From Theory to Practice: Funds of Knowledge as a Framework for Science Teaching and Learning

by Tyler St. Clair, Longwood University; & Kaitlin McNulty, Norwood-Norfork Central School
Abstract

The phrase "funds of knowledge" refers to a contemporary science education research framework that provides a unique way of understanding and leveraging student diversity. Students’ funds of knowledge can be understood as the social relationships through which they have access to significant knowledge and expertise (e.g., family practices, peer activities, issues faced in neighborhoods and communities). This distributed knowledge is a valuable resource that might enhance science teaching and learning in schools when used properly. This article aims to assist science methods instructors and secondary classroom teachers to better understand funds of knowledge theory and to provide numerous examples and resources for what this theory might look like in practice.

Supporting Middle and Secondary Science Teachers to Implement Sustainability-Themed Instruction

by Sheron L. Mark, PhD, University of Louisville, College of Education and Human Development, 1905 S 1st Street, Louisville, KY 40292
Abstract

In today’s society, we face many complex environmental, social, and economic challenges that can be addressed through a lens of sustainability. Furthermore, our efforts in addressing these challenges must be collective. Science education is foundational to preparing students with the knowledge, skills, and dispositions to engage in this work in professional and everyday capacities. This article describes a teacher education project aimed at preparing middle and secondary preservice and alternatively certified science teachers to teach through a lens of sustainability. The project was embedded within a middle and secondary science teaching methods course. Work produced by the teacher candidates, including case-study research presentations and week-long instructional plans, is described.

Preservice Elementary Teachers Using Graphing as a Tool for Learning, Teaching, and Assessing Science

by Deena L. Gould, University of New Mexico; Rolando Robles, Arizona State University; & Peter Rillero, Arizona State University
Abstract

Graphing is an important tool for seeing patterns, analyzing data, and building models of scientific phenomena. Teachers of elementary school children use graphs to display data but rarely as tools for analyzing or making sense of data (Coleman, McTigue, & Smolkin, 2011). We provide a set of lessons that guide preservice elementary school teachers to analyze their conceptions about graphing and use graphing to (a) see patterns in data, (b) discuss and analyze data, (c) model scientific phenomena, and (d) teach and assess inquiry-based science. Examples are adduced for how we guided and supported preservice elementary teachers in their conceptual understanding and deeper use of graphing.

Critical Response Protocol: Supporting Preservice Science Teachers in Facilitating Inclusive Whole-Class Discussions

by Charlene L. Ellingson, Minnesota State University, Mankato; Dr. Jeanna Wieselmann, Caruth Institute for Engineering Education; & Dr. Felicia Dawn Leammukda, Minnesota State University, St. Cloud
Abstract

Despite a large body of research on effective discussion in science classrooms, teachers continue to struggle to engage all students in such discussions. Whole-class discussions are particularly challenging to facilitate effectively and, therefore, often have a teacher-centered participation pattern. This article describes the Critical Response Protocol (CRP), a tool that disrupts teacher-centered discussion patterns in favor of a more student-centered structure that honors students’ science ideas. CRP originated in the arts community as a method for giving and receiving feedback to deepen critical dialog between artists and their audiences. In science classrooms, CRP can be used to elicit student ideas about scientific phenomena and invite wide participation while reducing the focus on “correct” responses. In this article, we describe our use of CRP with preservice science teachers. We first modeled the CRP process as it would be used with high school students in science classrooms, then discussed pedagogical considerations for implementing CRP within the preservice teachers’ classrooms. We conclude this article with a discussion of our insights about the opportunities and challenges of using CRP in science teacher education to support preservice teachers in leading effective whole-class discussion and attending to inclusive participation structures.

A 20-year Journey in Elementary and Early Childhood Science and Engineering Education: A Cycle of Reflection, Refinement, and Redesign

by Cody Sandifer, Towson University; Pamela S. Lottero-Perdue, Towson University; & Rommel J. Miranda, Towson University
Abstract

Over the past two decades, science and engineering education faculty at Towson University have implemented a number of course innovations in our elementary and early childhood education content, internship, and methods courses. The purposes of this paper are to: (1) describe these innovations so that faculty looking to make similar changes might discover activities or instructional approaches to adapt for use at their own institutions and (2) provide a comprehensive list of lessons learned so that others can share in our successes and avoid our mistakes. The innovations in our content courses can be categorized as changes to our inquiry approach, the addition of new out-of-class activities and projects, and the introduction of engineering design challenges. The innovations in our internship and methods courses consist of a broad array of improvements, including supporting consistency across course sections, having current interns generate advice documents for future interns, switching focus to the NGSS science and engineering practices (and modifying them, if necessary, for early childhood), and creating new field placement lessons.

A District-University Partnership to Support Teacher Development

by Katherine Wade-Jaimes, University of Memphis; Shelly Counsell, University of Memphis; Logan Caldwell, University of Memphis; & Rachel Askew, Vanderbilt University
Abstract

With the shifts in science teaching and learning suggested by the Framework for K-12 Science Education, in-service science teachers are being asked to re-envision their classroom practices, often with little support. This paper describes a unique partnership between a school district and a university College of Education, This partnership began as an effort to support in-service science teachers of all levels in the adoption of new science standards and shifts towards 3-dimensional science teaching. Through this partnership, we have implemented regular "Share-A-Thons," or professional development workshops for in-service science teachers. We present here the Share-A-Thons as a model for science teacher professional development as a partnership between schools, teachers, and university faculty. We discuss the logistics of running the Share-A-Thons, including challenges and next steps, provide teacher feedback, and include suggestions for implementation.

Facilitating Preservice Teachers’ Socioscientific Issues Curriculum Design in Teacher Education

by Jaimie A. Foulk, University of Missouri - Columbia; Troy D. Sadler, University of North Carolina – Chapel Hill; & Patricia M. Friedrichsen, University of Missouri - Columbia
Abstract

Socioscientific issues (SSI) are contentious and ill-structured societal issues with substantive connections to science, which require an understanding of science, but are unable to be solved by science alone. Consistent with current K-12 science education reforms, SSI based teaching uses SSI as a context for science learning and has been shown to offer numerous student benefits. While K-12 teachers have expressed positive perceptions of SSI for science learning, they cite uncertainty about how to teach with SSI and lack of access to SSI based curricular materials as reasons for not utilizing a SSI based teaching approach. In response to this need we developed and taught a multi-phase SSI Teaching Module during a Science Methods course for pre-service secondary teachers (PSTs), designed to 1) engage PSTs as learners in an authentic SSI science unit; 2) guide PSTs in making sense of an SSI approach to teaching and learning; and 3) support PSTs in designing SSI-based curricular units. To share our experience with the Teaching Module and encourage teacher educators to consider ways of adapting such an approach to their pre-service teacher education contexts, we present our design and resources from the SSI Teaching Module and describe some of the ways PSTs described their challenges, successes, and responses to the experience, as well as considerations for teacher educators interested in introducing PSTs to SSI.

Food Pedagogy as an Instructional Resource in a Science Methods Course

by William Medina-Jerez, University of Texas at El Paso; & Lucia Dura, University of Texas at El Paso
Abstract

This article explores the integration of culturally relevant practices and student expertise into lesson planning in a university-level science methods course for preservice elementary teachers (PSETs). The project utilized a conceptual framework that combines food pedagogy and funds of knowledge, modeling an approach to lesson design that PSETs can use in their future classrooms to bring students’ worldviews to the forefront of science learning. The article gives an overview of the conceptual framework and the origins of the project. It describes the steps involved in the design, review, and delivery of lessons by PSETs and discusses implications for instructional practices in science teacher education and science learning in elementary schools. The article concludes with a discussion of major outcomes of the use of this framework, as evidenced by PSET pre- and post- project reflections: student-centered curriculum development, increased PSET self-confidence, integrated learning for both PSET and the students, and sustained levels of engagement.​

A Framework for Science Exploration: Examining Successes and Challenges for Preservice Teachers

by Keri-Anne Croce, Towson University
Abstract

Undergraduate preservice teachers examined the Science Texts Analysis Model during a university course. The Science Texts Analysis Model is designed to support teachers as they help students prepare to engage with the arguments in science texts. The preservice teachers received instruction during class time on campus before employing the model when teaching science to elementary and middle school students in Baltimore city. This article describes how the preservice teachers applied their knowledge of the Science Texts Analysis Model within this real world context. Preservice teachers’ reactions to the methodology are examined in order to provide recommendations for future college courses.

Enacting Wonder-infused Pedagogy in an Elementary Science Methods Course

by Andrew Gilbert, George Mason University; & Christie C. Byers, George Mason University
Abstract

Future elementary teachers commonly experience a sense of disconnection and lack of confidence in teaching science, often related to their own negative experiences with school science. As a result, teacher educators are faced with the challenge of engaging future teachers in ways that build confidence and help them develop positive associations with science. In this article, we present wonder-infused pedagogy as a means to create positive pathways for future teachers to engage with both science content and teaching. We first articulate the theoretical foundations underpinning conceptions of wonder in relation to science education, and then move on to share specific practical activities designed to integrate elements of wonder into an elementary methods course. We envision wonder-infused pedagogy not as a disruptive force in standard science methods courses, but rather an effort to deepen inquiry and connect it to the emotive and imaginative selves of our students. The article closes with thorough descriptions of wonder related activities including wonder journaling and a wonder fair in order to illustrate the pedagogical possibilities of this approach. We provide student examples of these artifacts and exit tickets articulating student experiences within the course. We also consider possible challenges that teacher educators may encounter during this process and methods to address those possible hurdles. We found that the process involved in wonder-infused pedagogy provided possibilities for future teachers to reconnect and rekindle a joyful relationship with authentic science practice.