NGSS Scientific Practices in an Elementary Science Methods Course: Preservice Teachers Doing Science

Citation
Print Friendly, PDF & Email

Morrison, J. NGSS Scientific Practices in an Elementary Science Methods Course: Preservice Teachers Doing Science. Innovations in Science Teacher Education, 6(3). Retrieved from https://innovations.theaste.org/ngss-scientific-practices-in-an-elementary-science-methods-course-preservice-teachers-doing-science/

by Judith Morrison, Washington State University Tri-Cities

Abstract

To engage elementary preservice teachers enrolled in a science methods course in authentically doing science, I developed an assignment focused on the NGSS scientific practices. Unless preservice teachers engage in some type of authentic science, they will never understand the scientific practices and will be ill-equipped to communicate these practices to their future students or engage future students in authentic science. The two main objectives for this assignment were for the PSTs to gain a more realistic understanding of how science is done and gain confidence in conducting investigations incorporating the scientific practices to implement in their future classrooms. To obtain evidence about how these objectives were met, I posed the following questions: What do PSTs learn about using the practices of science from this experience, and what do they predict they will implement in their future teaching relevant to authentic investigations using the scientific practices? Quotes from preservice teachers demonstrating their (a) learning relevant to doing science, (b) their struggles doing this type of investigation, and (c) predictions of how they might incorporate the scientific practices in their future teaching are included. The assignment and the challenges encountered implementing this assignment in a science methods course are also described.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Chalmers, C., Carter, M., Cooper, T., & Nason, R. (2017). Implementing “big ideas” to advance the teaching and learning of science, technology, engineering, and mathematics (STEM). International Journal of Science and Mathematics Education, 15(Suppl. 1), S25–S43. https://doi.org/10.1007/s10763-017-9799-1

Darling-Hammond, L. (2008). Introduction: Teaching and learning for understanding. In L. Darling-Hammond, B. Barron, P. D. Pearson, A. H. Schoenfeld, E. K. Stage, T. D. Zimerman, G. N. Cervetti, & J. L. Tilson (Eds.), Powerful learning: What we know about teaching for understanding (pp. 1–9). Josey Bass.

Duschl, R. A., & Bybee, R. W. (2014). Planning and carrying out investigations: An entry to learning and to teacher professional development around NGSS science and engineering practices. International Journal of STEM Education, 1, Article 12. https://doi.org/10.1186/s40594-014-0012-6

English, L. D. (2017). Advancing elementary and middle school STEM education. International Journal of Science and Mathematics Education, 15(Suppl. 1), S5–S24. https://doi.org/10.1007/s10763-017-9802-x

Grossman, P., Pupik Dean, C. G., Kavanagh, S. S., & Herrmann, Z. (2019). Preparing teachers for project-based teaching. Phi Delta Kappan, 100(7), 43–48. https://doi.org/10.1177/0031721719841338

Kloser, M. (2017). The nature of the teachers’ role in supporting student investigations in middle and high school science classrooms: Creating and participating in a community of practice [Commissioned paper]. National Academies of Sciences, Engineering, and Medicine’s Committee on Science Investigations and Engineering Design for Grades 6-12. https://sites.nationalacademies.org/cs/groups/dbassesite/documents/webpage/dbasse_189499.pdf

Krajik, J., McNeill, K. L., & Reiser, B. J. (2008). Learning-goals-driven design model: Developing curriculum materials that align with national standards and incorporate project-based pedagogy. Science Education, 92(1), 1–32. https://doi.org/10.1002/sce.20240

Lesh, R., & Zawojewski, J. (2007). Problem solving and modeling. In F. K. Lester, Jr., (Ed.), Second handbook on research on mathematics teaching and learning (Vol. 2, pp. 763–804). Information Age Publishing.

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2019). On thinking and STEM education. Journal for STEM Education Research, 2(1), 1–13. https://doi.org/10.1007/s41979-019-00014-x

Llewellyn, D. (2001). Inquire within: Implementing inquiry-based science standards. Corwin Press.

Morrison, J. A. (2008). Individual inquiry investigations in an elementary science methods course. Journal of Science Teacher Education, 19(2), 117–134. https://doi.org/10.1007/s10972-007-9086-z

National Academies of Sciences, Engineering, and Medicine. (2019). Science and engineering for grades 6–12: Investigation and design at the center. National Academies Press. https://doi.org/10.17226/25216

NGSS Lead States. (2013). Next generation science standards: For states, by states. National Academies Press. https://doi.org/10.17226/18290

National Research Council. (2012).Framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press. https://doi.org/10.17226/13165.

Tsybulsky, D., & Muchnik-Rozanov, Y. (2019). The development of student-teachers’ professional identity while team-teaching science classes using a project-based learning approach: A multi-level analysis. Teaching and Teacher Education, 79, 48–59. https://doi.org/10.1016/j.tate.2018.12.006

Tsybulsky, D., & Oz, A. (2019). From frustration to insights: Experiences, attitudes, and pedagogical practices of preservice science teachers implementing PBL in elementary school. Journal of Science Teacher Education, 30(3), 259–279. https://doi.org/10.1080/1046560X.2018.1559560

Supporting Inservice Teachers’ Skills for Implementing Phenomenon-Based Science Using Instructional Routines That Prioritize Student Sense-making

Citation
Print Friendly, PDF & Email

Trauth, A. E. & Mulvena, K. (2021). Supporting Inservice Teachers’ Skills for Implementing Phenomenon-Based Science Using Instructional Routines That Prioritize Student Sensemaking. Innovations in Science Teacher Education, 6(3). Retrieved from https://innovations.theaste.org/supporting-inservice-teachers-skills-for-implementing-phenomenon-based-science-using-instructional-routines-that-prioritize-student-sense-making/

by Amy E. Trauth, University of Delaware; & Kimberly Mulvena, Colonial School District

Abstract

Widespread implementation of phenomenon-based science instruction aligned with the Next Generation Science Standards (NGSS) remains low. One reason for the disparity between teachers’ instructional practice and NGSS adoption is the lack of comprehensive, high-quality curriculum materials that are educative for teachers. To counter this, we configured a set of instructional routines that prioritize student sensemaking and then modeled these routines with grades 6–12 inservice science teachers during a 3-hour professional learning workshop that included reflection and planning time for teachers. These instructional routines included: (1) engaging students in asking questions and making observations of a phenomenon, (2) using a driving question board to document students’ questions and key concepts learned from the lesson, (3) prompting students to develop initial models of the phenomenon to elicit their background knowledge, (4) coherent sequencing of student-led investigations related to the phenomenon, (5) using a summary table as a tool for students to track their learning over time, and (6) constructing a class consensus model and scientific explanation of the phenomenon. This workshop was part of a larger professional learning partnership aimed at improving secondary science teachers’ knowledge and skills for planning and implementing phenomenon-based science. We found that sequencing these instructional routines as a scalable model of instruction was helpful for teachers because it could be replicated by any secondary science teacher during lesson planning. Teachers were able to work collaboratively with their grade- or course-level colleagues to develop lessons that incorporated these instructional routines and made phenomenon-based science learning more central in classrooms.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Achieve, Inc. (n.d.). Achieve reviews and the NGSS design digital badge. Retrieved 30 April 2020 from https://www.achieve.org/our-initiatives/equip/services/achieve-reviews

Allen, C. D., & Penuel, W. R. (2015). Studying teachers’ sensemaking to investigate teachers’ responses to professional development focused on new standards. Journal of Teacher Education, 66(2), 136–149. https://doi.org/10.1177/0022487114560646

EdReports.org. (2020). Reports center: Science. https://www.edreports.org/reports/?s=science

Furtak, E. M., & Penuel, W. R. (2018). Coming to terms: Addressing the persistence of “hands-on” and other reform terminology in the era of science as practice. Science Education, 103(1), 167–186. https://doi.org/10.1002/sce.21488

Learning-Focused.com. (2019). Learning-Focused instructional framework. https://learningfocused.com/our-framework/

National Research Council. (2012). Framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press. https://doi.org/10.17226/13165

National Research Council. (2015). Guide to implementing the Next Generation Science Standards. National Academies Press. https://doi.org/10.17226/18802

National Science Teaching Association. (2020). K-12 science standards adoption across the U.S. https://www.nsta.org/science-standards

Next Generation Science Storylines. (n.d.). What are storylines? Retrieved June 9, 2021, from https://www.nextgenstorylines.org/what-are-storylines

NGSS Lead States. (2013). Next generation science standards: For states, by states. National Academies Press. https://doi.org/10.17226/18290

NOAA Office for Coastal Management. (2020, April 14). The jubilee phenomenon. https://coast.noaa.gov/estuaries/curriculum/the-jubilee-phenomenon.html

Pate, J. L., & Gibson, N. M. (2005). Learning focused schools strategies: The level of implementation and perceived impact on student achievement. Essays in Education, 15, Article 12. https://openriver.winona.edu/eie/vol15/iss1/12

Penuel, W. R., & Bell, P. (2016). Qualities of a good anchor phenomenon for a coherent sequence of science lessons (Practice Brief No. 28). STEM Teaching Tools. http://stemteachingtools.org/brief/28

Penuel, W., Fishman, B. J., Gallagher, L. P., Korbak, C., & Lopez-Prado, B. (2009). Is alignment enough? Investigating the effects of state policies and professional development on science curriculum implementation. Science Education, 93(4), 656–677. https://doi.org/10.1002/sce.20321

Penuel, W. R., Fishman, B. J., Yamaguchi, R., & Gallagher, L. P. (2007). What makes professional development effective? Strategies that foster curriculum implementation. American Educational Research Journal, 44(4), 921–958. https://doi.org/10.3102/0002831207308221

Pringle, R. M., Mesa, J., & Hayes, L. (2017). Professional development for middle school science teachers: Does an educative curriculum make a difference? Journal of Science Teacher Education, 28(1), 57–72. https://doi.org/10.1080/1046560X.2016.1277599

Reiser, B. J. (2014, April 2). Designing coherent storylines aligned with NGSS for the K-12 classroom [Paper presentation]. National Science Education Leadership Association Meeting, Boston, MA.

Reiser, B. J., Brody, L., Novak, M., Tipton, K., & Adams, L. (2017). Asking questions. In C. V. Schwarz, C. Passmore, & B. J. Reiser (Eds.), Helping students make sense of the world using next generation science and engineering practices (pp. 87–108). NSTA Press.

Reiser, B. J., Fumagalli, M., Novak, M., & Shelton, T. (2016, March 31–April 3). Using storylines to design or adapt curriculum and instruction to make it three-dimensional [Paper presentation]. NSTA National Conference on Science Education, Nashville, TN.

Severance, S., Penuel, W. R., Sumner, T., & Leary, H. (2016). Organizing for teacher agency in curricular co-design. Journal of the Learning Sciences, 25(4), 531–564. https://doi.org/10.1080/10508406.2016.1207541

Smith, P. S. (2020). Obstacles to and progress toward the vision of the NGSS. Horizon Research. http://horizon-research.com/NSSME/wp-content/uploads/2020/04/NGSS-Obstacles-and-Progress.pdf

Sherwood, C.-A. (2020). “The goals remain elusive”: Using drawings to examine shifts in teachers’ mental models before and after an NGSS professional learning experience. Journal of Science Teacher Education, 31(5), 578–600. https://doi.org/10.1080/1046560X.2020.1729479

Trauth-Nare, A. E. (2012). A study of the influence of relational formative discourse on middle school students’ positional identities (Unpublished doctoral dissertation). Indiana University, Bloomington, Indiana.

Trauth-Nare, A., Buck, G., & Beeman-Cadwallader, C. (2016). Promoting student agency in scientific inquiry: A self-study of relational pedagogical practices in science teacher education. In G. A. Buck & V. Akerson, (Eds.), Allowing our professional knowledge of pre-service science teacher education to be enhanced by self-study research: Turning a critical eye on our practice. Springer Publishers.

van Driel, J. H., Meirink, J. A., van Veen, K., & Zwart, R. C. (2012). Current trends and missing links in studies on teacher professional development in science education: A review of design features and quality of research. Studies in Science Education, 48(2), 129–160. https://doi.org/10.1080/03057267.2012.738020

Windschitl, M. A., & Stroupe, D. (2017). The three-story challenge: Implication of the Next Generation Science Standards for teacher preparation. Journal of Teacher Education, 68(3), 251–261. https://doi.org/10.1177/0022487117696278

Windschitl, M., Thompson, J., & Braaten, M. (2018). Ambitious science teaching. Harvard Education Press.

Windschitl, M., Thompson, J., Braaten, M., & Stroupe, D. (2012). Proposing a core set of instructional practices and tools for teachers of science. Science Education, 96(5), 878–903. https://doi.org/10.1002/sce.21027

Designing a Third Space Science Methods Course

Citation
Print Friendly, PDF & Email

Vick, M.E. (2018). Designing a third space science methods course. Innovations in Science Teacher Education 3(1). Retrieved from https://innovations.theaste.org/designing-a-third-space-science-methods-course/

by Matthew E. Vick, University of Wisconsin-Whitewater

Abstract

The third space of teacher education (Zeichner, 2010) bridges the academic pedagogical knowledge of the university and the practical knowledge of the inservice K-12 teacher.  A third space elementary science methods class was taught at a local elementary school with inservice teachers acting as mentors and allowing preservice teachers into their classes each week.  Preservice teachers applied the pedagogical knowledge from the course in their elementary classrooms.  The course has been revised constantly over six semesters to improve its logistics and the pre-service teacher experience.  This article summarizes how the course has been developed and improved.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Bahr, D.L. & Monroe, E.E. (2008, Nov 25). An exploration of the effects of a practicum-based mathematics methods course on the beliefs of elementary preservice teachers. International Journal of Mathematics Teaching and Learning. Retrieved from http://www.cimt.org.uk/journal/bahrmonroe.pdf

Bahr, D., Monroe, E. E., Balzotti, M., & Eggett, D. (2009). Crossing the barriers between preservice and inservice mathematics teacher education: An evaluation of the grant school professional development program. School Science and Mathematics, 109(4), 223-236.

Bahr, D.L., Monroe, E.E., & Eggett, D. (2014). Structural and conceptual interweaving of mathematics methods coursework and field practica. Journal of Mathematics Teacher Education, 17, 271-297.

Bahr, D., Monroe, E. E., & Shaha, S. H. (2013). Examining preservice teacher belief changes in the context of coordinated mathematics methods coursework and classroom experiences. School Science and Mathematics,113(3), 144-155.

Bredeson, P.V. (2003). Designs for learning: A new architecture for professional development in schools. Thousand Oaks, CA: Corwin Press, Inc.

Bybee, R. W. (1997). Achieving scientific literacy. Portsmouth, NH: Heinemann.

Cochran-Smith, M. & Lytle, S. L. (2009). Inquiry as stance: Practitioner research for the next generation. New York: Teachers College Press.

Educause. (2012, February). 7 things you should know about flipped classrooms. Retrieved from https://net.educause.edu/ir/library/pdf/eli7081.pdf

Friend, M. (2015-2016). Welcome to co-teaching 2.0. Educational Leadership, 73(4), 16-22.

Konicek-Moran, R. (2008). Everyday Science Mysteries: Stories for Inquiry-Based Science Teaching. Arlington, VA: NSTA Press.

Korthagan, F. & Kessels, J. (1999). Linking theory and practice: Changing the pedagogy of teacher education. Educational Researcher, 28(4), 4-17.

National Academies of Sciences, Engineering, and Medicine. (2015). Science teachers’ learning: Enhancing opportunities, creating supportive contexts. Washington, DC: The National Academies Press.

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: The National Academies Press.

Sanderson, D.R. (2016). Working together to strengthen the school community: The restructuring of a university-school partnership. School Community Journal, 26(1), 183-197.

Taylor, M., Klein, E. J., & Abrams, L. (2014). Tensions of reimagining our roles as teacher educators in a third space: Revisiting a co/autoethnography through a faculty lens. Studying Teacher Education, 10(1), 3-19. DOI: 10.1080/17425964.2013.866549.

Vick, M.E., & Reichhoff, N. (2017). Collaborative partnerships between pre-service and inservice teachers as a driver for professional development. In R.M. Reardon & J. Leonard (Eds.) Exploring the community impact of research-practice partnerships in education. A Volume in the series: Current perspectives on school/university/community research (pp. 199-224). Information Age Publishing: Charlotte, NC.

Zeichner, K. (2010). Rethinking the connections between campus courses and field experiences in college and university-based teacher education. Journal of Teacher Education, 61(1-2), 89-99.

A Scientist, Teacher Educator and Teacher Collaborative: Innovative Professional Learning Design focused on Climate Change and Lessons Learned from K-12 Classrooms

Citation
Print Friendly, PDF & Email

Stapleton, M.K., & Sezen-Barrie, A. (2017). A scientist, teacher educator and teacher collaborative: Innovative professional learning design focused on climate change and lessons learned from K-12 classrooms. Innovations in Science Teacher Education, 2(4). Retrieved from https://innovations.theaste.org/a-scientist-teacher-educator-and-teacher-collaborative-innovative-professional-learning-design-focused-on-climate-change-and-lessons-learned-from-k-12-classrooms/

by Mary K. Stapleton, Towson University; & Asli Sezen-Barrie, Towson University

Abstract

The new Next Generation Science Standards (NGSS) call for a dramatic shift in science teaching and learning, with a focus on students engaging in science practices as they make sense of natural phenomena. In addition, the NGSS have a significant and explicit focus on climate change. The adoption of these new standards in many states across the nation have created a critical need for on-going professional learning as inservice science educators begin to implement three-dimensional instruction in their classrooms. This paper describes an innovative professional learning workshop on climate change for secondary science teachers, designed by teacher educators and scientists. The workshop was designed to improve teachers’ capacity to deliver effective three-dimensional climate change instruction in their classrooms. We present the structure and goals of the workshop, describe how theories of effective professional learning drove the design of the workshop, and address the affordances and challenges of implementing this type of professional learning experience.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Allen, C. D., & Penuel, W. R. (2015). Studying teachers’ sensemaking to investigate teachers’ responses to professional development focused on new standards. Journal of Teacher Education, 66, 136-149.

Banilower, E., Smith, P.S., Weiss, I.R., Malzahn, K.A., Campbell, K.M., & Weiss, A.M. (2013). Report of the 2012 national survey of science and mathematics education. Chapel Hill, NC: Horizon Research Inc. 1-309.

Bell, R.L., Smetana, L. & Binns, I.  (2005). Simplifying inquiry instruction.  The Science Teacher, 72, 30-33.

Campbell, T., C. Schwarz, & Windschitl, M. (2016). What we call misconceptions may be necessary stepping-stones on a path toward making sense of the world. The Science Teacher, 83, 69–74.

Field, C., Barros, V., Dokken, D., Mach, K., Mastrandrea, M., Bilir, T., et al. (2014). IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York, NY.

Furtak, E., Morrison, D., & Kroog, H. (2014). Investigating the link between learning progressions and classroom assessment. Science Education, 98, 640-673.

Gess-Newsome, J. & Lederman, N.G. (Eds). (1999). Examining pedagogical content knowledge: The construct and its implications. Netherlands: Kluwer Academic Publishers.

Hanuscin, D., Lipsitz, K., Cisterna-Alburquerque, D., Arnone, K. A., van Garderen, D., de Araujo, Z., & Lee, E. J. (2016). Developing Coherent Conceptual Storylines: Two Elementary Challenges. Journal of Science Teacher Education, 27, 393-414.

Hestness, E., McDonald, R. C., Breslyn, W., McGinnis, J. R., & Mouza, C. (2014). Science teacher professional development in climate change education informed by the Next Generation Science Standards. Journal of Geoscience Education, 62, 319-329.

Hollins, E. R. (2015). Rethinking field experiences in preservice teacher preparation: Meeting new challenges for accountability. Routledge: New York.

Janssen, F., Westbroek, H., & Van Driel, J. (2013). How to make innovations practical. Teachers College Record, 115, 070378.

Krajcik, J. (2015). Three-dimensional instruction: using a new type of teaching in the science classroom.  The Science Teacher, 82(8), 50-52.

Marking a Strong Argument. (n.d.). Retrieved from http://slider.gatech.edu/student-edition

McNeill, K.L & Krajcik, J.S. (2012). Supporting grade 5-8 students in constructing explanations in science: the claim, evidence and reasoning framework for talk and writing. Boston, MA: Pearson.

National Research Council. (2012). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

NGSS Lead States. (2013). Next generation science standards:  For states, by states. Washington, DC: The National Academies Press.

Passmore, C.M., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34, 1535-1554.

Reiser, B.J. 2013. What professional development strategies are needed for successful implementation of the Next Generation Science Standards?  Invitational Research Symposium on Science Assessment.  Retrieved from https://www.chemedx.org/system/files/reiser.pdf.

Reiser, B. J. (2014). Designing coherent storylines aligned with NGSS for the K-12 classroom. In National Science Education Leadership Association Meeting (April). Boston, MA.

Reiser, B.J., Michaels, S., Moon, J. Bell, T., Dyer, E., Edwards, K., McGill, T.A.W., Novak, M., Park, A. (2016).  Scaling up three-dimensional science learning through teacher-led study groups across a state.  National Association for Research in Science Teaching Conference, Baltimore, MD.

Roth, W. M., Reis, G., & Hsu, D. P. L. (2008). Authentic science revisited: In praise of diversity, heterogeneity, hybridity. Boston, MA: Sense Publishers.

Sezen-Barrie, A., Shea, N., & Borman, J. H. (2017). Probing into the sources of ignorance: science teachers’ practices of constructing arguments or rebuttals to denialism of climate change. Environmental Education Research. http://dx.doi.org/10.1080/13504622.2017.1330949

Shea, N. A., Mouza, C., & Drewes, A. (2016). Climate Change Professional Development: Design, Implementation, and Initial Outcomes on Teacher Learning, Practice, and Student Beliefs. Journal of Science Teacher Education, 27, 235-258.

Shepardson, D. P., Niyogi, D., Roychoudhury, A., & Hirsch, A. (2012). Conceptualizing climate change in the context of a climate system: implications for climate and environmental education. Environmental Education Research, 18, 323-352.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4-14.

Skeptical Science, (n.d).  Retrieved from https://skepticalscience.com/climate-change-little-ice-age-medieval-warm-period.htm

Sondergeld, T. A., Milner, A. R., & Rop, C. (2014). Evaluating teachers’ self-perceptions of their knowledge and practice after participating in an environmental education professional development program. Teacher Development, 18, 281-302.

Stapleton, M.K., Wolfson, J., Sezen-Barrie, A., & Ellis, R. (2017).  Looking Backward, Looking Forward.  Science Scope, 42(2), 45-53.

Sullivan, S. M. B., Ledley, T. S., Lynds, S. E., & Gold, A. U. (2014). Navigating climate science in the classroom: Teacher preparation, perceptions and practices. Journal of Geoscience Education, 62, 550-559.

Wilson, S.M. (2013). Professional Development for Science Teachers. Science, 340, 310-313.

Windschitl, M. A., & Stroupe, D. (2017). The Three-Story Challenge: Implications of the Next Generation Science Standards for Teacher Preparation. Journal of Teacher Education, 68, 251-261.

Yuan, S. (1995). Postglacial History of Vegetation and River Channel Geomorphology in a Coastal Plain Floodplain.  Diss. The Johns Hopkins University.