Promoting Understanding of Three Dimensions of Science Learning Plus Nature of Science Using Phenomenon-Based Learning

by Maryam Saberi, Ministry of Education of Iran; & Noushin Nouri, University of Texas Rio Grande Valley
Abstract

The utilization of phenomenon-based learning (PhBL) for science instruction remains limited despite its alignment with the goals outlined in the Next Generation Science Standards (NGSS; NGSS Lead States, 2013) due to the lack of exemplary materials and inadequate training opportunities for teachers. The aim of this article is to illustrate the steps of the PhBL method by providing an exploratory learning experience as it was implemented in a preservice setting. In this study, we provide an innovative perspective by illuminating how this kind of instruction can be used as a context to explicitly discuss the three dimensions of learning (i.e., Disciplinary Core Ideas, Science and Engineering Practices, and Crosscutting Concepts; NGSS Lead States, 2013) as well as the nature of science (NOS). Using PhBL to teach NOS is an answer to the concern of teachers who think teaching NOS would take time from their content teaching. Hopefully, this article provides a comprehensive guideline for science educators to facilitate the inclusion of PhBL in their science methods courses and use it to clarify the three dimensions of NGSS and the incorporation of NOS within these dimensions for preservice teachers.

3D Into 5E for Space Sciences Lessons Using NASA Education Resources for Elementary and Middle School Classrooms

by Soon C. Lee, Kennesaw State University; Bergman, Daniel, Wichita State University; & Novacek, Greg, NA
Abstract

Implementation of the Next Generation Science Standards (NGSS; NGSS Lead States, 2013) 3D learning that is well aligned with the performance expectations has been challenging for many science teachers. Furthermore, studies on curriculum materials for NGSS have rarely provided templates or guidelines that are straightforward for teachers to use in their science classes. This project aimed to provide professional development opportunities to middle school teachers (Grades 5–8) through a workshop designed to facilitate the integration of NASA’s educational resources into science lessons aligned with the NGSS 3D learning framework. The workshop included a conceptual model (i.e., 3D Into 5E), lesson templates, and sample lessons. Specifically, the project activities were designed to improve the participating teachers’ space-science content knowledge and instructional strategies, thereby enabling them to capture their students’ interest and channel it toward related STEM careers. Although the BSCS 5E Instructional Model (Bybee et al., 2006) is not a new concept, this project has demonstrated its efficacy as a template for effectively integrating the three dimensions of NGSS with related phenomena in science teaching. This project has not only demonstrated the effectiveness of the 5E model as a tool for promoting a deeper understanding of scientific concepts but also innovatively incorporated hands-on space-science activities to enhance its impact. By engaging teachers in these activities, the project improved their ability to modify instructional materials using the 3D Into 5E template, ultimately leading to a more engaging and impactful learning experience for their students. The study’s results showed that participating teachers experienced significant improvements in their space-science content knowledge and teaching confidence, indicating the effectiveness of this innovative approach. The teachers also reported high levels of student engagement and enjoyment during space-science activities, indicating the potential of this approach to enhance student-centered learning and improve the quality of science instruction delivered to students. Overall, this project’s innovative approach has the potential to transform science education by providing teachers with practical tools and strategies to engage students in science and promote a deeper understanding of space-science concepts.

Is This an Authentic Engineering Activity? Resources for Addressing the Nature of Engineering With Teachers

by Jacob Pleasants, University of Oklahoma
Abstract

Including engineering as part of K–12 science instruction has many potential benefits for students, but achieving those benefits depends on having classroom teachers who are well prepared to effectively implement engineering instruction. Science teacher educators, therefore, have an essential role to play in ensuring that engineering is incorporated into science instruction in productive ways. An important component of that work is developing teachers’ understanding of the nature of engineering: what engineering is, what engineers do, and how engineering is both related to yet separate from science. Teachers must understand these concepts to implement engineering design activities that authentically reflect the field. In this article, I describe a sequence of instructional activities designed to help teachers, either preservice or inservice, develop their knowledge of the nature of engineering. At the core of the instructional sequence is a set of stories that provide teachers with descriptions of authentic engineering work. Surrounding the stories are activities that help teachers draw accurate conclusions about the nature of engineering and draw out the implications of those conclusions for instructional decision-making. I provide an overview of the instructional sequence and also share details from my own work with teachers, including transcripts of classroom conversations and the impact of instruction on teachers’ knowledge.

A Sociotechnical Approach to Engineering Education: Engineering Social Justice for Elementary Preservice Teachers

by David Kimori, Minnesota State University, Mankato; & Charlene Ellingson, Minnesota State University, Mankato
Abstract

In this article, we describe an assignment that we have developed in our Engineering for Elementary Teachers course. The assignment was designed to address social justice within the engineering design process. In this course, preservice teachers (PSTs) develop an engineering project that integrates six criteria of engineering for social justice into their lesson plan as a way to make the social relevance of engineering more apparent. Beyond having teachers develop an engineering lesson plan, the goal is to increase awareness of the social justice dimension of engineering as a strategy for integrating culturally relevant pedagogies into engineering lessons. In this article, we share several lessons our PSTs have developed as well as insights that they gained about the relationship between engineering and social justice. We also share some of the challenges that the PSTs faced and the insights that we gained about integrating social justice criteria into engineering lessons.

Providing High-Quality Professional Learning Opportunities Through a Lesson Study Conference

by Sharon Dotger, Syracuse University; Jessica Whisher-Hehl, Syracuse University; Jennifer Heckathorn, Syracuse University; & F. Kevin Moquin, Syracuse University
Abstract

We report on the development and implementation of a conference designed to highlight the Next Generation Science Standards (NGSS Lead States, 2013) using lesson study as an effective professional-development practice for inservice teachers. The purpose of this article is to highlight details from the development and implementation that can be used by others wishing to replicate the conference. First, we give an overview of the practice of lesson study and explain how it was used by one of four lesson study teams that taught their research lesson publicly at the conference in front of 80 observers. Then, we describe a sample research proposal and share specific information about the processes used to coach the lesson study teams and plan the conference, and we share conference agendas and diagrams of lesson implementations to support readers’ visualization of the implementation. Finally, we conclude with three planning components that were vital to our ability to execute the conference and link the design to existing lesson study literature.

NGSS Scientific Practices in an Elementary Science Methods Course: Preservice Teachers Doing Science

by Judith Morrison, Washington State University Tri-Cities
Abstract

To engage elementary preservice teachers enrolled in a science methods course in authentically doing science, I developed an assignment focused on the NGSS scientific practices. Unless preservice teachers engage in some type of authentic science, they will never understand the scientific practices and will be ill-equipped to communicate these practices to their future students or engage future students in authentic science. The two main objectives for this assignment were for the PSTs to gain a more realistic understanding of how science is done and gain confidence in conducting investigations incorporating the scientific practices to implement in their future classrooms. To obtain evidence about how these objectives were met, I posed the following questions: What do PSTs learn about using the practices of science from this experience, and what do they predict they will implement in their future teaching relevant to authentic investigations using the scientific practices? Quotes from preservice teachers demonstrating their (a) learning relevant to doing science, (b) their struggles doing this type of investigation, and (c) predictions of how they might incorporate the scientific practices in their future teaching are included. The assignment and the challenges encountered implementing this assignment in a science methods course are also described.

Supporting Inservice Teachers’ Skills for Implementing Phenomenon-Based Science Using Instructional Routines That Prioritize Student Sense-making

by Amy E. Trauth, University of Delaware; & Kimberly Mulvena, Colonial School District
Abstract

Widespread implementation of phenomenon-based science instruction aligned with the Next Generation Science Standards (NGSS) remains low. One reason for the disparity between teachers’ instructional practice and NGSS adoption is the lack of comprehensive, high-quality curriculum materials that are educative for teachers. To counter this, we configured a set of instructional routines that prioritize student sensemaking and then modeled these routines with grades 6–12 inservice science teachers during a 3-hour professional learning workshop that included reflection and planning time for teachers. These instructional routines included: (1) engaging students in asking questions and making observations of a phenomenon, (2) using a driving question board to document students’ questions and key concepts learned from the lesson, (3) prompting students to develop initial models of the phenomenon to elicit their background knowledge, (4) coherent sequencing of student-led investigations related to the phenomenon, (5) using a summary table as a tool for students to track their learning over time, and (6) constructing a class consensus model and scientific explanation of the phenomenon. This workshop was part of a larger professional learning partnership aimed at improving secondary science teachers’ knowledge and skills for planning and implementing phenomenon-based science. We found that sequencing these instructional routines as a scalable model of instruction was helpful for teachers because it could be replicated by any secondary science teacher during lesson planning. Teachers were able to work collaboratively with their grade- or course-level colleagues to develop lessons that incorporated these instructional routines and made phenomenon-based science learning more central in classrooms.

Designing a Third Space Science Methods Course

by Matthew E. Vick, University of Wisconsin-Whitewater
Abstract

The third space of teacher education (Zeichner, 2010) bridges the academic pedagogical knowledge of the university and the practical knowledge of the inservice K-12 teacher.  A third space elementary science methods class was taught at a local elementary school with inservice teachers acting as mentors and allowing preservice teachers into their classes each week.  Preservice teachers applied the pedagogical knowledge from the course in their elementary classrooms.  The course has been revised constantly over six semesters to improve its logistics and the pre-service teacher experience.  This article summarizes how the course has been developed and improved.

A Scientist, Teacher Educator and Teacher Collaborative: Innovative Professional Learning Design focused on Climate Change and Lessons Learned from K-12 Classrooms

by Mary K. Stapleton, Towson University; & Asli Sezen-Barrie, Towson University
Abstract

The new Next Generation Science Standards (NGSS) call for a dramatic shift in science teaching and learning, with a focus on students engaging in science practices as they make sense of natural phenomena. In addition, the NGSS have a significant and explicit focus on climate change. The adoption of these new standards in many states across the nation have created a critical need for on-going professional learning as inservice science educators begin to implement three-dimensional instruction in their classrooms. This paper describes an innovative professional learning workshop on climate change for secondary science teachers, designed by teacher educators and scientists. The workshop was designed to improve teachers’ capacity to deliver effective three-dimensional climate change instruction in their classrooms. We present the structure and goals of the workshop, describe how theories of effective professional learning drove the design of the workshop, and address the affordances and challenges of implementing this type of professional learning experience.