Utilizing Video to Support Planning, Enacting, and Analyzing Teaching in Preservice Science Teacher Education

by Tara Barnhart, Chapman University

The use of video to support preservice teacher development is becoming increasingly common. However, research on teacher noticing indicates that novices need tools to focus their attention on students’ disciplinary ideas. This article describes a course designed for secondary science teachers that incorporates video analysis as a core part of repeated learning cycles. Of particular interest is how well the video-analysis tasks and tools support PSTs in learning to plan, enact, analyze, and reflect on instruction. A qualitative analysis of PSTs’ video annotations, lesson-analysis guides, and written reflections reveals that PSTs in the course developed a disposition towards responsive instruction and leveraged evidence of student thinking in their analyses of the effectiveness of their instruction. Lesson-analysis guides appear to be the tool PSTs relied on the most to inform their written reflections. Further investigation on how best to structure video analysis will help further refine the use of video in teacher education.

A Professional Development That Helps Teachers Integrate Computational Thinking Into Their Science Classrooms Through Codesign

by Sally P. W. Wu, Washington University in St. Louis; Amanda Peel, Northwestern University; Lexie Zhao, Northwestern University; Michael Horn, Northwestern University; & Uri Wilensky, Northwestern University

Computational thinking (CT) is a key practice in the Next Generation Science Standards (NGSS Lead States, 2013) that high school inservice teachers struggle to teach alongside disciplinary content in their classrooms. They often require training on how computing intersects with traditional science content and how to use computational tools that foster CT and scientific practices. To this end, we developed a professional development (PD) program that positioned inservice teachers as (a) learners who engage in such practices and (b) codesigners of CT-integrated science curricula. In this paper, we describe the 4-week PD program as it was implemented in two settings: in person with seven teachers and online with 11 teachers. We share detailed descriptions of how we leveraged physical and digital spaces in PD activities and provide access to our resources so that other educators can adapt our PD program to help teachers integrate CT into their science classrooms. In both settings, teachers engaged in CT-integrated science activities designed for students to learn about CT in the context of disciplinary content. Furthermore, they worked with a team to develop curricular units that use computational tools to teach a specific topic in their classroom. In this process, teachers gained insights on CT, disciplinary content, and curriculum codesign through engaging in workshops and cocreating curricular materials with researchers and fellow teachers.

Virtual Tools and Protocols to Support Collaborative Reflection During Lesson Study

by Randall E. Groth, Salisbury University; Jennifer A. Bergner, Salisbury University; Starlin D. Weaver, Salisbury University; & D. Jake Follmer, West Virginia University

Lesson study provides opportunities for teachers to collaboratively design, implement, and analyze instruction. Research illustrates its efficacy as a site for teacher learning. The setting for this article is a lesson study project involving preservice teachers, inservice teachers, and university faculty members. We supported collaborative reflection on practice among these individuals by using asynchronous and synchronous online tools and meeting protocols. Asynchronous online lesson-video review and tagging helped participants prepare to debrief about lessons they had implemented. Midway through one of our lesson study cycles, the COVID-19 pandemic occurred, eliminating opportunities to meet face-to-face for lesson debriefing sessions. In response, we developed and field-tested two protocols for online synchronous lesson study debriefing meetings. The protocols prompted conversations related to pedagogy, content, and content-specific pedagogy. After the debriefing sessions, lesson study group members reported improvements in their knowledge growth, self-efficacy, and expectations for student learning. We describe our use of online virtual tools and protocols to contribute to the literature on ways to support collaborative reflection on practice.

Supporting Inservice Teachers’ Skills for Implementing Phenomenon-Based Science Using Instructional Routines That Prioritize Student Sense-making

by Amy E. Trauth, University of Delaware; & Kimberly Mulvena, Colonial School District

Widespread implementation of phenomenon-based science instruction aligned with the Next Generation Science Standards (NGSS) remains low. One reason for the disparity between teachers’ instructional practice and NGSS adoption is the lack of comprehensive, high-quality curriculum materials that are educative for teachers. To counter this, we configured a set of instructional routines that prioritize student sensemaking and then modeled these routines with grades 6–12 inservice science teachers during a 3-hour professional learning workshop that included reflection and planning time for teachers. These instructional routines included: (1) engaging students in asking questions and making observations of a phenomenon, (2) using a driving question board to document students’ questions and key concepts learned from the lesson, (3) prompting students to develop initial models of the phenomenon to elicit their background knowledge, (4) coherent sequencing of student-led investigations related to the phenomenon, (5) using a summary table as a tool for students to track their learning over time, and (6) constructing a class consensus model and scientific explanation of the phenomenon. This workshop was part of a larger professional learning partnership aimed at improving secondary science teachers’ knowledge and skills for planning and implementing phenomenon-based science. We found that sequencing these instructional routines as a scalable model of instruction was helpful for teachers because it could be replicated by any secondary science teacher during lesson planning. Teachers were able to work collaboratively with their grade- or course-level colleagues to develop lessons that incorporated these instructional routines and made phenomenon-based science learning more central in classrooms.

Eliciting and Refining Conceptions of STEM Education: A Series of Activities for Professional Development

by Emily A. Dare, Florida International University; & Elizabeth A. Ring-Whalen, St. Catherine University

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education. These activities not only engage teachers in conversations with peers and colleagues in a professional development setting but also enable teachers to reflect on their learning related to STEM education in the context of creating lesson plans and considering future teaching. In addition to describing these activities, we share suggestions related to how these activities may be used in venues outside of professional development.

Reflection in Action: Environmental Education Professional Development with Two Cohorts

by Lauren Madden, The College of New Jersey; Louise Ammentorp, The College of New Jersey; Eileen Heddy, The College of New Jersey; Nicole Stanton, The College of New Jersey; & Suzanne McCotter, The College of New Jersey

This article shares lessons learned from a 2-year environmental education professional development initiative with two cohorts. Each cohort consisted of school-based teams of elementary teachers. The professional development included a series of five workshops aimed at integrating environmental education across the curriculum, and each teacher team developed and implemented a school-based project to put these ideas into practice. The project team modified their approach between Cohorts 1 and 2 based on strengths and shortcomings of the first experience. Key takeaways to inform future professional development efforts include ensuring the timeframe of the project allows teachers to build momentum in their work, recruiting teams of teachers with diverse classroom experiences, and including presenters who can offer tangible and actionable ideas to use in the classroom.

Supporting Middle and Secondary Science Teachers to Implement Sustainability-Themed Instruction

by Sheron L. Mark, PhD, University of Louisville, College of Education and Human Development, 1905 S 1st Street, Louisville, KY 40292

In today’s society, we face many complex environmental, social, and economic challenges that can be addressed through a lens of sustainability. Furthermore, our efforts in addressing these challenges must be collective. Science education is foundational to preparing students with the knowledge, skills, and dispositions to engage in this work in professional and everyday capacities. This article describes a teacher education project aimed at preparing middle and secondary preservice and alternatively certified science teachers to teach through a lens of sustainability. The project was embedded within a middle and secondary science teaching methods course. Work produced by the teacher candidates, including case-study research presentations and week-long instructional plans, is described.

Using Critical Case Studies to Cultivate Inservice Teachers’ Critical Science Consciousness

by Lenora M. Crabtree, University of North Carolina Charlotte; & Michelle Stephan, University of North Carolina Charlotte

Culturally relevant and responsive science instruction includes support of students’ socio-political, or critical, consciousness. A lack of experience with marginalization, and limited attention to critical perspectives in science content and methods courses, however, may leave educators ill-equipped to address intersections of diversity, equity, and science instruction. Curriculum is needed that supports critical consciousness development among science teachers and their students. We describe an innovation, a critical inquiry case study, designed to address this essential facet of culturally relevant pedagogy. Design research methodology guided our development of an interrupted, historical case study employed as part of a four-day professional development workshop for secondary science teachers. In addition to provoking critical awareness and agency, the case study was designed to highlight ways that science itself may create or perpetuate inequities, or serve as a tool for liberation, a content-specific construct we call critical science consciousness. Implementation of the critical case study and participating teachers’ interactions with case materials are described. In addition, we highlight learning goals developed to support critical science consciousness and provide insights into ways teachers exhibited growth in each area. Teachers report heightened understanding of the role science plays in perpetuating inequities, transformations in ways they think about systemic inequities that impact students and families, and growing awareness of the possibilities inherent in teaching science for liberation.

Critical Response Protocol: Supporting Preservice Science Teachers in Facilitating Inclusive Whole-Class Discussions

by Charlene L. Ellingson, Minnesota State University, Mankato; Dr. Jeanna Wieselmann, Caruth Institute for Engineering Education; & Dr. Felicia Dawn Leammukda, Minnesota State University, St. Cloud

Despite a large body of research on effective discussion in science classrooms, teachers continue to struggle to engage all students in such discussions. Whole-class discussions are particularly challenging to facilitate effectively and, therefore, often have a teacher-centered participation pattern. This article describes the Critical Response Protocol (CRP), a tool that disrupts teacher-centered discussion patterns in favor of a more student-centered structure that honors students’ science ideas. CRP originated in the arts community as a method for giving and receiving feedback to deepen critical dialog between artists and their audiences. In science classrooms, CRP can be used to elicit student ideas about scientific phenomena and invite wide participation while reducing the focus on “correct” responses. In this article, we describe our use of CRP with preservice science teachers. We first modeled the CRP process as it would be used with high school students in science classrooms, then discussed pedagogical considerations for implementing CRP within the preservice teachers’ classrooms. We conclude this article with a discussion of our insights about the opportunities and challenges of using CRP in science teacher education to support preservice teachers in leading effective whole-class discussion and attending to inclusive participation structures.