSTs and in-service graduate students at universities in Belarus and South Korea), and an individual capstone CBGC-infused project-based learning (PBL) project. Participating STEM PSTs reported positive outcomes for themselves as teachers in their 21st century skills development and increased pedagogical content knowledge. Participants also discussed potential benefits for their students in cultural understanding and open-mindedness. Implementation of each of these CBGCs in the STEM PST course, as well as STEM PST instructors’ reactions and thoughts, are discussed.

Preparing Preservice Early Childhood Teachers to Teach Nature of Science: Writing Children’s Books

by Valarie L. Akerson, Indiana University; Naime Elcan Kaynak, Erciyes University; & Banu Avsar Erumit, Recep Tayyip Erdogan University
Abstract

Preparing preservice early childhood teachers to teach about Nature of Science (NOS) in their science lessons can provide challenges to the methods course instructor. Early childhood science methods course instructors generally agree that early childhood preservice teachers enjoy using children’s literature in their instruction. Preservice teachers can write and design children’s books that can help them to not only refine their own understandings of NOS aspects, but also to consider how to introduce these ideas to young children through their stories. These stories can support the teaching of NOS through hands-on activities in the classroom. The authors tracked a class of early childhood preservice teachers over the course of a semester to determine their ideas about NOS and their depictions of NOS in a storybook they designed for young children. The authors determined whether these NOS ideas were depicted accurately and in a way that could be conceptualized by young children. It was found that nearly all of the preservice teachers were able to portray the NOS aspects accurately through their stories, and that not only did the stories hold promise of introducing these NOS ideas in an engaging manner for early childhood students, but the preservice early childhood teachers also refined their own understandings of NOS through the assignment.

Theory to Process to Practice: A Collaborative, Reflective, Practical Strategy Supporting Inservice Teacher Growth

by Martha Inouye, University of Wyoming; & Ana Houseal, University of Wyoming
Abstract

To successfully implement the Next Generation Science Standards (NGSS), more than 3.4 million in-service educators in the United States will have to understand the instructional shifts needed to adopt these new standards. Here, based on our recent experiences with teachers, we introduce a professional learning (PL) strategy that employs collaborative video analysis to help teachers adjust their instruction to promote the vision and learning objectives of the Standards. Building on effective professional development characteristics, we created and piloted it with teachers who were working on making student thinking visible. In our setting, it has been effective in providing relevant, sustainable changes to in-service teachers' classroom instruction.

A Toolkit to Support Preservice Teacher Dialogue for Planning NGSS Three-Dimensional Lessons

by Michelle L.S. Sinapuelas, California State University, East Bay; Corinne Lardy, California State University, Sacramento; Michele A. Korb, California State University, East Bay; & Rachelle DiStefano, California State University, East Bay
Abstract

The Next Generation Science Standards (NGSS) and the Framework for K-12 Science Education (NRC, 2012) on which they are based, require a shift in preservice science teacher preparation. NGSS aligned instruction calls to engage learners in the use of authentic science and engineering practices (SEPs) and crosscutting concepts (CCCs) to develop understanding of disciplinary core ideas (DCIs) within the context of a scientific phenomenon (Bybee, 2014; NRC, 2015). To ensure beginning teachers are prepared for this shift, university programs are changing teacher preparation to meet this new vision. This happens primarily in science methods courses where specific supports must be in place to prepare preservice teachers and facilitate course reforms (Bybee, 2014; Krajcik, McNeill, & Reiser, 2008). This paper describes the Next Generation Alliance for Science Educators Toolkit (Next Gen ASET) that was designed to support shifting instructional needs within science methods courses to align with the vision of the NGSS. While not meant to replace existing methods course curriculum, this toolkit promotes dialogue explicit to the vision of the NGSS. Two teaching scenarios demonstrate how the Next Gen ASET Toolkit has been implemented in science methods courses, illustrating its flexibility of and how they accommodate the inclusion of various lesson planning and instructional styles.

An Integrated Project-Based Methods Course: Access Points and Challenges for Preservice Science and Mathematics Teachers

by Sam Rhodes, William and Mary; & Meredith W. Kier, William and Mary
Abstract

Two instructors in a secondary preservice teacher preparation program address the need to better prepare future teachers for the increasing role project-based learning has taken on in K-12 education. We describe an integrated instructional planning course where a mathematics educator and a science educator collaborated to teach preservice teachers how to design integrated project-based lessons. We found that the preservice teachers valued the integrated approach but had difficulty translating their learning to practice in traditional, clinical-based field placements. We report on recommendations for future course iterations.