Using Critical Case Studies to Cultivate Inservice Teachers’ Critical Science Consciousness

Citation
Print Friendly, PDF & Email

Crabtree, L.M., & Stephan, M. (2021). Using critical case studies to cultivate inservice teachers’ critical science consciousness. Innovations in Science Teacher Education, 6(1). Retrieved from https://innovations.theaste.org/using-critical-case-studies-to-cultivate-inservice-teachers-critical-science-consciousness/

by Lenora M. Crabtree, University of North Carolina Charlotte; & Michelle Stephan, University of North Carolina Charlotte

Abstract

Culturally relevant and responsive science instruction includes support of students’ socio-political, or critical, consciousness. A lack of experience with marginalization, and limited attention to critical perspectives in science content and methods courses, however, may leave educators ill-equipped to address intersections of diversity, equity, and science instruction. Curriculum is needed that supports critical consciousness development among science teachers and their students. We describe an innovation, a critical inquiry case study, designed to address this essential facet of culturally relevant pedagogy. Design research methodology guided our development of an interrupted, historical case study employed as part of a four-day professional development workshop for secondary science teachers. In addition to provoking critical awareness and agency, the case study was designed to highlight ways that science itself may create or perpetuate inequities, or serve as a tool for liberation, a content-specific construct we call critical science consciousness. Implementation of the critical case study and participating teachers’ interactions with case materials are described. In addition, we highlight learning goals developed to support critical science consciousness and provide insights into ways teachers exhibited growth in each area. Teachers report heightened understanding of the role science plays in perpetuating inequities, transformations in ways they think about systemic inequities that impact students and families, and growing awareness of the possibilities inherent in teaching science for liberation.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Allchin, D. (2000). How not to teach historical cases in science. Journal of College Science Teaching30(1), 33.

Atwater, M. M., Freeman, T. B., Butler, M. B., & Draper-Morris, J. (2010). A case study of science teacher candidates’ understandings and actions related to the culturally responsive teaching of science. International Journal of Environmental and Science Education, 5, 287-318.

Bollett, A. (1992). Politics and pellagra: The epidemic of pellagra in the U.S. in the early twentieth century. The Yale Journal of Biology and Medicine, 65, 211-221.

Brown, B. A., Boda, P., Lemmi, C., & Monroe, X. (2019). Moving culturally relevant pedagogy from theory to practice: Exploring teachers’ application of culturally relevant education in science and mathematics. Urban Education, 54, 775-803.

Campbell, A., Skvirsky, R., Wortis, H., Thomas, S., Kawachi, I., & Hohmann, C. (2014). NEST 2014: Views from the trainees – Talking about what matters in efforts to diversify the STEM workforce. CBE-Life Sciences Education, 13, 587-592.

Chacko, E. (2005). Understanding the geography of pellagra in the United States: The role of social and place-based identities. Gender, Place & Culture12, 197-212.

Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.

Crenshaw, K. W. (1990). Mapping the margins: Intersectionality, identity politics, and violence against women of color. Stanford Law Review, 43, 1241.

DeCoito, I., & Fazio, X. (2017). Developing case studies in teacher education: Spotlighting socio-scientific issues. Innovations in Science Teacher Education, 2(1). Retrieved from https://innovations.theaste.org/developing-case-studies-in-teacher-education-spotlighting-socioscientific-issues/

Erduran, S., & Dagher, Z. R. (2014). Reconceptualizing the nature of science for science education. Dordrecht, The Netherlands: Springer.

Etheridge, E. (1972). The butterfly caste: A social history of pellagra in the South. Westport, CT: Greenwood Publishing.

Friere, P. (2000). Pedagogy of the oppressed. New York, NY: Bloomsbury Academic.

Garibay, J. (2015). STEM students’ social agency and views on working for social change: Are STEM disciplines developing socially and civically responsible students? Journal of Research in Science Teaching, 52, 610-632.

Giroux, H. (2011). On critical pedagogy. New York, NY: Bloomsbury.

Goldberger, J. (1916). The transmissibility of pellagra: Experimental attempts at transmission to the human subjects. Public Health Reports, 31, 3159-3173.

Goldberger, J., Waring, C. H., & Willets, D. G. (1915). The prevention of pellagra: A test of diet among institutional inmates. Public Health Reports (1896-1970), 3117-3131.

Goldberger, J., & Wheeler, G. A. (1920). The experimental production of pellagra in human subjects by means of diet. In J. Goldberger (Ed.), Goldberger on pellagra. (pp. 54-94). Baton Rouge, LA: Louisiana State University Press.

Goldberger, J., Wheeler, G., & Sydenstricker, E. (1920). A study of the relation of diet to pellagra incidence in seven textile-mill communities of South Carolina in 1916. Public Health Reports, 35, 648-713.

Goldberger, J., Wheeler, G., & Sydenstricker, E. (1920). A study of the relation of family income and other economic factors to pellagra incidence in seven cotton-mill villages of South Carolina in 1916. Public Health Reports, 35, 2673-2714.

Gruenewald, D. A. (2003). The best of both worlds: A critical pedagogy of place. Educational researcher32(4), 3-12.

Herreid, C., Schiller, N., & Herreid, K. (2012). Science stories: Using case studies to teach critical thinking. Arlington, VA: NSTA Press.

Horton, K. (2015). Martyr of Loray Mill: Ella May and the 1929 textile workers strike in Gastonia, North Carolina. Jefferson, NC: McFarland and Company, Inc.

Johnson, C. C. (2011). The road to culturally relevant science: Exploring how teachers navigate change in pedagogy. Journal of Research in Science Teaching48, 170-198.

Ladson-Billings, G. (1995). Toward a theory of culturally relevant pedagogy. American Educational Research Journal, 32, 465-491.

Ladson-Billings, G. (2000). Put up or shut up: The challenge of moving from critical theory to critical pedagogy (A formative assessment). In D. Hursh & E. W. Ross (Eds.), Democratic social education: Social studies for social change. (pp. 149-164). New York, NY: Routledge.

Ladson-Billings, G. (2011). Yes, but how do we do it? Practicing culturally relevant pedagogy. In J. Landsman & C. Lewis (Eds.), White teachers/diverse classrooms: Creating inclusive schools, building on students’ diversity and providing true educational equity. (pp. 33-46). Sterling, VA: Stylus.

Ladson-Billings, G. & Tate IV, W. (1995). Toward a critical race theory of education. Teacher’s College Record97(1), 47-68.

Marks, H. (2003). Epidemiologists explain pellagra: gender, race, and political economy in the work of Edgar Sydenstricker. Journal of the History of Medicine and Allied Sciences, 58(1), 34-55.

Madkins, T., & de Royston, M. (2019). Illuminating political clarity in culturally relevant science instruction. Science Education, 103, 1319-1346.

NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.

Rajakumar, K. (2000). Pellagra in the United States: a historical perspective. Southern Medical Journal, 93, 272-277.

Shulman, L. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14.

Simon, M. (2000). Research on mathematics teacher development: The teacher development experiment. In A. E. Kelly & A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 335-359). Hillsdale, NJ: Lawrence Erlbaum Associates Publishers.

Stephan, M., & Cobb, P. (2013). Teachers engaging in mathematics design research. In T. Plomp, & N. Nieveen (Eds.), Educational design research – Part B: Illustrative cases (pp. 277-298). Enschede, the Netherlands: SLO.

Suriel, R. L., & Atwater, M. M. (2012). From the contribution to the action approach: White teachers’ experiences influencing the development of multicultural science curricula. Journal of Research in Science Teaching, 49, 1271-1295.

Thoman, D.B., Brown, E.R., Mason, A.Z., Harmsen, A.G., & Smith, J.L. (2015). The role of altruistic values in motivating underrepresented minority students for biomedicine. BioScience, 65, 183-188.

Underwood, J. B., & Mensah, F. M. (2018). An investigation of science teacher educators’ perceptions of culturally relevant pedagogy. Journal of Science Teacher Education29, 46-64.

 

Critical Response Protocol: Supporting Preservice Science Teachers in Facilitating Inclusive Whole-Class Discussions

Citation
Print Friendly, PDF & Email

Ellingson, C.L., Wieselmann, J.R., & Leammukda, F.D. (2021). Critical response protocol: Supporting preservice science teachers in facilitating inclusive whole-class discussions. Innovations in Science Teacher Education, 6(1). Retrieved from https://innovations.theaste.org/critical-response-protocol-supporting-preservice-science-teachers-in-facilitating-inclusive-whole-class-discussions/

by Charlene L. Ellingson, Minnesota State University, Mankato; Dr. Jeanna Wieselmann, Caruth Institute for Engineering Education; & Dr. Felicia Dawn Leammukda, Minnesota State University, St. Cloud

Abstract

Despite a large body of research on effective discussion in science classrooms, teachers continue to struggle to engage all students in such discussions. Whole-class discussions are particularly challenging to facilitate effectively and, therefore, often have a teacher-centered participation pattern. This article describes the Critical Response Protocol (CRP), a tool that disrupts teacher-centered discussion patterns in favor of a more student-centered structure that honors students’ science ideas. CRP originated in the arts community as a method for giving and receiving feedback to deepen critical dialog between artists and their audiences. In science classrooms, CRP can be used to elicit student ideas about scientific phenomena and invite wide participation while reducing the focus on “correct” responses. In this article, we describe our use of CRP with preservice science teachers. We first modeled the CRP process as it would be used with high school students in science classrooms, then discussed pedagogical considerations for implementing CRP within the preservice teachers’ classrooms. We conclude this article with a discussion of our insights about the opportunities and challenges of using CRP in science teacher education to support preservice teachers in leading effective whole-class discussion and attending to inclusive participation structures.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Barton, C. (2018). On formative assessment in math: How diagnostic questions can help. American Educator, 42(2), 33-39.

Beghetto, R. A. (2009). Correlates of intellectual risk taking in elementary school science. Journal of Research in Science Teaching, 46, 210-223. https://doi.org/10.1002/tea.20270

Cohen, E. G. (1990). Teaching in multiculturally heterogeneous classrooms: Findings from a model program. McGill Journal of Education, 26, 7-23.

Cohen, E. G., & Lotan, R. A. (1995). Producing equal-status interaction in the heterogeneous classroom. American Educational Research Journal, 32, 99-120. https://doi.org/10.3102%2F00028312032001099

Ellingson, C., Roehrig, G., Bakkum, K., & Dubinsky, J. M. (2016). Critical response protocol: A classroom tool for facilitating equitable critical discourse in science classrooms. The Science Teacher, 83(4), 51-54.

Evagorou, M., Erduran, S., & Mäntylä, T. (2015). The role of visual representations in scientific practices: from conceptual understanding and knowledge generation to ‘seeing’ how science works. International Journal of STEM Education, 2(11). doi:10.1186/s40594-015-0024-x

Gibson, J. D., Khanal, B. P., & Zubarev, E. R. (2007). Paclitaxel-functionalized gold nanoparticles. Journal of the American Chemical Society, 129, 11653–11661. https://doi.org/10.1021/ja075181k

Haverly, C., Barton, A. C., Schwarz, C. V., & Braaten, M. (2020). “Making space”: How novice teachers create opportunities for equitable sense-making in elementary science. Journal of Teacher Education, 71, 63–79. DOI://1d0o.i.1o1rg7/71/00.10127274/0807212148781010878006706

Hennessy, S. (2014). Bridging between research and practice: Supporting professional development through collaborative studies of classroom teaching with technology. Rotterdam, The Netherlands: Sense Publishers.

Lerman, L., & Borstel, J. (2003). Liz Lerman’s critical response process: A method for getting useful feedback on anything you make, from dance to dessert. Dance Exchange, Inc.

Lewis, B. P., & Linder, D. E. (1997). Thinking about choking? Attentional processes and paradoxical performance. Personality & Social Psychology Bulletin, 23, 937 – 944. https://doi.org/10.1177%2F0146167297239003

Mallow, J. V. (1978). A science anxiety program. American Journal of Physics, 46, 862. https://doi.org/10.1119/1.11409

Mallow, J. V. (2006). Science anxiety: Research and action. In J. J. Mintzes & W. H. Leonard (Eds.), Handbook of college science teaching (pp. 325-349). Arlington, VA: NSTA Press.

Mehan, H. (1979). Learning lessons: Social organization in the classroom. Cambridge: MA, Harvard University Press.

Meyer, D. K., & Smithenry, D. (2014). Scaffolding collective engagement. Teachers College Record, 116, 124.

Michaels, S., & O’Connor, C. (2012). Talk Science Primer. TERC, An Education Research and Development Organization, Cambridge: MA.

Mortimer, E. F., & Scott, P. H. (2003). Meaning making in secondary science classrooms. Berkshire, England: McGraw-Hill Education.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: National Academies Press.

Petkau, J. W. (2013). Critical response and pedagogic tensions in aesthetic space. Retrieved from ProQuest Dissertations & Theses Global (1322974486).

Vandenberg, P. (1999). Lessons of inscription: Tutor training and the “professional conversation.” Writing Center Journal, 19(2), 59-83.

WIDA Consortium. 2006a. Annual Technical Report No. 1-Volume 1 of 3: Description, Validity, and Student Results (2004-2005). Technical Reports and Technical Advisory Committee (TAC). Available: https://wida.wisc.edu. [December 2018].

The Framework for Analyzing Video in Science Teacher Education and Examples of its Broad Applicability

Citation
Print Friendly, PDF & Email

Arias, A., Criswell, B., Ellis, J.A., Escalada, L., Forsythe, M., Johnson, H., Mahar, D., Palmeri, A., Parker, M., & Riccio, J. (2020). The framework for analyzing video in science teacher education and examples of its broad applicability. Innovations in Science Teacher Education, 5(4). Retrieved from https://innovations.theaste.org/the-framework-for-analyzing-video-in-science-teacher-education-and-examples-of-its-broad-applicability/

by Anna Arias, Kennesaw State University; Brett Criswell, West Chester University; Josh A. Ellis, Florida International University; Lawrence Escalada, University of Northern Iowa; Michelle Forsythe, Texas State University; Heather Johnson, Vanderbilt University; Donna Mahar, SUNY Empire State College; Amy Palmeri, Vanderbilt University; Margaret Parker, Illinois State University; & Jessica Riccio, Columbia University

Abstract

There appears to be consensus that the use of video in science teacher education can support the pedagogical development of science teacher candidates. However, in a comprehensive review, Gaudin and Chaliès (2015) identified critical questions about video use that remain unanswered and need to be explored through research in teacher education. A critical question they ask is, “How can teaching teachers to identify and interpret relevant classroom events on video clips improve their capacity to perform the same activities in the classroom?” (p. 57). This paper shares the efforts of a collaborative of science teacher educators from nine teacher preparation programs working to answer this question. In particular, we provide an overview of a theoretically-constructed video analysis framework and demonstrate how that framework has guided the design of pedagogical tools and video-based learning experiences both within and across a variety of contexts. These contexts include both undergraduate and graduate science teacher preparation programs, as well as elementary and secondary science methods and content courses. Readers will be provided a window into the planning and enactment of video analyses in these different contexts, as well as insights from the assessment and research efforts that are exploring the impact of the integration of video analysis in each context.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Abell, S.K. & Cennamo, K.S. (2003). Videocases in elementary science teacher preparation. In J. Brophy (Ed.), Using Video in Teacher Preparation (pp. 103-130). Bingley, UK: Emerald Group Publishing Limited.

Abell, S. K., & Bryan, L. A. (1997). Reconceptualizing the elementary science methods course using a reflection orientation. Journal of Science Teacher Education, 8, 153-166.

Barnhart, T., & van Es, E. (2015). Studying teacher noticing: Examining the relationship among pre-service science teachers’ ability to attend, analyze and respond to student thinking. Teaching and Teacher Education, 45, 83-93.

Barth-Cohen, L. A., Little, A. J., & Abrahamson, D. (2018). Building reflective practices in a pre-service math and science teacher education course that focuses on qualitative video analysis. Journal of Science Teacher Education, 29, 83-101.

Benedict-Chambers, A. (2016). Using tools to promote novice teacher noticing of science teaching practices in post-rehearsal discussions. Teaching and Teacher Education, 59, 28-44.

Bybee, R. W. (2014). The BSCS 5E instructional model: Personal reflections and contemporary implications. Science and Children, 51(8), 10–13.

Calandra, B., Brantley-Dias, L., Lee, J. K., & Fox, D. L. (2009). Using video editing to cultivate novice teachers’ practice. Journal of research on technology in education, 42(1), 73-94.

Chan, P.Y.K. & Harris, R.C. (2005). Video ethnography and teachers’ cognitive activities. In J. Brophy & S. Pinnegar (Eds.), Learning from research on teaching: Perspective, methodology and representation. Advances in research on teaching, volume 11 (pp. 337-375). Amsterdam: Elsevier JA1.

Feiman-Nemser, S. (2001). From preparation to practice: Designing a continuum to strengthen and sustain teaching. Teachers College Record, 103, 1013-1055.

Gaudin, C., & Chaliès, S. (2015). Video viewing in teacher education and professional development: A literature review. Educational Research Review, 16, 41-67.

Gelfuso, A. (2016). A framework for facilitating video-mediated reflection: Supporting preservice teachers as they create ‘warranted assertabilities’ about literacy teaching and learning. Teaching and Teacher Education, 58, 68-79.

Gibson, S. A., & Ross, P. (2016). Teachers’ professional noticing. Theory Into Practice, 55, 180-188.

Hawkins, S., & Park Rogers, M. (2016). Tools for reflection: Video-based reflection within a preservice community of practice. Journal of Science Teacher Education, 27, 415-437.

Hundley, M., Palmeri, A., Hostetler, A., Johnson, H., Dunleavy, T.K., & Self, E.A. (2018). Developmental trajectories, disciplinary practices, and sites of practice in novice teacher learning: A thing to be learned. In D. Polly, M. Putman, T.M. Petty, & A.J. Good (Eds.), Innovative Practices in Teacher Preparation and Graduate-Level Teacher Education Programs. (pp. 153-180). Hershey, PA: IGI Global.

Jacobs, V. R., Lamb, L. L., & Philipp, R. A. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169-202.

Jay, J. K., & Johnson, K. L. (2002). Capturing complexity: A typology of reflective practice for teacher education. Teaching and Teacher Education, 18(1), 73-85.

Kang, H., & van Es, E. A. (2018). Articulating design principles for productive use of video in preservice education. Journal of Teacher Education, 0022487118778549.

Kearney, M., Pressick-Kilborn, K., & Aubusson, P. (2015). Students’ use of digital video in contemporary science teacher education. In G. Hoban, W. Nielson & A. Shephard (Eds.), Student-generated digital media in science education: Learning, explaining and communicating content, (pp. 136-148).

Knight, S.L., Lloyd, G.M., Arbaugh, F., Gamson, D., McDonald, S., Nolan Jr., J., Whitney, A.E. (2015). Reconceptualizing teacher quality to inform preservice and inservice professional development. Journal of Teacher Education, 66, 105-108.

Luft, J. (2007). Minding the gap: Needed research on beginning/newly qualified science teachers. Journal of Research in Science Teaching44, 532-537.

Luft, J.A., Roehrig, G.H., & Patterson, N.C. (2003). Contrasting landscape: A comparison of the impact of different induction programs on beginning secondary science teachers’ practices, beliefs, and experiences. Journal of Research in Science Teaching, 40, 77-97.

Luft, J.A., & Hewson, P.W. (2014). Research on teacher professional development programs in science. In S.K. Abell & N.G. Lederman (Eds.), Handbook of Research on Science Education (pp. 889- 909). Mahwah, NJ: Lawrence Erlbaum Associates.

Martin, S. N., & Siry, C. (2012). Using video in science teacher education: An analysis of the utilization of video-based media by teacher educators and researchers. In B.J. Fraser, K. Tobin, C.J. McRobbie (Eds.), Second international handbook of science education (pp. 417-433). Dordrecht, the Netherlands: Springer.

Stanford Center for Assessment, Learning, and Equity. (2013). edTPA Field Test: Summary Report. Stanford, CA: Stanford University. Retrieved from http://edtpa.aacte.org/news-area/announcements/edtpa-summary-report-is-now-available.html

Tripp, T. R., & Rich, P. J. (2012). The influence of video analysis on the process of teacher change. Teaching and Teacher Education, 28, 728-739.

van Es, E. A., Tunney, J., Goldsmith, L. T., & Seago, N. (2014). A framework for the facilitation of teachers’ analysis of video. Journal of Teacher Education, 65, 340-356.

van Es, E. A., & Sherin, M. G. (2002). Learning to notice: Scaffolding new teachers’ interpretations of classroom interaction. Journal of Technology and Teacher Education10, 571-596.

A District-University Partnership to Support Teacher Development

Citation
Print Friendly, PDF & Email

Wade-Jaimes, K., Counsell, S., Caldwell, L., & Askew, R. (2020). A district-university partnership to support teacher development. Innovations in Science Teacher Education, 5(4). Retrieved from https://innovations.theaste.org/a-district-university-partnership-to-support-teacher-development/

by Katherine Wade-Jaimes, University of Memphis; Shelly Counsell, University of Memphis; Logan Caldwell, University of Memphis; & Rachel Askew, Vanderbilt University

Abstract

With the shifts in science teaching and learning suggested by the Framework for K-12 Science Education, in-service science teachers are being asked to re-envision their classroom practices, often with little support. This paper describes a unique partnership between a school district and a university College of Education, This partnership began as an effort to support in-service science teachers of all levels in the adoption of new science standards and shifts towards 3-dimensional science teaching. Through this partnership, we have implemented regular "Share-A-Thons," or professional development workshops for in-service science teachers. We present here the Share-A-Thons as a model for science teacher professional development as a partnership between schools, teachers, and university faculty. We discuss the logistics of running the Share-A-Thons, including challenges and next steps, provide teacher feedback, and include suggestions for implementation.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Counsell, S. (2011). GRADES K-6-Becoming Science” Experi-mentors”-Tenets of quality professional development and how they can reinvent early science learning experiences. Science and Children49(2), 52.

Ingersoll, R. E. (2004). Who controls teachers’ work? Power and accountability in America’s schools. Cambridge, MA: Harvard University Press.

Kennedy, M. M. (1999). Form and Substance in Mathematics and Science Professional Development. NISE brief3(2), n2.

Luft, J. A., & Hewson, P. W. (2014). Research on teacher professional development programs in science. Handbook of research on science education2, 889-909.

National Research Council (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academy Press.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.

NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

Opfer, V. D., & Pedder, D. (2011). Conceptualizing teacher professional learning. Review of educational research81, 376-407.

Palmer, D. (2004). Situational interest and the attitudes towards science of primary teacher education students. International Journal of Science Education26, 895-908.

Shapiro, B., & Last, S. (2002). Starting points for transformation resources to craft a philosophy to guide professional development in elementary science. Professional development of science teachers: Local insights with lessons for the global community, 1-20.

Supovitz, J. A., & Turner, H. M. (2000). The effects of professional development on science teaching practices and classroom culture. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching37, 963-980.

Tennessee State Board of Education. (n.d.). Science. Retrieved from https://www.tn.gov/sbe/committees-and-initiatives/standards-review/science.html

Wilson, S. M., & Berne, J. (1999). Chapter 6: Teacher Learning and the Acquisition of Professional Knowledge: An Examination of Research on Contemporary Professlonal Development. Review of research in education24(1), 173-209

 

Collaborating with Virtual Visiting Scientists to Address Students’ Perceptions of Scientists and their Work

Citation
Print Friendly, PDF & Email

Grossman, B.T., & Farland-Smith, D. (2020). Collaborating with virtual visiting scientists to address students’ perceptions of scientists and their work. Innovations in Science Teacher Education, 5(3). Retrieved from https://innovations.theaste.org/collaborating-with-virtual-visiting-scientists-to-address-students-perceptions-of-scientists-and-their-work/

by Brandon T. Grossman, University of Colorado Boulder; & Donna Farland-Smith, Ohio State University

Abstract

The idea that middle school students hold stereotypic representations or impressions of scientists is not new to the field of science education (Barman, 1997; Finson, 2002; Fort & Varney, 1989; Steinke et al., 2007). These representations may match the way scientists are often portrayed in the media in terms of their race (i.e., white), gender (i.e., male), the way they dress (i.e., lab coat, glasses, wild hair), their demeanor (i.e., nerdy, eccentric, anti-social), and where they work (i.e., in a laboratory by themselves). Bringing scientists into classrooms to collaborate with students and teachers has been shown to positively influence students’ perceptions of scientists and their work (Bodzin & Gerhinger, 2001; Flick, 1990). However, the planning and collaboration involved in this in-person work can be challenging, complex, and time consuming for both teachers and visiting scientists. Advances in classroom technologies have opened up new opportunities for disrupting problematic representations and supporting students in developing more expansive perceptions of science and scientists. This paper explores the collaboration between a middle school science teacher, five visiting scientists, and a science teacher educator around the development and implementation of a week long virtual visiting scientist program for middle school students. The impact the program had on the teacher’s ongoing practice and on students’ self-reported perceptions of science and scientists is also examined.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Angell, C., Henriksen, E., Isnes, K., & Isnes, A. (2003). Why learn physics? Others can take care of that! Physics in Norwegian Education: Content-perceptions-choices. Science Education Perspectives, Research & Development Oslo: Akademisk, 165-198.

Barman, C. (1997). Students’ views of scientists and science: Results from a national study. Science and Children, 35(1), 18-23.

Bodzin, A. & Gehringer, M. (2001). Breaking science stereotypes: Can meeting actual scientists change students’ perceptions of scientists? Science & Children, 38, 24-27.

Erb, T. O. (1981). Attitudes of early adolescents toward science, women in science, and science careers. Middle School Research Selected Studies, 6, 108-118.

Farland‐Smith, D. (2009). Exploring middle school girls’ science identities: Examining attitudes and perceptions of scientists when working “side‐by‐side” with scientists. School Science and Mathematics109, 415-427.

Finson, K.D. (2002). A multicultural comparison of draw-a-scientist test drawings of eighth graders. Paper Presented at the Annual Meeting of the International Conference of the Association of Educators of Teachers of Science, Charlotte, NC.

Flick, L. (1990). Scientist in Residence program: Improving children’s images of science and scientists. School Science Mathematics, 90, 205-214.

Fort, D.C. & Varney, H.L. (1989). How students see scientists: Mostly male, mostly white, mostly benevolent. Science & Children, 26 (8), 8-13.

Gettys, L. D., & Cann, A. (1981). Children’s perceptions of occupational sex stereotypes. Sex Roles, 7, 301-308.

Lindahl, B. (2003). Pupils’ responses to school science and technology? A longitudinal study of pathways to upper secondary school. Göteborg Studies in Educational Sciences, 196, 1-18.

Maltese, A. V., & Tai, R. H. (2010). Eyeballs on the fridge: Sources of early interest in science. International Journal of Science Education, 32, 669-685.

Steinke, J., Lapinski, M.K., Crocker, N., Zietsman-Thomas, A., Williams, Y., Evergreen, S.H., & Kuchibhotla, S. (2007). Assessing media influences on middle school-aged children’s perceptions of women in science using the Draw-A-Scientist Test (DAST). Science Communication, 29, 35-64.

 

Introducing Preservice Science Teachers to Computer Science Concepts and Instruction Using Pseudocode

Citation
Print Friendly, PDF & Email

Brauer, K., Kruse, J., & Lauer, D. (2020). Introducing preservice science teachers to computer science concepts and instruction using pseudocode. Innovations in Science Teacher Education, 5(2). Retrieved from https://innovations.theaste.org/introducing-preservice-science-teachers-to-computer-science-concepts-and-instruction-using-pseudocode/

by Kayla Brauer, Drake University; Jerrid Kruse, Drake University; & David Lauer, Drake University

Abstract

Preservice science teachers are often asked to teach STEM content. While coding is one of the more popular aspects of the technology portion of STEM, many preservice science teachers are not prepared to authentically engage students in this content due to their lack of experience with coding. In an effort to remedy this situation, this article outlines an activity we developed to introduce preservice science teachers to computer science concepts such as pseudocode, looping, algorithms, conditional statements, problem decomposition, and debugging. The activity and discussion also support preservice teachers in developing pedagogical acumen for engaging K-12 students with computer science concepts. Examples of preservice science teachers’ work illustrate their engagement and struggles with the ideas and anecdotes provide insight into how the preservice science teachers practiced teaching computer science concepts with 6th grade science students. Explicit connections to the Next Generation Science Standards are made to illustrate how computer science lessons within a STEM course might be used to meet Engineering, Technology, and Application of Science standards within the NGSS.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

American Association for the Advancement of Science. (2000). Project 2061, Science for all Americans.

Ballen, S. (2007, December 26). Whac-a-mole [Video file]. Retrieved from https://www.youtube.com/watch?v=K-jaOfIHGko

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Paper presented at the American Educational Research Association. Canada: British Columbia.

Kafai, Y. B., & Burke, Q. (2013). Computer programming goes back to school. Phi Delta Kappan, 95(1), 61.

Kotsopoulos, D., Floyd, L., Khan, S., Namukasa, I. K., Somanath, S., Weber, J., & Yiu, C. (2017). A pedagogical framework for computational thinking. Digital Experiences in Mathematics Education, 3, 154-171.

Kruse, J., Edgerly, H., Easter, J., & Wilcox, J. (2017). Myths about the nature of technology and engineering. The Science Teacher84(5), 39.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.

Papert, S., & Harel, I. (1991). Constructionism: Ablex publishing corporation.

Roggio, B. (2014, Dec 27). Pseudocode examples. Retrieved from https://www.unf.edu/~broggio/cop2221/2221pseu.htm

Rubinstein, A., & Chor, B. (2014). Computational thinking in life science education. PLoS computational biology, 10(11), e1003897.

Vygotsky, L. S. (1978). Mind in society. Cambridge: Harvard University Press.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127-147.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: pedagogical approaches to embedding 21st century problem solving in K-12 classrooms. TechTrends, 60, 565-568.

A Framework for Science Exploration: Examining Successes and Challenges for Preservice Teachers

Citation
Print Friendly, PDF & Email

Croce, K. (2020). A framework for science exploration: Examining successes and challenges for preservice teachers. Innovations in Science Teacher Education, 5(2). Retrieved from https://innovations.theaste.org/a-framework-for-science-exploration-examining-successes-and-challenges-for-preservice-teachers/

by Keri-Anne Croce, Towson University

Abstract

Undergraduate preservice teachers examined the Science Texts Analysis Model during a university course. The Science Texts Analysis Model is designed to support teachers as they help students prepare to engage with the arguments in science texts. The preservice teachers received instruction during class time on campus before employing the model when teaching science to elementary and middle school students in Baltimore city. This article describes how the preservice teachers applied their knowledge of the Science Texts Analysis Model within this real world context. Preservice teachers’ reactions to the methodology are examined in order to provide recommendations for future college courses.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Arnold, N. (2013). Comment ca marche? Moteurs et voitures. Paris: Gallimard Jeunesse

Croce, K. (2014). Assessment of Burmese refugee students’ meaning making of scientific informational texts. Journal of Early Childhood Literacy, 14, 389-424.

Croce, K. (2015). Latino(a) and Burmese elementary school students reading scientific informational texts: The interrelationship of the language of the texts, students’ talk, and conceptual change theory. Linguistics and Education, 29, 94-106.

Croce, K. (2017). Navigating assessment with linguistically diverse learners. Charlotte: Information Age Publishing

Colman, J. & Goldston, J. (2011). What do you see? Science and Children, 49(1), 42-47.

Colman, J. & McTigue, E. (2013). Methods & Strategies: Unlocking the power of visual communication. Science and Children, 50(5), 73-77.

Cosgrove, B. (2004). Weather. New York: DK Publishing.

Dusling, J. (1998). Bugs! Bugs! Bugs! New York: DK Publishing

Fang, Z. & Coatom, S. (2013). Disciplinary literacy: What you want to know about it. Journal of Adolescent & Adult literacy, 56, 627-632.

Gibbons, G. (1991). From seed to plant. New York: Holiday House.

Green, R. (1986). Caterpillars. New York: Mondo publishing

Halliday, M.A.K. & Hasan, R. (1985). Language, context, and text: Aspects of language in a social semiotic perspective. New York: Oxford University Press

Kress, G. (1999). Genre and the changing contexts for English language arts. Language Arts, 76, 461-469.

Mawyer and Johnson (2017). Read like a scientist. The Science Teacher, 84(10). 43-48.

Miller, D. & Czegan, D. (2016). Integrating the liberal arts and chemistry: A series of general chemistry assignments to develop science literacy. Journal of Chemical Education, 93, 864-869.

National Academies of Sciences, Engineering, and Medicine. (2017). Seeing students learn science: Integrating assessment and instruction in the classroom. Washington, DC: The National Academies Press.

National Research Council. (2012). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas. Committee on a conceptual framework for new K–12. Science education standards. Board on science education, Division of behavioral and social sciences and education. Washington, DC: The National Academies Press.

Next Generation Science Standards (2013). Connections to the Common Core Standards for literacy in science and technical subjects. http://static.nsta.org/ngss/AppendixM-ConnectionsToTheCCSSForLiteracy-6.12.13.pdf

Shanahan, T. & Shanahan, C. (2012). What is disciplinary literacy and why does it matter? Topics in Language Disorders, 32(1), 7-18.

Shore, L. (2010). How to make slime. Mankato: MN, Capstone Press.

Simon, S. (1999).Tornadoes. New York: HarperCollins Publishing.

Simon, S. (2006). Volcanoes. New York: HarperCollins Publishing.

Parsons, A. (1990). Amazing Spiders. Dorling Kindersley: London.

Partnership for 21st Century Learning. (2007). Framework for 21st Century Learning. http://www.p21.org/our-work/p21-framework

Wicks, M. (2016). Science Comics: Coral Reefs: Cities of the Ocean. New York: First Second.

Wiesner, D. (2006). Flotsam. New York: Clarion Books

Introducing ‘Making’ to Elementary and Secondary Preservice Science Teachers Across Two University Settings

Citation
Print Friendly, PDF & Email

Rodriguez, S. R., Fletcher, S. S., & Harron, J. R. (2019). Introducing ‘making’ to elementary and secondary preservice science teachers across two university settings. Innovations in Science Teacher Education, 4(4). Retrieved from https://innovations.theaste.org/introducing-making-to-elementary-and-secondary-preservice-science-teachers-across-two-university-settings/

by Shelly R. Rodriguez, The University of Texas, Austin; Steven S. Fletcher, St. Edwards University; & Jason R. Harron, The University of Texas, Austin

Abstract

‘Making’ describes a process of iterative fabrication that draws on a DIY mindset, is collaborative, and allows for student expression through the creation of meaningful products. While making and its associated practices have made their way into many K-12 settings, teacher preparation programs are still working to integrate making and maker activities into their courses. This paper describes an end-of-semester maker project designed to introduce preservice science teachers to making as an educational movement. The project was implemented in two different higher education contexts, a public university secondary STEM introduction to teaching course and a private university elementary science methods course. The purpose of this article is to share this work by articulating the fundamental elements of the project, describing how it was enacted in each of the two settings, reviewing insights gained, and discussing possibilities for future iterations. The project’s instructional strategies, materials, and insights will be useful for those interested in bringing making into science teacher preparation.

Keywords: constructionism; making; preservice; project-based; science education

Introduction

Over the past decade, there has been a surge of interest in how the field of education can benefit from the tools, processes, and practices of making (e.g., Clapp, Ross, Ryan, & Tishman, 2016; Fields, Kafai, Nakajima, Goode, & Margolis, 2018; Halverson & Sheridan, 2014; Stager & Martinez, 2013). Drawing from a “do it yourself” (DIY) mindset, classroom-based making can be defined as an iterative process of fabrication that allows students to express themselves through the creation of personally meaningful products that are publicly shared (Rodriguez, Harron, & DeGraff, 2018). Like traditional science and engineering practices, making involves the building of models, theories, and systems (NSTA, 2013). However, in contrast to these practices, making explicitly emphasizes the development of personal agency and student empowerment through creative, hands-on learning experiences that are both exciting and motivating (Clapp et al., 2016; Maker Education Initiative, n.d.). A shift towards maker-centered learning provides an opportunity to rethink how we prepare science educators with the aim of bringing more student-driven and personally meaningful experiences to their instructional practice.

Comparable to project-based learning (PBL) and other inquiry-based teaching practices, classroom making involves learning by doing. Maker-centered learning shares many elements found in High Quality Project Based Learning (HQPBL, 2018) which suggests that projects should include intellectual challenge and accomplishment, authenticity, collaboration, project management, the creation of a public product, and reflection. These elements overlap significantly with features of classroom-based making (Rodriguez, Harron, Fletcher, & Spock, 2018). However, maker-centered learning draws specifically on the theoretical underpinnings of constructionism (Papert, 1991), where learners gain knowledge as they actively design and build tangible digital or physical objects. Furthermore, maker-centered learning places emphasis on the originality and personal meaning of creations, the productive use of tools and materials in fabrication, the process of iterative design, and the development of a maker mindset that is growth-oriented and failure positive (Martin, 2015). Thus, in maker-centered learning, the skills of construction and design are acquired alongside the content.

There are several examples of the tools and materials associated with making being used as a way to help students explore the natural world (Bevan, 2017; Peppler, Halverson, & Kafai, 2016). For example, the use of copper tape, LEDs, and coin cell batteries have provided an avenue for science teachers to introduce circuits through the creation of interactive pop-up books and user-friendly paper circuit templates (Qi & Buechley, 2010, 2014). Sewable circuits, which use conductive thread, have been shown to improve student interest in science (Tofel-Grehl et al., 2017) and can be used in conjunction with embedded electronics, such as the Arduino-based Lilypad, to introduce computer science through the creation of e-textiles (Fields et al., 2018). However, not all making is digital. Making also includes traditional work such as welding, sewing, wood working, and other techniques that exist outside of the computational world.

The National Science Foundation (NSF) has acknowledged the potential of making to foster innovation, increase student retention, and broaden participation in science, technology, engineering, and mathematics (STEM) (National Science Foundation, 2017). However, more must be done to prepare future science educators to implement these practices in their classrooms. A national survey found that only half of undergraduate teacher preparation programs in the United States provided an opportunity to learn about maker-education and the associated technologies, and that only 17% had a makerspace available to their preservice teachers (Cohen, 2017). As such, many future educators are not exposed to formal training or professional development related to making. Since science teachers often uptake and implement the inquiry-based practices with which they have personal experience (Windschitl, 2003), a lack of exposure to maker-centered pedagogies may leave future educators unaware of the potential benefits of these innovations for their students.

This paper describes an end-of-semester project designed to introduce students to making as an educational movement. The project was implemented in two different settings. One was an introductory course offered as part of a secondary STEM teacher preparation program at a large public research university. The other was a science methods course designed for preservice elementary teachers offered at a private university. The purpose of this article is to share our work by articulating the fundamental elements of the project, describing the project as enacted in these two settings, reviewing insights gained, and discussing possibilities for future iterations.

The Maker Project

The maker project described in this paper was introduced four years ago in a secondary STEM teacher preparation course for a number of reasons. The first was to expose novice teachers to the practice of using open-ended projects with high levels of personal agency to uncover student ideas. The second was to spark creativity in the preservice teachers and engage them in the act of authentic problem solving. The final reason was to provide an opportunity for preservice teachers to interact with up-to-date educational tools that they may encounter in schools. Two years later, an elementary science methods course housed in a private university adopted this activity for similar reasons, with the additional hope of increasing preservice teacher self-efficacy around science content and tool use – a noted deficiency in the literature (Menon & Sadler, 2016; Rice & Roychoudhury, 2003; Yoon, et al., 2006).

The following section outlines strategies used to implement the project in the two different science teacher preparation settings. The fundamental elements of the project in both settings include: a) an introduction to making; b) a station activity to expose students to new technologies and materials; c) an open-ended construction task; d) extended out of class time to create a personally meaningful artifact; e) the public presentation of work to classmates, instructors, and guests; and f) reflections for the classroom. Table 1 provides description of each setting and an overview of how the project features were enacted.

Table 1 (Click on image to enlarge)
Project Features in Each Context

Context Specific Implementation

Implementation in an introductory secondary STEM teacher preparation course

The introductory secondary STEM teacher preparation course is a 90-minute, one credit hour class in a large R1 university in central Texas. It meets once a week with approximately 25 students in each of five sections. The class is considered a recruitment course and is designed to give STEM majors the chance to try out teaching. In this class, students observe and teach a series of STEM lessons in local elementary schools. Those choosing to continue with the program will go on to teach in middle and high school settings and ultimately earn their teaching certification in a secondary STEM field. In the Fall of 2018, 53% of the students in the course were female and 47% male. 64% were underclassmen, 36% were either juniors, seniors, or post baccalaureate students, and 59% had either applied for or were receiving financial aid. 46% were science majors, 16% were math majors, 11% were computer science and engineering majors, 4% were degree holders, and the remaining students were assigned to other majors or undecided.

In class. The maker project in this course began with a project introduction day occurring approximately three weeks from the end of the semester. To start, students were introduced to the concept of making through a video created by Make: magazine and presented with a prompt, “What is making?”, to think about as they watch the video (Maker Media, 2016). The video describes making as a DIY human endeavor that involves creating things that tell a personal story. After the video screening, students engaged in a Think-Pair-Share activity where they discussed the initial prompt in small groups and shared ideas in a whole class discussion, often describing making as personal, innovative, open-ended, and challenging (See Figure 1).

Figure 1 (Click on image to enlarge). Student ideas about making.

Next, the criteria for the final maker project was provided. The specific prompt for this project asked students to reflect on their teaching experience and to make an artifact that illustrated the story of their growth over the semester. Students were shown examples of what others had created in previous semesters. Some past projects featured traditional construction and craft materials such as woodworking and papier-mâché while others included digital tools such as 3D printing, block-based coding, and Arduinos. Students were also shown examples of maker projects as enacted in STEM classrooms such as activities that have K-12 pupils creating museum exhibits to learn about properties of water, using paper circuits to create illuminated food webs, and creating interactive cell models using a Makey Makey.

After reviewing project examples, time was spent introducing the class to several digital technologies through a stations activity. Though digital technologies were not given preference for the project, this activity was an opportunity to have students explore some of the digital tools that encourage invention in the classroom. The class was broken into groups and each group was given ten minutes to explore various digital tools and resources including Scratch, Instructables, Makey Makey, and Circuit Playground (See Appendix A). Preservice teachers farther along in the teacher preparation program facilitated the stations and helped current students explore the new technologies. A handout of useful websites and a place to make notes at each station was also provided (See Appendix B). Students rotated stations such that by the end of the activity they had briefly explored each of the technologies. The final part of the project introduction day was a reflective table talk that occurred after the station activity. At this time, students talked with their classmates and discussed ideas for their final maker project. They were encouraged to connect their project to something they cared about or a specific interest.

Out of class. Students were given two weeks to independently complete their maker projects. Students were free to incorporate traditional skills such as crafts, sewing, knitting, wood working, or metal working in their creation. They were also free to use the digital tools explored in class, or to combine digital and traditional tools to make something new. There was no additional class time provided however, the instructor and TA were available to help students outside of class. Students were encouraged to upcycle, or creatively reuse materials they already had, in creating their projects. Additionally, students were provided with a list of campus locations where they had free access to fabrication tools such as 3D printers, laser cutters, and sewing machines. The students had access to a workroom with traditional school supplies and a suite of recycled materials. Students could also check out digital tools from the program inventory. All of these items were available to them at no cost.

Presentation and reflection. On the last day of class, students presented their creations via a gallery walk format with half of the class presenting at one time and the other half circulating and serving as the audience. Students in the course produced a wide array of personally significant artifacts each of which told a story about their specific experience. Other preservice teachers, staff, and instructors from the program were invited to the presentations giving each student the opportunity to exhibit their work to a large audience. At the end of the presentation session, students completed a short reflection on making, classroom applications, and the project experience. Complete instructional materials for this maker project can be found at https://tinyurl.com/maker-final-project.

Implementation in an elementary science methods course

Elementary Science Methods (ESM) is a required course for all students seeking EC-6 teacher certification at a private liberal arts institution in central Texas. ESM is a 75-minute class that meets twice each week on the university campus in a general science lab. It is offered in the fall semester only and typically enrolls 24 students.  Students are predominantly in their final year of the preparation program before student teaching and ESM is one of two science classes required for their graduation from the institution. In the Fall of 2018, there were 23 total students in the ESM course. Twenty-two (96%) of the students in the course were female and one (4%) was male. Two (8%) of the students were sophomores and twenty-one (92%) were either juniors or seniors. Fourteen students (61%) were elementary teaching majors, eight (35%) were special education teacher majors, and the remaining student (4%) was preparing to become a bilingual elementary teacher.

Inspired by the project described above, the ESM maker final project was added to the syllabus three years ago to address specific issues observed from previous semesters of work with elementary science teachers in this context. First, many of the students in prior iterations of ESM had low self-efficacy about their ability to learn and teach science. Thus, one goal for implementing a maker project was to boost student confidence by engaging in a creative activity with a concrete product related to a science concept. Two additional goals relate to the original project from the secondary program: To introduce students to current knowledge around emerging trends in technology and science and to stimulate discussion around the value and challenges of authentic inquiry as a means for student learning and engagement. Since the act of making requires a personal commitment to the production of a product, the instructor hoped that this activity would enliven student curiosity and demonstrate the value of open-ended projects for their own elementary classrooms.

In class. As with the secondary STEM maker project, this project was framed as a culminating experience introduced near the end of the semester. Similarly, the first day of the lesson began with a video introduction to making. The lesson also included a rotating station activity with a supporting handout. Due to resource availability and focus on elementary school outcomes, the instructor modified the content of the stations. For this iteration, a paper circuits station and a bristlebot station were substituted for the Circuit Playground and Scratch stations. Emphasis was placed on exploration and play at each station and developing a sense of wonder around the materials or ideas. At the end of the class, groups shared what they noticed about the various activities in small groups and the instructor introduced the project options to the class. Students were given a choice to either: a) create a product that documented learning to use a tool or product that would demonstrate its possible usefulness in elementary science, or b) investigate an aspect of making, write a summary of the research, and create a visual product highlighting what they learned.

The second day of the lesson began with a recap of the project criteria. The criteria for this project, while open-ended to allow for authentic, personally meaningful work, included specific elements that related to state standards for elementary science, attention to safety, a projected calendar and a pre-assessment of how project goals and outcomes related to available tools, equipment, and resources to complete the work (see Appendix C). Students were given time to consider potential project options and discuss their ideas with their peers and instructor.

Out of class. Students were provided three weeks to complete the project before the culminating presentation. This timeframe included the Thanksgiving holiday and many students worked on their product at home.  During the last week of classes, the students were given an additional class day to share their projects in an unfinished state for feedback, to revise and refine their ideas, and to borrow tools from the supply cabinet for completion.

Presentation and reflection. During the final exam period, student products were set up and shared with peers and instructor in a maker exhibition. As in the secondary setting, the project presentations took place science fair style with half of the students presenting and half serving as the audience at any one time. Students also completed a written reflection discussing challenges, reiterating connections to science standards, and reflecting on lessons learned from the experience.

Insights from Project Implementation

While there was no formal data collection included as part of this project, student products and reflections from each setting provide initial insights. Figure 2 provides an overview of general insights as well as those specific to each context.

Figure 2 (Click on image to enlarge). An overview of maker project insights.

General Insights

The two contexts for maker project implementation differed significantly. However, insights emerged that were common to both settings. First, in both contexts, the preservice teachers developed a wide range of products including both high- and low-tech creations (see Appendix D). Figure 3 shows: a) a DIY water filtration system; b) an interactive neuron model; c) a series of origami swans; d) soldered paper circuit holiday cards e); a fluidized air bed; and f) an interactive model of a new “teacher” with makey makey fruit controls and related story.

Figure 3 (Click on image to enlarge). A range of student-generated maker projects.

The work produced for this project was personally connected to the interests and motivations of the makers and rooted in the students’ own lives. Second, reflections from preservice teachers in both courses indicate that, through this project, many students experienced the importance of persistence and adaptability when encountering challenges. The open-ended nature of the project turned out to be one of its most important elements as it challenged students develop an original idea and then persist and adapt to bring their idea to life. Third, in both contexts, many preservice teachers described a sense of accomplishment and enjoyment stemming from the creation and presentation of their work. Finally, students in both courses made connections between their maker experience and the process of teaching and learning. Table 2 shows comments from student reflections related to these themes.

Table 2 (Click on image to enlarge)
Student Comments From Both Maker Project Settings

Additionally, in both settings, the project encouraged some students to take making further. In the secondary setting, multiple students went on to join the maker micro-credentialing program offered by the teacher preparation program. In the elementary setting, several students completed independent projects in the area of making. For example, two students collected data, worked with university faculty and teachers at local makerspaces, and presented their findings on supporting special needs students in making at a local maker education conference.

Insights from an Introductory Secondary STEM Teacher Preparation Course

Written reflections indicate that many members of the secondary STEM teacher preparation course developed a deeper understanding of the nature of making. As an example, one student wrote that “I thought that making was all about electronics and coding but there is so much more…it generates your own creativity and interests.” Another student wrote, “Making is about putting one’s experiences and passions into a project. Making adds a sense of ownership and differentiation.” This was a first exposure to making for most students and their reflections indicate that the project helped them develop a personal conception of what it means to make.

Second, this project helped model the creation of a safe space for exploration and failure for these students. The class mantra during this project was “You can’t get it wrong” and student reflections illustrated their connection with this part of a maker mindset. For example, one student commented, “Making is about growing as an explorer. Making is not being afraid to fail! At the beginning I thought making was trivial but I now see the importance of hands on learning as a chance to really fail.”  Another student said, “During creating, I asked myself ‘Am I doing it right?’ ‘Is this fine?’ and when I was presenting I realized ‘this is totally fine, there is no right or wrong’.” This positive message about failure is not one that STEM undergraduates at large public universities often hear. Thus, for this group, the project provided an essential model for rewarding effort over the commonly prioritized final product.

Insights from an Elementary Science Methods Course

The elementary preservice teachers in the three-hour course showed increased confidence with a wide array of maker tools and equipment such as soldering irons, electronics, and woodworking equipment. The open-ended nature of the assignment allowed students in this course to make a range of high-level products, from a 2D model of a neural cell that used different colored LED’s to show how a neural impulse moves, to holiday cards, to a fluidized airbed. Reflections indicate that many students felt increased confidence with equipment related to their projects. One student commented, “I never thought I’d be able to solder, but after connecting the LED’s to the paper circuit holiday cards, I can do it!  Thanks for giving me the chance to learn this. I want to try making jewelry next.”

The students in the ESM course also made specific connections to teaching science in the elementary context. Student reflections show that they honed in on ideas of agency and engagement as central features of making that would motivate them to do projects of this kind with their future pupils. For example, one student said, “I am totally going to use making in my science classroom because it makes students take responsibility for their own learning and gives them ownership of their work.” Another student wrote, through making “you can make science fun and creative for students allowing them to take control of creating whatever they can dream of.” These reflections illustrate the potential of this project to influence the classroom instruction of these future teachers.

Finally, one unique outcome was that many members of the elementary group experienced making as an opportunity to create with friends and family. The project implementation in this setting coincided with the Thanksgiving holiday, giving many students the opportunity to work with parents or friends. For example, one student shared the specifics of her maker journey with permission.  When the project was introduced, she considered making something for her father as a holiday gift. She initially wanted to learn how to create fly-fishing flies based on her father’s love of fishing. However, the costs of buying materials were prohibitive. A chance visit to a website that showed a video demonstrating the non-Newtonian nature of a fluidized airbed then excited her to consider making her own model to demonstrate this fascinating phenomenon.  After checking that the proper equipment to make a small model was available in her family garage, she traveled home for Thanksgiving with initial instructions.  She worked with her father over the break to bring her creation to life. Like many maker projects, the initial results required refinement. Challenges included compressor issues as well as using the wrong substrate for the bed material. However, she persisted and was able to present her model at the maker exhibition with pride. The student’s build is documented in this video. It highlights her energy and enthusiasm for the work. She recently shared with Steve that she will be refining her initial attempt again, having secured a bigger compressor and better substrate.

While making is a journey that differs for each maker, many of the students in the ESM class included a significant other in their building process. This was an unexpected outcome and may have led to more collaborative and ambitious creations. This insight highlights the potential of making as a community-building endeavor.

Project Management

It should be noted that some students were challenged by the technical details and time required to produce a working product so it is important to provide extended time and to include out of class support. This might include additional office hours and partnering with more advanced students to provide technical support. Consider working with campus engineering, art, or instructional technology departments to find others willing to help with advice on construction and tool use. In addition, instructors should consult with appropriate university departments concerning risk management strategies to ensure student safety. Requiring students who plan to use equipment with potential risk in their projects (woodworking or metalworking equipment for example) to complete safety training is highly recommended. The Occupational Safety and Health Administration provides guidelines for safe hand and power tool use (OSHA, 2002).

Regular check-ins with students are also useful. Instructors implementing this type of activity might encourage students to complete weekly reflections and upload photos to document the evolution of their process. Including documentation practices of this kind models the use of electronic platforms, such as Blackboard or Canvas, now common in many school districts, as portfolio systems that can be used to capture and share the ongoing work of their K-12 pupils.

Discussion

The culminating maker project was an open-ended assignment where students were invited to: a) make an artifact related to STEM teaching; b) present their product publicly; c) reflect on their work; and d) consider classroom applications. In the process of creation and making, the students explored new digital, craft, and construction technologies and created a product of personal significance. Through making, students in the class experienced fundamental aspects of creativity, agency, persistence, and reflection.  These attributes are essential elements of 21st century learning and are traits that early-career K-12 science teachers are expected to model and train their own pupils to embody.  Furthermore, when students integrate scientific practices, disciplinary core ideas, and crosscutting concepts in the authentic products they create, then maker-centered instruction can facilitate NGSS three-dimensional learning principles in a personally meaningful way (National Research Council, n.d.).

This open-ended maker project is adaptable to varied contexts thus, the expertise and goals of the instructor or facilitator will likely shape the student experience. For example, in this project, students reflected on their growth as educators but with a different set of criteria in each setting. For the secondary students who were majoring in a STEM field, self-efficacy around science content was not an issue. Because the course was only one-credit hour, creativity and effort producing an open-ended product was emphasized. Additionally, the TA for this course was well-versed in maker-related electronics and provided extra support to students attempting novel projects with these tools. In the Elementary Science Methods course, the instructor focused on connections to science standards and building confidence in the use of basic tools, with which he had extensive experience. Thus, this project can be used to achieve a wide array of outcomes and instructors should be thoughtful about their project aims from the start, paying special attention to providing a wide range of practice, play, and examples from the maker world. Connecting to local makers, artisans, and craftsman can expand the project’s reach.

Furthermore, in both courses, equitable teaching and learning are addressed during other activities. However, because making is often situated in a privileged and gendered paradigm (Vossoughi, Hooper, & Escudé, 2016), future iterations of this activity could include an element that explicitly examines how students can negotiate the opportunities and challenges of the activity in diverse classroom settings. Explicit reflections on equity and readings on these issues as they relate to maker education would be productive additions for future iterations.

Conclusion

Tenacity in the face of adversity is a common trait among successful teachers who must evaluate and adapt their teaching to new situations on a daily basis, and who undoubtedly fail many times but use those failures to learn and grow. In the same way, this culminating maker project was scary, messy, exciting, and inspiring. While student projects rarely turned out as planned, student reflections suggest that the experience helped them to value and embrace this ill structured process. As future teachers, this maker experience may be critical in helping our newest practitioners envision a classroom space where students are personally connected to content, have ownership of their learning, are given the freedom to explore and create without fear, and are encouraged to persist in the face of challenges. In this way, including a project that addresses elements of making and fosters a maker mindset can be a valuable step toward preparing preservice teachers to bring innovative and inspirational practices to science education.

Acknowledgement

This article was developed in connection with the UTeach Maker program at The University of Texas at Austin. UTeach Maker is funded in part by a Robert Noyce Teacher Scholarship grant from the National Science Foundation (1557155). Opinions expressed in this submission are those of the authors and do not necessarily reflect the views of The National Science Foundation.

References

Bevan, B. (2017). The promise and the promises of making in science education. Studies in Science Education, 53(1), 75-103. doi:10.1080/03057267.2016.1275380

Clapp, E. P., Ross, J., Ryan, J. O., & Tishman, S. (2016). Maker-centered learning: Empowering young people to shape their worlds. San Francisco, CA: Jossey-Bass

Cohen, J. (2017). Maker principles and technologies in teacher education: A national survey. Journal of Technology in Teacher Education, 25(1), 5-30. Retrieved from https://www.learntechlib.org/p/172304

Fields, D. A., Kafai, Y., Nakajima, T., Goode, J., & Margolis, J. (2018). Putting making into high school computer science classrooms: Promoting equity in teaching and learning with electronic textiles in exploring computer science, Equity & Excellence in Education, 51(1), 21-35. doi:10.1080/10665684.2018.1436998

Halverson, E. R., & Sheridan, K. M. (2014). The maker movement in education. Harvard Educational Review, 84, 495-504. doi:10.17763/haer.84.4.34j1g68140382063

High Quality Project Based Learning (HQPBL) (2018). A framework for high quality project based learning. Retrieved from https://hqpbl.org/wp-content/uploads/2018/03/FrameworkforHQPBL.pdf

Make. (March 30, 2016). What is a maker? [Video file]. Retrieved from https://www.youtube.com/watch?v=rUoZwuSDikY

Maker Education Initiative (n.d.). Approach. Retrieved from http://makered.org/about-us/approach/

Martin, L. (2015). The promise of the maker movement for education. Journal of Pre-College Engineering Education Research, 5(1), 30-39. doi:10.7771/2157-9288.1099

Menon, D., & Sadler, T. D. (2016).  Preservice elementary teachers’ science self-efficacy beliefs and science content knowledge.  Journal of Science Teacher Education, 27, 649-673.  doi:10.1007/s10972-016-9479-y

National Research Council (NRC). (n.d.). Three Dimensional Learning. Retrieved from https://www.nextgenscience.org/three-dimensions

National Science Foundation (NSF). (2017). The National Science Foundation and making. Retrieved from https://www.nsf.gov/news/news_summ.jsp?cntn_id=131770

National Science Teacher Association (NSTA). (2013). Science and engineering practices. Arlington, VA: Achieve, Inc. Retrieved from http://static.nsta.org/ngss/MatrixOfScienceAndEngineeringPractices.pdf

Papert, S. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.), Constructionism (pp. 1-11). Norwood, NJ: Ablex Publishing Corporation.

Peppler, K., Halverson, E., & Kafai, Y. B. (2016). Chapter 1: Introduction to this volume. In K. Peppler, E. Halverson, & Y. B. Kafai (Eds.), Makeology: Makerspaces as learning environments (Vol. 1, pp. 1-11). New York, NY: Routledge.

Rice, D. C., & Roychoudhury, A. (2003). Preparing more confident preservice elementary science teachers: One elementary science methods teacher’s self-study. Journal of Science Teacher Education, 14, 97–126. doi:10.1023/A:1023658028085

Rodriguez, S., Harron, J., Fletcher, S., & Spock, H. (2018). Elements of making: A framework to support making in the science classroom. The Science Teacher, 85(2), 24-30.

Rodriguez, S. R., Harron, J. R., & DeGraff, M. W. (2018). UTeach Maker: A micro-credentialing program for preservice teachers. Journal of Digital Learning in Teacher Education, 34(1), 6-17. doi:10.1080/21532974.2017.1387830

Qi, J., & Buechley, L. (2010, January). Electronic popables: Exploring paper-based computing through an interactive pop-up book. In Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction (pp. 121-128). ACM.

Qi, J., & Buechley, L. (2014, April). Sketching in circuits: Designing and building electronics on paper. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1713-1722). ACM.

Stager, G., and Martinez, S. L. (2013). Invent to learn: Making, tinkering, and engineering in the classroom. Torrance, CA: Constructing Modern Knowledge Press.

Tofel-Grehl, C., Fields, D., Searle, K., Maahs-Fladung, C., Feldon, D., Gu, G., & Sun, C. (2017). Electrifying engagement in middle school science class: Improving student interest through e-textiles. Journal of Science Education and Technology26, 406-417.

Vossoughi, S., Hooper, P. K., & Escudé, M. (2016). Making through the lens of culture and power: Toward transformative visions for educational equity. Harvard Educational Review86, 206-232. doi:10.17763/0017-8055.86.2.206

Windschitl, M. (2003). Inquiry projects in science teacher education: What can investigative experiences reveal about teacher thinking and eventual classroom practice?. Science education, 87(1), 112-143. doi:10.1002/sce.10044

Yoon, S., Pedretti, E., Pedretti, L., Hewitt, J., Perris, K., & Van Oostveen, R. (2006). Exploring the use of cases and case methods in influencing elementary preservice science teachers’ self-efficacy beliefs. Journal of Science Teacher Education, 17, 15–35. doi:10.1007/s10972-005-9005-0

 

Piloting an Adaptive Learning Platform with Elementary/Middle Science Methods

Citation
Print Friendly, PDF & Email

Vick M.E. (2019). Piloting an adaptive learning platform with elementary/middle science methods. Innovations in Science Teacher Education, 4(4). Retrieved from https://innovations.theaste.org/piloting-an-adaptive-learning-platform-with-elementary-middle-science-methods/

by Matthew E. Vick, University of Wisconsin-Whitewater

Abstract

Adaptive learning allows students to learn in customized, non-linear pathways. Students demonstrate prior knowledge and thus focus their learning on challenging content. They are continually assessed with low stakes questions allowing for identification of content mastery levels. A science methods course for preservice teachers piloted the use of adaptive learning. Design and implementation are described. Instructors need to realistically consider the time required to redesign a course in an adaptive learning system and to develop varied and numerous assessment questions. Overall, students had positive feelings toward the use of adaptive learning. Their mastery levels were not as high as anticipated by the instructor. The student outcomes on their summative assessment did not show high levels of transfer of the key content.

Keywords: Adaptive Learning, Science Methods, Pedagogy, Course Design

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Anderson, P. (n.d.).  Bozeman Science. Retrieved from http://www.bozemanscience.com/next-generation-science-standards/

Bybee, R. (2002). Learning science and the science of learning.  Arlington, VA: NSTA Press.

Chen, B, Bastedo, K., Kirkley, D., Stull, C., & Tojo, J. (2017, August). Designing personalized adaptive learning courses at the University of Central Florida.  Educause Learning Initiative. Retrieved from https://library.educause.edu/resources/2017/8/designing-personalized-adaptive-learning-courses-at-the-university-of-central-florida

Dziuban, C. Howlin, C., Johnson, C., & Moskal, P. (2017, December, 18). An adaptive learning partnership.  EDUCAUSE Review. Retrieved from https://er.educause.edu/articles/2017/12/an-adaptive-learning-partnership

Dziuban, C.D., Moskal, P.D., Cassisi, J., & Fawcett, A.  (2016, September). Adaptive learning in psychology: Wayfinding in the digital age. Online Learning, 3, 74-96.

Dziuban, C.D., Moskla, P.D., & Hartman, J. (2016, September 30). Adapting to learn, learning to adapt.  Research bulletin. Louisville, CO: ECAR.

Educause Learning Initiative (ELI). (2017, January). 7 Things You Should Know About Adaptive Learning. Retrieved from https://library.educause.edu/resources/2017/1/7-things-you-should-know-about-adaptive-learning

Eisenkraft, A. (2003). Expanding the 5E model. The Science Teacher 70(6), 39-72.

Feldman, M. (2013, December 17). What faculty should know about adaptive learning. e-Literate blog. Retrieved from https://mfeldstein.com/faculty-know-adaptive-learning/

Haysom, J., & Bowen, M. (2010). Predict, observe, explain: Activities enhancing scientific understanding. Arlington, VA: NSTA Press.

Howlin, C., & Lunch, D. (2014). A framework for the delivery of personalized adaptive content.  In 2014 International Conference on Web and Open Access to Learning (ICWOAL): 1-5. Retreieved from http://realizeitlearning.com/papers/FrameworkPersonalizedAdaptiveContent.pdf

Konicek-Moran, R., & Keeley, P. (2015). Teaching for conceptual understanding in science.  Arlington, VA:  NSTA Press.

NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

Ogle, D.M. 1986.  K-W-L:  A teaching model that develops active reading of expository text. The Reading Teacher, 39, 564-570.

Posner, G.J., Strike, K.A., Hewson, P.W., & Gertzog, W.A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211-227.

Richhart, R., Church, M., & Morrison, K. (2011). Making thinking visible: how to promote engagement, understanding, and independence for all learners. San Francisco, CA: Jossey-Bass.

Sloan, A. & Anderson, L. (2018, June 18). Adaptive learning unplugged: Why instructors matter more than ever. EDUCASE Review. Retrieved from https://er.educause.edu/articles/2018/6/adaptive-learning-unplugged-why-instructors-matter-more-than-ever

Wiggins, G. P.,  & McTighe, J. (2005). Understanding by design, 2nd edition. Alexandria, VA:  ASCD.

 

Lessons Learned from Going Global: Infusing Classroom-based Global Collaboration (CBGC) into STEM Preservice Teacher Preparation

Citation
Print Friendly, PDF & Email

York, M. K., Hite, R., & Donaldson, K. (2019). Lessons learned from going global: Infusing classroom-based global collaboration (CBGC) into STEM preservice teacher preparation. Retrieved from https://innovations.theaste.org/lessons-learned-from-going-global-infusing-classroom-based-global-collaboration-cbgc-into-stem-preservice-teacher-preparation/

by M. Kate York, The University of Texas at Dallas; Rebecca Hite, Texas Tech University; & Katie Donaldson, The University of Texas at Dallas

Abstract

There are many affordances of integrating classroom-based global collaboration (CBGC) experiences into the K-12 STEM classroom, yet few opportunities for STEM preservice teachers (PST) to participate in these strategies during their teacher preparation program (TPP). We describe the experiences of 12 STEM PSTs enrolled in a CBGC-enhanced course in a TPP. PSTs participated in one limited communication CBGC (using mathematics content to make origami for a global audience), two sustained engaged CBGCs (with STEM PSTs and in-service graduate students at universities in Belarus and South Korea), and an individual capstone CBGC-infused project-based learning (PBL) project. Participating STEM PSTs reported positive outcomes for themselves as teachers in their 21st century skills development and increased pedagogical content knowledge. Participants also discussed potential benefits for their students in cultural understanding and open-mindedness. Implementation of each of these CBGCs in the STEM PST course, as well as STEM PST instructors’ reactions and thoughts, are discussed.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

ACER Research Conference, Melbourne. Retrieved from http://research.acer.edu.au/cgi/viewcontent.cgi?article=1003&context=research_conference_2003

Aydarova, E., & Marquardt, S. K. (2016). The global imperative for teacher education: Opportunities for comparative and international education. FIRE: Forum for International Research in Education, 3(1), 23-40.

Boss, S. (2016, November 8). How are you helping your students become global citizens [Web log post]. Retrieved from https://www.edutopia.org/blog/how-are-you-helping-your-students-become-global-citizens-suzie-boss

Brown, G. S. (2014, March 21). “It’s a Small World:” 9 little-known facts. ABC News. Retrieved from http://abcnews.go.com/Travel/disneys-small-world-facts/story?id=22990670

Clement, M. C., & Outlaw, M. E. (2002). Student teaching abroad: Learning about teaching, culture, and self. Kappa Delta Pi Record, 38, 180-183.

Cogan, J. J., & Grossman, D. L. (2010). Characteristics of globally minded teachers: A twenty-first century view. In T. Kirkwood-Tucker (Ed.), Visions in global education: The globalization of curriculum and pedagogy in teacher education and schools (pp. 240-255). New York, NY: Peter Lang.

Collins, M. (2015, May). The pros and cons of globalization. Forbes. Retrieved from https://www.forbes.com/sites/mikecollins/2015/05/06/the-pros-and-cons-of-globalization/#230354a5ccce      

Cummins, J., & Sayers, D. (1997). Brave new schools: Challenging cultural illiteracy through global learning networks. New York, NY: St. Martin’s Press.

Dede, C. (2009). Comparing frameworks for 21st century skills. Retrieved from http://sttechnology.pbworks.com/

Derman-Sparks, L. (1995). How well are we nurturing racial and ethnic diversity. In Levine, R. Lowe, B. Peterson, & R. Tenorio (Eds.), Rethinking schools: An agenda for change (pp. 17-22). New York, NY: The New Press.

Fang, Y., & Gopinathan, S. (2009). Teachers and teaching in Eastern and Western schools: A critical review of cross-cultural comparative studies. In L. J. Saha & G. Dworkin (Eds.), International handbook of research on teachers and teaching (pp. 557–572). New York, NY: Springer.

Geer, R. (2000). Drivers for successful student learning through collaborative interactivity in internet-based courses. Paper presented at the Society for Information Technology and Teacher Education International Conference, San Diego, CA.

Gibson, K. L., Rimmington, G. M., & Landwehr-Brown, M. (2008). Developing global awareness and responsible world citizenship with global learning. Roeper Review, 30(1), 11-23.

Hattie, J. (2003). Teachers make a difference: What is the research evidence. Paper presented at the Building Teacher Quality: What Does the Research Tell Us

Higley, M. (2013). Benefits of synchronous and asynchronous e-Learning. E-learning Industry, 23, 42.

Holm, M. (2011). Project-based instruction: A review of the literature on effectiveness in prekindergarten through 12th grade classrooms. Rivier Academic Journal, 7(2), 1-13.

Hrastinski, S. (2008). Asynchronous and synchronous e-learning. Educause Quarterly, 31(4), 51-55.

iEARN. (n.d.a).  Origami Project.  Retrieved from https://iearn.org/cc/space-2/group-129

iEARN. (n.d.b).  Project for Future Teachers – Knowing Our Students; Knowing Ourselves. Retrieved from https://iearn.org/cc/space-10/group-77

International Society for Technology in Education (ISTE). (2008). ISTE standards for teachers. Retrieved from http://www.iste.org/standards/standards/standards-for-teachers

Kambutu, J., & Nganga, L. W. (2008). In these uncertain times: Educators build cultural awareness through planned international experiences. Teaching and Teacher Education, 24, 939-951.

Kerlin, S. C. (2009). Global learning communities: Science classrooms without walls (Doctoral dissertation). Retrieved from ProQuest Dissertations and Theses. (3380932)

Klein, J. D. (2017). The global education guidebook: Humanizing K-12 classrooms worldwide through equitable partnerships. Bloomington, IN: Solution Tree.

Krajcik, J. S., & Czerniak, C. M. (2014). Teaching science in elementary and middle school: A project-based approach. New York, NY: Routledge.

Langer, E. (2012, March 7). Disney composer penned “It’s a Small World.” The Washington Post. Retrieved from https://www.washingtonpost.com/local/obituaries/disney-composer-penned-its-a-small-world/2012/03/06/gIQAik3txR_story.html?utm_term=.cf6c574f0d5f

Larmer, J., & Mergendoller, J. R. (2010). Seven essentials for project-based learning. Educational Leadership, 68(1), 34-37.

Lindsay, J., & Davis, V. (2013). Flattening classrooms, engaging minds: Move to global collaboration one step at a time. New York, NY: Pearson.

Lyon, G. E. (1999). Where I’m from: Where poems come from. Spring, TX: Absey & Company.

Markham, T. (2011). Project-based learning: A bridge just far enough. Teacher Librarian, 39(2), 38-42.

Meyer, X., & Crawford, B. A. (2011). Teaching science as a cultural way of knowing: Merging authentic inquiry, nature of science, and multicultural strategies. Cultural Studies of Science Education, 6, 525-547.

National Center for Education Statistics (NCES). (2016). Racial/ethnic enrollment in public schools. Retrieved from https://nces.ed.gov/programs/coe/indicator_cge.asp

National Science Teachers Association (NSTA). (2009). International science education andthe National Science Teachers Association. Retrieved from http://www.nsta.org/about/positions/international.aspx

Nugent, J., Smith, W., Cook, L., & Bell, M. (2015). 21st century citizen science: From global awareness to global contribution. The Science Teacher, 82(8), 34-38.

Partnership for 21st  Century Learning – A Network of Battelle for Kids (P21). (2019). Retrieved from http://www.battelleforkids.org/networks/p21/frameworks-resources

PBLWorks. (2012). What should global PBL look like?  Retrieved from http://www.bie.org/blog/what_should_global_pbl_look_likePence, H. M., & Macgillivray, I. K. (2008). The impact of an international field experience on preservice teachers. Teaching and Teacher Education, 24(1), 14-25.

Reimers, F. M. (2009). Leading for global competency. Educational Leadership, 67(1). Retrieved from http://www.ascd.org/publications/educational-leadership/sept09/vol67/num01/Leading-for-Global-Competency.aspx

Richards, J. (2012, March 13). It’s an annoying song (after all). The Atlantic. Retrieved from https://www.theatlantic.com/entertainment/archive/2012/03/its-an-annoying-song-after-all/254429/

Riel, M. (1994). Cross-classroom collaboration in global Learning Circles. The Sociological Review, 42, 219–242.

Sherman, R. B., & Sherman, R. M. (1963). It’s a small world (Theme from the Disneyland and Walt Disney World attraction, “It’s a small world”). Wonderland Music Co., Inc.

Soland, J., Hamilton, L. S., & Stecher, B. M. (2013). Measuring 21st century competencies: Guidance for educators. Retrieved from Asia Society website: https://asiasociety.org/files/gcen-measuring21cskills.pdf

Thomas, J. W. (2000). A review of research on project-based learning. Retrieved from http://www.bobpearlman.org/BestPractices/PBL_Research.pdf

United States Census Bureau. (2016). School enrollment in the United States: 2015. Retrieved from https://www.census.gov/data/tables/2017/demo/school-enrollment/2017-cps.html

Uro, G., & Barrio, A. (2013). English language learners in America’s great city schools: Demographics, achievement, and staffing. Retrieved from   http://files.eric.ed.gov/fulltext/ED543305.pdf

Walters, L. M., Garii, B., & Walters, T. (2009). Learning globally, teaching locally: Incorporating international exchange and intercultural learning into pre-service teacher training. Intercultural Education, 20(sup1), S151-S158.

World Savvy. (2018). What is Global Competence?  Retrieved from http://www.worldsavvy.org/global-competence/

York, M. K. (2017). Going global: Exploring the behavioral intent of STEM pre-service teachers in a global collaboration focused teacher preparation course (Doctoral dissertation). Retrieved from https://ttu-ir.tdl.org/handle/2346/73486

Zong, G. (2009). Global perspectives in teacher education research and practice. In T. Kirkwood-Tucker (Ed.), Visions in global education: The globalization of curriculum and pedagogy in teacher education and schools (pp. 71-89). New York, NY: Peter Lang.