Theory to Process to Practice: A Collaborative, Reflective, Practical Strategy Supporting Inservice Teacher Growth

Citation
Print Friendly, PDF & Email

Inouye, M., & Houseal, A. (2019). Theory to process to practice: A collaborative, reflective, practical strategy supporting inservice teacher growth. Innovations in Science Teacher Education, 4(1). Retrieved from https://innovations.theaste.org/theory-to-process-to-practice-a-collaborative-reflective-practical-strategy-supporting-inservice-teacher-growth/

by Martha Inouye, University of Wyoming; & Ana Houseal, University of Wyoming

Abstract

To successfully implement the Next Generation Science Standards (NGSS), more than 3.4 million in-service educators in the United States will have to understand the instructional shifts needed to adopt these new standards. Here, based on our recent experiences with teachers, we introduce a professional learning (PL) strategy that employs collaborative video analysis to help teachers adjust their instruction to promote the vision and learning objectives of the Standards. Building on effective professional development characteristics, we created and piloted it with teachers who were working on making student thinking visible. In our setting, it has been effective in providing relevant, sustainable changes to in-service teachers' classroom instruction.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Appleby, J. (1998). Becoming critical friends: Reflections of an NSRF coach. Providence, RI: Annenberg Institute for School Reform at Brown University

Ball, D.L., & Cohen, D.K. (1999). Developing practice, developing practitioners: Toward a practice-based theory of professional education. In G. Sykes & L. Darling-Hammond (Ed.), Teaching as the learning profession: Handbook of policy and practice (pp. 3–32). San Francisco, CA: Jossey Bass.

Banilower, E. R., Smith, S. P., Weiss, I. R., Malzahn, K. A., Campbell, K. M., & Weis, A. M. (2013). Report of the 2012 National Survey of Science and Mathematics Education. Chapel Hill, NC: Horizon Research, Inc.

Beaudoin, C., Johnston, P., Jones, L., & Waggett, R. (2013). University support of secondary stem teachers through professional development. Education, 133, 330-339.

Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. Educational Researcher, 33(8), 3–15.

Bybee, R (2014). NGSS and the next generation of science teachers. Journal for Science Teacher Education, 25, 211-221.

Cormas, P. C., & Barufaldi, J. P. (2011). The effective research-based characteristics of professional development of the national science foundation’s GK-12 program. Journal of Science Teacher Education, 22, 255-272.

Fullan, M., Hill, P., & Crevola, C. (2006). Breakthrough. Thousand Oaks, CA: Corwin Press.

Guskey, T. R. (1984). The influence of change in instructional effectiveness upon the affective characteristics of teachers. American Educational Research Journal, 21, 245-259.

Guskey, T. R. (2002). Professional development and teacher change. Teachers and Teaching: Theory and Practice, 8, 381–391.

Hestness, E., McDonald, R. C., Breslyn, W., McGinnis, J. R., & Mouza, C. (2014). Science teacher professional development in climate change education informed by the Next Generation Science Standards. Journal of Geoscience Education62, 319-329.

Houseal, A. K., Abd El Khalick, F., & Destefano, L. (2014). Impact of a Student-Teacher-Scientist Partnership on students’ and teachers’ content knowledge, attitudes toward science, and pedagogical practices. Journal of Research in Science Teaching. 51, 84-115.

Keeley, Page. (2008). Science formative assessment: 75 practical strategies for linking assessment, instruction, and learning. Thousand Oaks, CA: Corwin Press.

Krajcik, J. (2015). Three-dimensional instruction: Using a new type of teaching in the science classroom. The Science Teacher, 83(8), 50–52.

Mehan, H. (1979). Learning lessons: social organization in the classroom. Cambridge, MA: Harvard University Press.

Mezirow, J. (1990). Fostering critical reflection in adulthood: A guide to transformative and emancipatory learning. San Francisco: Jossey-Bass.

Miller, R. G., Curwen, M. S., White-Smith, K. A., & Calfee, R. C. (2014). Cultivating primary students’ scientific thinking through sustained teacher professional development. Early Childhood Education Journal, 43, 317-326.

Nagle, B. (2013). Preparing high school students for the interdisciplinary nature of modern biology. CBE-Life Sciences Education12, 144-147.

National Academies of Sciences, Engineering, and Medicine. (2015). Science Teachers Learning: Enhancing Opportunities, Creating Supportive Contexts. Washington, DC: The National Academies Press.

National Research Council. [NRC]. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

NRC. (2015). Guide to Implementing the Next Generation Science Standards. Washington, DC: National Academies Press. Available at http://www.nap.edu/catalog/18802/guide-to-implementing-the-next-generation-science-standards

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: National Academies Press.

Reiser, B.J. (2013). What Professional Development Strategies Are Needed for Successful Implementation of the Next Generation Science Standards? Paper written for the Invitational Research Symposium on Science Assessment, September 24-25, Educational Testing Service, Washington, DC. Available at http://www.k12center.org/rsc/pdf/reiser.pdf.

Roth, K., Garnier, H., Chen, C., Lemmens, M., Schwille, K., & Wickler, N. (2011). Videobased lesson analysis: Effective science PD for teacher and student learning. Journal of Research in Science Teaching, 48, 117-148.

U.S. Department of Education, National Center for Education Statistics, Schools and Staffing Survey (SASS), “Public School Teacher Data File,” 2011–12.

Project Zero. (2016). Visible Thinking. Retrieved from http://www.pz.harvard.edu/research/Vislhink.htm

Wei, R. C., Darling-Hammond, L., and Adamson, F. (2010). Professional development in the United States: Trends and challenges. Dallas, TX: National Staff Development Council.

 

Increasing Science Teacher Candidates’ Ability To Become Lifelong Learners Through A Professional Online Learning Community

Citation
Print Friendly, PDF & Email

Veal, W., Malone, K., Wenner, J.A., Odell, M., & Hines, S.M. (2019). Increasing science teacher candidates’ ability to become lifelong learners through a professional online learning community. Innovations in Science Teacher Education, 4(1). Retrieved from https://innovations.theaste.org/increasing-science-teacher-candidates-ability-to-become-lifelong-learners-through-a-professional-online-learning-community/

by William Veal, College of Charleston; Kathy Malone, The Ohio State University; Julianne A. Wenner, Boise State University; Michael Odell, University of Texas at Tyler; & S. Maxwell Hines, Winston Salem State University

Abstract

This article describes the use of an online professional learning community within the context of K-8 science education methods courses. The article describes the unique usage of the learning community with preservice teachers at different certification levels within the context of five distinct universities. While each approach is different there exists commonalities of usage. Specifically, the site is used to develop mastery of science content, exposure to pedagogical content knowledge, and classroom activities that focus on authentic science practices. Each case provides specific details of how the preservice teachers were immersed into a learning community that can serve them throughout their teaching career.

Introduction

What is the purpose of a science methods course? It would seem logical that a science methods course would increase the ability of the candidate to learn science content and pedagogy for that content. The actual methods for helping candidates learn to teach science are diverse and include different learning objectives, ‘student’ learning outcomes, and approaches within the classroom. A brief search of syllabi for elementary and middle grades science methods courses at the university level on the Internet yields vastly different approaches to teaching these courses and the reasons why. Science methods courses can be taught to “build fundamental knowledge of elementary science teaching and learning,” teach “strategies to bring scientific inquiry to the elementary classroom,” “increase confidence and enthusiasm for teaching elementary science,” “develop competence and confidence needed to teach science in elementary classrooms,” and “teach science skills and content.” Teacher candidates do not have the time nor training to be able to learn all of the content needed and experience the methods necessary for becoming an ‘experienced’ teacher in their first year of teaching. This article reviews how several university professors focus on a common approach to teaching a science methods course using an online learning community to guide teacher candidates to become lifelong science educators.

The Content of Learning and the Learning of Content

Methods courses are teacher preparation courses designed to prepare teacher candidates to teach a particular content area. There are typically elements of the course that boost content knowledge, but the crux of these courses is allowing teacher candidates to learn and/or practice pedagogical strategies to teach that content effectively. Methods instructors must be thoughtful about not only the activities they employ in their courses to support this knowledge and skill acquisition, but also about the materials and resources they use to support the activities in the course. Moreover, methods instructors must acknowledge they cannot possibly teach everything one needs to know to teach in their content area. Consequently, instructors must also set the foundation for teacher candidates to strategically utilize resources, many of which may be online, so they will be lifelong learners.

Table 1 provides a comparison of common goals of online syllabi from elementary and middle grades science methods courses. The search terms “elementary science methods syllabus” and “middle school science methods syllabus” were used in the Google search window. The first 40 results were downloaded and examined. Three main themes emerge from the syllabi: learning pedagogical skills to teach the science content, developing a set of habits of mind about science, and knowing the science content. In terms of the K-6 student impact, teacher candidates had to translate those skills to the students so that the students could essentially develop the same habits of mind and science content knowledge. Syllabi for courses that included the middle grades (5-8) demonstrated a change in the tenor of the language. When the middle grades course was combined with an elementary science methods course, the middle grades language, goals, and outcomes were very similar to that of the elementary methods course. At many universities, the middle grades science methods courses were combined with the secondary or high school science methods courses. The main differences between elementary and secondary science methods courses were the emphasis on depth of content knowledge and the lessening emphasis on developing habits of mind. Secondary science teachers are considered to have already developed significant content expertise and scientist’s habits of mind.

Table 1 (Click on image to enlarge)
Sample Science Methods Goals and Outcomes on Syllabi

Science teachers need science content knowledge and the appropriate pedagogical knowledge to teach at their respective levels. Elementary school teachers usually focus on pedagogy and multiple content areas, especially at the younger grade levels where classes are self-contained. In terms of elementary teacher candidates, it is well documented that they often feel unprepared to teach science or have negative attitudes towards science due in many cases to their own personal experiences with science education (Tosun, 2000). At the middle grades level, most teacher candidates have more preparation in one or two science content areas and as a result typically have greater content knowledge depth than elementary teachers. At the secondary level, science teachers have certification to teach one, two, or multiple content areas and are considered to have significant content expertise. Typically, secondary teachers hold at least a Bachelor’s degree in the content they teach. This system of silos can be summarized with a question asked to each level of teacher, “What do you teach?” The elementary teacher might say “children,” the middle school teacher might say “adolescent kids” or “science”, and the secondary teacher would say “chemistry” or “biology.” Content knowledge is needed by all science teachers at all levels. College does not prepare teacher candidates to teach all the content, concepts, and facts that teachers will encounter while in the classroom. Teacher candidates need examples of convenient approaches to learning more science content and pedagogy that can become part of their lifelong learning as professional educators.

Pedagogical Content Knowledge

In addition to knowing the content, science educators at all levels also need the pedagogical skills to teach the content, which is often referred to as pedagogical content knowledge (PCK). As Bailie (2017) noted, “PCK has…become a ubiquitous word in the preparation of teachers” (p. 633). Science methods instructors have consistently devised activities and lessons to guide teacher candidates to develop the necessary skills for teaching science. For example, Akerson, Pongsanon, Park Rogers, Carter, and Galindo (2017) implemented a lesson study activity in their science methods course that resulted in the early development of PCK for teaching the nature of science. Hanuscin and Zangori (2016) asked teacher candidates to participate in an innovative field experience that led to the beginning development of PCK for teaching in ways consistent with the NGSS. Finally, Hawkins and Park Rogers (2016) added in video-based group reflections to lesson planning and enactment to support the development of teacher candidates’ PCK. And although Davis and Smithey (2009) state that teacher educators may only be able to support the development of ‘PCK readiness’ because teacher candidates do not have much teaching experience to draw upon, it is widely agreed that strong science PCK is a necessity for successful science teaching.

Abell, Appleton, and Hanuscin (2010) state that the “main aim of a science methods course is to produce graduates who…have a ‘starter pack’ of PCK for science teaching” (p. 81). They go on to suggest that teacher candidates in methods courses should not only learn about science content, curriculum, and the nature of science, but also how to elicit students’ understandings of science, use that data to make informed decisions, and have the knowledge and skills to design instruction that support student learning. These results draw upon the foundational characteristics of PCK that science teachers should have (Veal & MaKinster, 1999). However, as Magnusson, Krajacik, and Borko (1999) and Veal and MaKinster (1999) note, content knowledge is the foundation for PCK. This leads science teacher educators to ask, how does one support the simultaneous development of science content knowledge, pedagogy, and science PCK?

Professional Learning Community

Teacher candidates at all levels learn science content and pedagogy so that they are able to teach the concepts in the appropriate manner to K-12 students. While in college, teacher candidates have the opportunity to enroll and complete science and pedagogy courses, but what happens once they begin their professional career? How do teachers maintain relevancy and stay current with new content or pedagogical practices throughout their career? Lifelong learning of science content and pedagogical strategies should be an emphasis in all methods courses. This is often accomplished by establishing and/or participating in a professional learning community (PLC) or communities of practice. One outcome of a PLC is to increase teacher candidates’ self-efficacy in science by exposing them to inquiry in science during their methods course (Avery & Meyer, 2012) as well as help them to learn more science content. A properly formed PLC can connect and scaffold the teacher candidates’ transition from pre to inservice educator establishing them as lifelong learners (e.g., Akerson, Cullen & Hanson, 2009). Without a proper transition, the elementary teacher candidates with low self-efficacy can become in-service teachers who are less likely to seek out professional development that would support improved science teaching (Ramey-Gassert, et al, 1996). In addition, it has been found that if elementary teacher candidates are uncertain about science then they are less likely to use inquiry oriented pedagogy (Appleton & Kindt, 1999; Ramey-Gassert, & Shroyer, 1992) and the performance of their students can be affected (Bybee et al, 2006).

One method to break the continuous cycle of unprepared elementary (K-6) teachers to teach science is to connect them to a community of practitioners during their science methods class as well as throughout their career. One such community could begin in a science methods course and exist as an on-line platform that allows them easy access to content, new pedagogical techniques, and classroom activities that they can rely upon throughout their career. This community could become a source of guidance as they continue to grow as professional educators of science no matter what grade level they end up teaching. The learning community that the methods instructors establish in their science methods courses must involve the learning of pedagogical strategies and content. Dogan, Pringle, and Mesa (2016) conducted a review of empirical studies investigating PLCs and determined that PLCs increased the science teachers’ content knowledge, PCK, and collaboration about student learning. Educator preparation programs are increasingly using the Internet to deliver and supplement their science methods courses with science content projects, courses, articles, and professional networks/forums. For example, Eicki (2017) studied how Edmodo could be used to create an online learning community for learning to teach science. Part of this learning community involved the communication and exchange of lesson plans and opinions about lessons in an online platform.

Given the vast nature of the Internet, it can sometimes be difficult to gauge the quality, applicability, or ‘user-friendliness’ of Internet resources. To help instructors with this problem, there are multiple legitimate educational organizations that have sites for teachers, videos of instruction, and student- and teacher-based content. For example, in this article, we present multiple cases regarding the use of the National Science Teachers Association (NSTA) Learning Center (LC) as a website in which teacher candidates can learn more about science content, find pedagogical tools that match the content, and begin to see the NSTA LC as a learning community. While this article is not an endorsement of the NSTA Learning Center, we are using the Learning Center as an example of how this site can support teacher candidates in developing the dispositions to become lifelong learners in the science education community.

Context

In science methods courses, instructors try to bring together pedagogy that is appropriate to the science content at the level in which the teacher candidates will teach. The problem with developing one course that fits all students is that science methods courses are often geared toward the developmental level of the future K-12 students. Research evidence suggests that if elementary teachers feel unprepared or negative towards science then they are less likely to teach science to their students (Ramey‐Gassert, Shroyer, & Staver, 1996). The disposition to teach science content using appropriate pedagogy is needed. At the elementary level – which can span pre-kindergarten to eighth grade in some states – most methods courses are focused on broader PCK because it is nearly impossible for the teacher candidates to know the science content across all four science disciplines. However, while elementary standards at each grade level require more integration of concepts and less depth of science-specific knowledge, to choose the appropriate pedagogy to teach content well, one must first know the content itself well. Unfortunately, most elementary teacher candidates only take 2-3 science courses as part of their general education requirements that do not prepare them to teach the breadth nor the depth of science concepts in the standards.

Many middle level certificates overlap grade spans with elementary and secondary, so there exists the potential to have a pedagogically strong teacher needing to teach depth in a science or multiple science areas. For example, in South Carolina elementary certification includes grades 2-6 and middle school includes grades 5-8. On the other extreme, a science discipline teacher may be called upon to teach other courses at the middle school. Middle schools across the country may require science teachers to be proficient in all areas of science (e.g., biology, physics, geology, Earth science, astronomy, and chemistry) since the state or national standards are more integrated or each grade level requires multiple science areas. For example, many states have a general middle grades certificate for science, but Oregon has middle level certificates in each of the science disciplines. How can a middle grades teacher be proficient in all disciplines of science? Just taking the introductory courses in each of the four major disciplines would equate to 32 hours of science (lecture and lab for all courses); and, of course, none of these courses would likely teach how to teach these content areas. In addition, even if they successfully completed these courses, odds are the courses do not cover the basic science content they will teach.

The NSTA Learning Center is an online resource that can be utilized for preservice and inservice teaching and learning by providing a professional learning community in which teachers learn from one another by sharing content knowledge, lesson plans, and strategies. The NSTA Learning Center is an online repository of articles, book chapters, webinars, and short courses aimed at improving the content and pedagogical knowledge of preservice and inservice teachers, connecting teachers through online chats, and delivering depth and breadth of science content for primary, middle, and secondary teachers. The science content, interactive learning modules, and articles are peer reviewed and vetted by content and pedagogical experts. The implementation of this type of content has been described as blended learning by Byers and Mendez (2016). Blended learning involves using online resources with “on-site efforts” to teach students. The case studies in this article show how blended learning, inquiry, project-based learning, and independent learning can be supported to provide science content knowledge, pedagogical knowledge and PCK to teacher candidates. While elementary and middle school science methods courses cannot provide all the science content and pedagogical strategies they will teach and use, these science methods courses can provide an opportunity to demonstrate and model effective lifelong learning skills.

Early Childhood Teacher Candidates

Case 1

One university offers certification through an early childhood (K-3) Masters of Education (MEd) program. The science methods course is designed to support teacher candidates learning of 1) pedagogical content knowledge, 2) science content knowledge; and 3) connect them to a community of elementary teaching practitioners to support their life-long learning of the teaching of elementary science. The learning experiences provided them with an understanding of science teaching and learning from the perspective of both learner and teacher. Though this is not a science content course, the class does utilize model lessons that exemplify science standards elementary teachers are expected to teach as outlined in national science standards such as the Next Generation Science Standards (NGSS Lead States, 2013).

In order to foster long-term and sustained improvement in standards-based science teaching and learning in elementary schools the teacher candidates are asked to demonstrate their understanding of these standards documents by engaging in lesson development during the semester that exemplifies not only the content standards but also exemplary science pedagogical methods grounded in scientific inquiry. The NSTA LC allows the teacher candidates to encounter the use of the 5E method within classroom activities via articles in Science & Children as well as Science Scope, two practitioner publications from NSTA. In addition, NSTA LC e-book chapters are regularly utilized throughout the course. The elementary teacher candidates are required to use the online site as a source of articles about teaching science, as well as basic educational research supporting practice. These NSTA LC resources are used by the teacher candidates to help them develop lesson plans that are based on activities that excite students as well as connect to science content standards.

One aspect of the NSTA LC that the teacher candidates find the most rewarding is the ability to find articles written by other elementary teachers in practitioner journals that have great ideas for their classrooms. For example, when designing lessons focused on the Engineering Design Process many teacher candidates base their lessons on articles and lesson plans found on the LC.  During focus group interviews after the course, one teacher candidate stated that she found the “…readings were relatable and things that we could see doing in our classrooms. So it was really interesting to like keep going in the article.”

The teacher candidates in this M.Ed. program must complete at least one SciPack, read 5 Science Objects, watch two Webinars, listen to two Podcasts, and participate in online discussions with science teachers outside of their class. Teacher candidates also post comments and read the forum to look at past interactions between educators. The Webinars allowed them to listen to educational researchers and scientists discuss new educational policies. Teacher candidates’ use of these resources within the NSTA LC were easily checked on the site as the Learning Center tracks the use of all the resources by students. Thus, the science teacher educator can see if they have used assigned resources such as the SciPacks. The best part of the LC in the teacher candidates’ view is that they were able to put all of the resources they use into a section of the center called “My Library” and those recourses became theirs for the rest of their career! During the post course focus group interviews, teacher candidates mentioned that one down side of the NSTA LC was the cost for a year subscription. But as one teacher candidate said, “Textbooks are sometimes even pricier but with these articles you could save them. Every article I read I saved because I liked the activities that they had.”

The teacher candidates were required to use the Science Objects and SciPacks to learn science content new to them or review content that they were uncomfortable teaching. One goal of the online communities is to illustrate to them that the SciPacks could not only support their content background but usually contain a list of the most common alternative conceptions held by students thus supporting their lesson planning. At the beginning of the class the teacher candidates had voiced concern about not knowing their students’ alternative conceptions due to their own limited science background so this practice alleviated this concern. As one teacher candidate stated, “The articles were very practical and could be used directly in our classroom.  Science is the subject I am most hesitant to teach but the readings made me see how I could teach it.” Several teacher candidates mentioned that they would buy the subscription in future years so they could continue as a member of this community of practice as in-service teachers.

Elementary Teacher Candidates

Case 2

At one Texas university, the NSTA LC has been adopted as the textbook for the Elementary Science Methods course and has been used for the past five years. Teacher candidates have access to the LC during their final methods block of courses prior to student teaching and during student teaching the following semester. Teacher candidates seeking the elementary teaching credential (EC-6) are required to complete four courses in science that must include one course in introductory Biology, Physical Science and Earth Science in addition to pedagogical courses. Typically, teacher candidates seeking elementary certification enroll in science courses for non-science majors. As these are general science courses, there are no guarantees that these courses prepare future elementary teachers in the science content they will be required to teach their future students in the EC-6 classroom.

One of the goals of the course is to prepare teacher candidates to use assessment data to plan and deliver targeted instruction. On the first day of class, teacher candidates complete the latest released version of the State of Texas Assessment of Academic Readiness 5th grade science assessment to develop familiarity with the state assessment and to assess their understanding of the elementary science content they are accountable to teach upon completion of their degree.   Preservice teacher results on the 5th Grade STAAR (state level assessment in Texas) released assessments tend to be disappointing in spite of earning passing grades in the university level science courses. The disconnect between scores on the 5th grade STAAR is in part due to lack of alignment of university science courses that elementary teacher candidates complete and the content they will teach. This creates a dilemma for the science methods instructor. Should class time be utilized and designed to prepare elementary teacher candidates in PCK to remediate content knowledge or stay focused on pedagogy? Future teachers need to be prepared in both content and pedagogy. One without the other is problematic.

To address this issue, the teacher candidates analyze the results of their personal STAAR score. Questions on the released test are categorized by science discipline, and as a PLC they work together to identify the state standard and the Texas Essential Knowledge and Skills (TEKS) each item addresses (Texas Education Agency, 2017). During this process, teacher candidates identify their areas of science content weakness and complete the appropriate NSTA Indexer in the LC for each content area in need of further development. The course instructor identifies and suggests NSTA Professional Development Indexer assessments that align to the content subsections of the STAAR assessment to help guide teacher candidates. Table 2 shows the science content TEKS and the appropriate corresponding Indexer Assessment.

Table 2 (Click on image to enlarge)
Relationship between TEKS and NSTA Indexers

Typically, teacher candidates complete 3-4 of the NSTA Indexer assessments as a result of the STAAR analysis. The number of Indexer assignments has ranged from 1 to 6, which depends upon their background content knowledge. For the purpose of this course, the teacher candidates were required to complete both the pre and posttests. While the STAAR was used due to contextual location of the university, the NSTA Indexer can be used nationally. Once teacher candidates complete their Indexer assessments, the methods professor works with each candidate to select up to two NSTA SciPacks to remediate their content knowledge in the targeted areas. SciPacks are online modules that are completed outside of class. On average, the teacher candidates improve their content scores on the NSTA Indexer by 40% when they take the posttest compared to the initial indexer score. Elementary teacher candidates have shared anecdotally that the SciPacks are very challenging. Using the Indexer and SciPacks allows the instructor to focus on PCK in class and improve teacher candidate content knowledge without sacrificing class time that is dedicated for pedagogy. The analysis of personal assessment data from an online science teacher site provided the scaffolding for these teacher candidates to become lifelong learners.

Case 3

In 2012, North Carolina Department of Public Instruction sent three representatives to Washington, DC to consult on the development of the Next Generation Science Standards. As representatives for one of the lead states for standards adoption (NGSS Lead States, 2013), the representatives were also charged with curricular development for K-12 science classrooms in North Carolina and by extension, science teacher education and professional development.  NGSS considers science learning within a 3-dimensional framework: disciplinary core ideas, science and engineering practices, and crosscutting concepts. Shortly thereafter in preparation for NGSS standards adoption, the elementary science methods course was reconceived, using the NSTA LC. The use of NSTA LC addressed a number of concerns.

The elementary undergraduate teacher candidates in the university’s programs are extremely diverse. They have attended all manner of public, private, parochial, and home schools. As a result, their level of science pedagogical understanding is not uniform. Before enrolling in the science methods course, all teacher candidates had to pass at least one college-level life science and one physical science course. Performing well in these courses provided no guarantee of attainment of the extensive science content needed to support K-6 science content knowledge.  These teacher candidates also take the NSTA Indexer, content pretest, as the first step in designing a self-study program that will fill the holes in each teacher candidates’ science content knowledge. Teacher candidates take the same Indexer posttest to determine how well they have developed their content knowledge through self-study over the semester.

The teacher candidates must contend with having to complete their studies in light of securing and sustaining employment, and using the NSTA LC allows them the course schedule flexibility to become a certified teacher. In other words, if they cannot work, they cannot complete their studies. For many, maintaining employment interferes with their studies. Using the NSTA LC allows the teacher candidates to continue to work on their classroom assignments in between their employment responsibilities. By being able to access their assignments using their e-textbook and having access to other preservice and inservice professionals, they can study, ask questions, and share their concerns without carrying heavy textbooks or waiting for office hours. The PLC emerged from the need to find a different pedagogical approach to science methods due to the personal nature of the candidates.

The University’s motto is, ‘Enter to learn, depart to serve.’ The responsibility to promote social justice and lifelong learning is palpable throughout the campus. The teacher candidates are required to buy access to their NSTA LC e-textbook for a year. This allows them to use this resource through their methods course and student teaching field experience in which they have time to strike up online discussions of national and regional social justice issues.

Course evaluations and online data about the teacher candidates’ usage of the NSTA LC indicated that teacher candidates who demonstrate the highest level of science efficacy, as measured by course grades and use of the online resources, were also the ones who have taken greatest advantage of participation in the online learning community. For example, several teacher candidates mentioned how they increased their excitement and comfort with searching for and learning about science content and science lessons. Those who have less science efficacy are reluctant to communicate and ask questions with practicing teachers in the online forums despite knowing its value. Data gathered through the NSTA LC administrator’s page, indicated that as science efficacy increased over the span of the science methods course, teacher candidates took advantage of the online science learning community. Since all teacher candidates were required to maintain an online ‘portfolio’ (Professional Development Indexer or Learning Plan), there was an increase in the amount of online artifacts (downloadable chapters, articles, lesson plans, podcasts, and videos) from the beginning of the year to the end.

The adoption of the NSTA LC supports teacher candidates to conceive science from a 3-dimensional, national perspective, rather than a 2-dimensional, state perspective. It allowed the diverse teacher candidates to personalize their learning of science content with the accessible 24/7 access to content, pedagogical strategies, and online discussions of various social justice issues. The improvement of lifelong learning through the use of an online professional development community requires continued study, but the outcomes are most promising.

Elementary and Middle Level Teacher Candidates

Case 4

In one university in Idaho, teacher candidates seeking an elementary (K-8) certification take one science methods course, typically at the junior or senior level, one or two semesters before they embark on their year-long field experience. Prior to taking this course, PSTs must have taken two natural science courses with labs (for a total of 8 credit hours); these prerequisites run the gamut from geosciences to astronomy and from biology to chemistry. On the first day of class, teacher candidates are asked to describe their feelings about teaching science at the elementary level. The responses are typically split evenly, with half providing some version of “scared” and half providing some version of “excited.” The case describes a journey into how the implementation of NSTA LC evolved over a year of teaching a science methods course.  The NSTA LC was first implemented into this elementary science methods course in the Spring of 2016 with three goals in mind: 1) to introduce teacher candidates to a supportive professional community; 2) to provide science content knowledge support when needed; and 3) to use practitioner articles to illustrate topics in the course.

As previously noted, the NSTA LC houses lesson plans, books and book chapters, and even opportunities for conferences and professional development. By introducing teacher candidates to the NSTA LC, the goal is to motivate them to find NSTA to be a useful resource and become a lifelong learner. These hopes seemed to bear out, as evidenced by the comments received from teacher candidates in course evaluations over five semesters that they appreciated the LC because they could keep documents in their library forever and refer back to them and the LC when teaching. One teacher candidate stated her appreciation of the resource by stating, “The NSTA LC had so many more resources and articles (written by a variety of authors) that we would not have read in a book,” while another teacher candidate said, “I like that I can keep this account and use the information in my own classroom.”

Given the wild variations in content knowledge encountered in the teacher candidates in the course, the implementation of the NSTA LC resources were used to immediately support teacher candidates in their science understandings for the course, and also demonstrate how one could use the LC to learn/review content for future teaching. Throughout the semester, the teacher candidates were required to complete three Science Objects that related to elementary science centers (Kittleson, Dresden, & Wenner, 2013) they taught during the semester. Unlike the case studies discussed above, candidates in this class were not required to complete the entire NSTA PD Indexer for the course, but rather strongly encouraged to complete this and ‘brush up’ on content prior to their science PRAXIS tests. Indeed, some candidates did recognize the usefulness of the LC in terms of boosting content knowledge that then enabled them to better structure their science centers, and by citing how it could support “individual learning” for the PRAXIS tests and in their careers. Beyond qualitative responses on course evaluations, downloaded statistics from each class cohort on the NSTA LC paint a promising picture: The majority of candidates downloaded at least ten Science Objects and SciPacks throughout their semester in the course. While downloading these resources does not necessarily mean that candidates completed/intend to complete them, anecdotally, teacher candidates shared that they often download the Science Objects and SciPacks as a preventative measure of sorts, thinking about what they may need to learn/review once they have their own classrooms. It is certainly encouraging that PSTs acknowledge they may have gaps in their content knowledge and see that the NSTA LC may be a way to help fill those future gaps.

The use of practitioner articles found in the NSTA LC brings the realities of science activity implementation into the classroom. The articles connect theory and practice and illustrate what elementary science can look like. On average, 30 NSTA practitioner journal articles (from Science and Children and Science Scope) are assigned for teacher candidates to read throughout the semester. These readings cover topics such as integrating the NGSS and Common Core State Standards (CCSS, National Governors Association Center for Best Practices & Council of Chief State School Officers, 2010) , argumentation, science for all students, assessment, and engineering at the elementary level. Many teacher candidates commented on the usefulness of these articles, stating, “The articles that we read were beneficial and related to the discussions we had in the classroom,” and “I will refer back to all the articles when I am teaching.” And while the majority of articles downloaded by teacher candidates were the assigned readings, nearly all of them downloaded additional articles related to other assignments in the course (lesson plans, student misconceptions, etc.), indicating that teacher candidates found the articles to be useful resources. The ensuing discussions about content from the articles helped to establish an atmosphere of professional exchange of ideas to teaching science concepts that they intend to use well into their careers as lifelong learners.

Case 5

This elementary and middle level science methods course is taught at a university in the southeast. The course focuses on the PCK necessary to teach science, which includes science content knowledge and instructional strategies. Since the focus is on teacher candidates who will become certified to teach from grade 2 to 8, the focus is on general science pedagogy with content-specific examples so that activities and demonstrations can show the depth of concepts at different grade levels within the spiral curriculum. For example, two weeks are spent discussing misconceptions related to seasons and moon phases. The content is appropriate in that the activities relate the content at the fourth and eighth grade levels due to the science standards in the state. While discussing how to introduce and conduct activities, teachers need to know depth of knowledge so that they can address potential and real misconceptions. The teacher candidates must learn the content of why there are seasons and why there are different phases of the moon not just the facts of seasons and the names of phases of the moon.

The course emphasizes learning appropriate science content knowledge for specific lesson plans so that inappropriate activities and misconceptions are not taught. While the course grade and objectives cannot require the students to know all science content knowledge in the grade 2-8 standards, it is a learning outcome that the teacher candidates can research the content needed for that lesson plan. Reading book chapters and articles and communicating with classroom teachers in an online platform helped teacher candidates understand how to teach specific topics better as evidenced by their graded and implemented lesson plans over the course of the semester. The NSTA LC was chosen for its ease of use and type of activities that could be used by teacher candidates so that they could learn content, develop pedagogical skills, and participate in a community of teachers who share ideas.

The teacher candidates in the combined elementary and middle grades science methods course subscribe to the NSTA LC for six months. During this time period they download any content they feel they can and will use in the future. These downloaded resources are theirs for a lifetime. The NSTA LC is integrated into a project for integrating science content and pedagogy. The project requires the teacher candidates to take a pre-test exam, gather online resources from the site’s resources, complete mini-courses about the science topic, and complete a posttest after six weeks. While not part of the course grade, participating and engaging in the online professional discussions and posts is encouraged so that the teacher candidates learn to become part of an extended PLC. Besides the use of the NSTA LC as a project assignment, the website is used during normal instruction to show other possible activities, lesson plans, and explanations of concepts. The project and use of the NSTA LC is more of a self-guided endeavor because when they become classroom teachers they will have to learn more science content on their own and this is one effective method for doing it. Online learning of science content within a community of science teachers is how current teachers develop and grow the depth of their topic-specific PCK. This project and use of the NSTA LC allows teacher candidates to learn this process in a controlled environment in which the content is controlled and other professionals can assist in the learning to implement science content.

Concluding Thoughts

In summary, this article showcased multiple ways to use the online NSTA Learning Center as part of pK-8 science methods courses. The LC has been used as a method to learn topic-specific PCK in multiple contexts as well as an interactive tool for teacher candidates to investigate general pedagogy. In all of the cases there is anecdotal evidence concerning the effectiveness of using the LC either as an addition to one’s course or in lieu of the course textbook. However, as can be seen in a number of the cases the LC is not just a tool one can use in the science methods course but can become part of the teacher candidates’ journey as professional educators to become lifelong learners as they develop PCK. The authors feel that these benefits far outweigh the cost of the use of the LC and put the teacher candidates on the road to becoming highly efficient teachers of science. As one teacher candidate stated:

I found the resources provided for us….like we got NSTA. Most of those articles were pretty applicable. They had ideas you could use in your own classroom. It is so beneficial. It was pricey but it was worth it as we used it every week. The site had very valuable information that I would use in the future.

Part of establishing a community of lifelong learners is to develop the context in which teacher candidates can learn from multiple resources, participate in active dialogue about teaching and learning science, and develop appropriate lesson plans and activities using diverse sources of science content and pedagogy. The introduction and discussion of forming a community of lifelong learners necessitates the need for research to determine the benefits of using online, interactive, and collaborative sites in developing science teacher candidates. The idea and implementation of a single textbook and downloaded articles are gone. The new generation of teacher candidates need more dynamic and interactive methods for developing science content and pedagogy. Online sites for promoting lifelong learning of content, pedagogy, and PCK will become the standard in the near future.

References

Akerson, V. L., Cullen, T. A., & Hanson, D. L. (2009). Fostering a community of practice through a professional development program to improve elementary teachers’ views of nature of science and teaching practice. Journal of research in Science Teaching46, 1090-1113.

Appleton, K., & Kindt, I. (1999). Why teach primary science? Influences on beginning teachers’ practices. International Journal of Science Education21, 155-168.

Avery, L. M., & Meyer, D. Z. (2012). Teaching Science as Science Is Practiced: Opportunities and Limits for Enhancing Preservice Elementary Teachers’ Self‐Efficacy for Science and Science Teaching. School Science and Mathematics112, 395-409.

Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, Co: BSCS5, 88-98.

Byers, A., & Mendez, F. (2016). Blended professional learning for science educators: The NSTA Learning Center. Teacher learning in the digital age: Online professional development in STEM education, 167

Dogan, S., Pringle, R., & Mesa, J. (2016). The impacts of professional learning communities on science teachers’ knowledge, practice and student learning: A review. Professional Development in Education, 42, 569-588.

Ekici, D. I. (2017). The Effects of Online Communities of Practice on Pre-Service Teachers’ Critical Thinking Dispositions. Eurasia Journal of Mathematics Science and Technology Education13, 3801-3827.

Kittleson, J., Dresden, J., & Wenner, J.A. (2013).  Describing the Supported Collaborative Teaching Model: A designed setting to enhance teacher education. School-University Partnerships, 6(2), 20-31.

National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common Core State Standards. Authors: Washington D.C.

NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

Ramey-Gassert, L., & Shroyer, M. G. (1992). Enhancing science teaching self-efficacy in preservice elementary teachers. Journal of Elementary Science Education4, 26-34.

Ramey‐Gassert, L., Shroyer, M. G., & Staver, J. R. (1996). A qualitative study of factors influencing science teaching self‐efficacy of elementary level teachers. Science Education80, 283-315.

Veal, W.R., & MaKinster, J.G. (1999). Pedagogical content knowledge taxonomies. Electronic Journal of Science Education, 3(4). Retrieved from http://ejse.southwestern.edu/article/view/7615/5382

Vick, M.E. (2018). Designing a third space science methods course. Innovations in Science Teacher Education 3(1). Retrieved from https://innovations.theaste.org/designing-a-third-space-science-methods-course/

Taking Our Own Medicine: Revising a Graduate Level Methods Course on Curriculum Change

Citation
Print Friendly, PDF & Email

Kraus, R.V., & Shapiro, L.J. (2018). Taking our own medicine: Revising a graduate level methods course on curriculum change. Innovations in Science Teacher Education, 3(4). Retrieved from https://innovations.theaste.org/taking-our-own-medicine-revising-a-graduate-level-methods-course-on-curriculum-change/

by Rudolf V. Kraus, Rhode Island College; & Lesley J. Shapiro, Keene State College

Abstract

Implementing the Next Generation Science Standards presents challenges for practicing teachers. This article presents our reflection on creating and revising a class designed to teach inservice teachers about curriculum change and the Next Generation Science Standards. In its initial iteration, the course was designed to address the intellectual and practical aspects of this change in standards. Interaction with teachers, as well as gathered course reflections, indicated that addressing the process of curriculum change is both a practical task and an emotional one.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

American Museum of Natural History. (2018, May 11). Five tools and processes for translating the NGSS into instruction and classroom assessment. Retrieved from https://www.amnh.org/explore/curriculum-collections/five-tools-and-processes-for-ngss/

Backus, L. (2005). A year without procedures: Removing procedures from chemistry labs creates opportunities for student inquiry. Science Teacher, 72(7), 54-58.

Bupp, N. (1996). The change curve. In High-Performance work organization (HPWO) partnership seminar. Placid Harbor: MD, 4-11

Bybee, R. W. (1995). Science curriculum reform in the United States. In R.W. Bybee & J.D. McInerney (Eds), Redesigning the science curriculum (pp. 12-20). Washington DC: National Academies Press.

Bybee, R. W. (2014). NGSS and the next generation of science teachers. Journal of Science Teacher Education, 25, 211-221.

Elrod, P. D., & Tippett, D. D. (2002). The “death valley” of change. Journal of Organizational Change Management, 15, 273-291.

Fraser, S. P., & Bosanquet, A. M. (2006). The curriculum? That’s just a unit outline, isn’t it?. Studies in Higher Education, 31, 269-284.

Herron, M. D. (1971). The nature of scientific enquiry. The School Review, 79, 171-212.

Liu, Y., & Perrewe, P. L. (2005). Another look at the role of emotion in the organizational change: A process model. Human Resource Management Review, 15, 263-280.

Mangin, M. (2016). Teacher leadership and high-stakes teacher evaluation: Complementary or conflicting approaches to improvement? Journal of School Leadership, 26, 938.

Moreno, N. P. (1999). K-12 science education reform–a primer for scientists. Bioscience, 49, 569.

National Research Council. (2012) A framework for K-12 science education: practices, crosscutting concepts, and core ideas. Washington DC: National Academies Press.

Prophet, B., & Hodson, D. (1988). The science of common things: A case study in social control. History of Education, 17, 131-147.

Pruitt, S. L. (2015). The Next Generation Science Standards: Where are we now and what have we learned?. Science & Children, 52(9), 7-9.

Rutherford, F., & Ahlgren, A. (1990). Science for all Americans. New York, NY: Oxford University Press.

Sotelo, B., & Livingood, R. A. (2015). A qualitative case study for technology acceptance using TAM and the Kübler-Ross models. International Journal of Strategic Information Technology and Applications, 6(4), 20-29.

Stigler, J. W., & Hiebert, J. (2009). The teaching gap: Best ideas from the world’s teachers for improving education in the classroom. New York: Simon and Schuster.

Wiggins, G. P., & McTighe, J. (2011). The understanding by design guide to creating high-quality units. Alexandria VA: ASCD.

Wren, K. (2014). Before the Common Core, there was science for all Americans the landmark AAAS book continues to influence education reform 25 years after it defined the concept of science literacy. Science, 345, 1012-1013.

Yager, R. (2000). The history and future of science education reform. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 74(1), 51.

Yager, R. E. (2015). Biology education in an era of acronyms. The American Biology Teacher, 77, 563-564

A Blended Professional Development Model for Teachers to Learn, Implement, and Reflect on NGSS Practices

Citation
Print Friendly, PDF & Email

Dare, E.A., Ellis, J.A., & Tyrrell, J.L. (2018). A blended professional development model for teachers to learn, implement, and reflect on NGSS practices. Innovations in Science Teacher Education, 3(3). Retrieved from https://innovations.theaste.org/a-blended-professional-development-model-for-teachers-to-learn-implement-and-reflect-on-ngss-practices/

by Emily A. Dare, Michigan Technological University; Joshua A. Ellis, Michigan Technological University; & Jennie L. Tyrrell, Michigan Technological University

Abstract

In this paper we describe a professional development project with secondary physics and physical science teachers. This professional development supported fifteen teachers in learning the newly adopted Next Generation Science Standards (NGSS) through integrating physical science content with engineering and engineering practices. Our professional development utilized best practices in both face-to-face and virtual meetings to engage teachers in learning, implementing, and reflecting on their practice through discussion, video sharing, and micro-teaching. This paper provides details of our approach, along with insights from the teacher participants. We also suggest improvements for future practice in professional development experiences similar to this one. This article may be of use to anyone in NGSS or NGSS-like states working with either pre- or in-service science teachers.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Angle, J. (2011). Drivers, start your glue guns: Using model stock cars to explore motion and force concepts. Science Scope, 35(4), 45–51.

Banilower E. R., Heck D. J., & Weiss I. R. (2007). Can professional development make the vision of the standards a reality? The impact of the national science foundation’s local systemic change through teacher enhancement initiative. Journal of Research in Science Teaching, 44, 375–395.

Banilower, E. R., Smith, P. S., Weiss, I. R., Malzahn, K. A., Campbell, K. M., & Weis, A. M. (2013). Report of the 2012 national survey of science and mathematics education. Chapel Hill, NC: Horizon Research, Inc.

Blumenfeld, P., Soloway, E., Marx, R. W., Guzdial, M., & Palincsar, A. (1991). Motivating project-based learning: Sustaining the doing, supporting the learning. Educational Psychologist, 26, 369–398.

Brophy, S., Klein, S., Portsmore, M., & Rogers, C. (2008). Advancing engineering education in P-12 classrooms. Journal of Engineering Education, 97, 369–387.

Cantrell & Hughes. (2008). Teacher efficacy and content literacy implementation: An exploration of the effects of extended professional development with coaching. Journal of Literacy Research, 40, 95-127.

Capps D. K., Crawford B.A., & Constas M. A. (2012). A review of empirical literature on inquiry professional development: alignment with best practices and a critique of the findings. Journal of Science Teacher Education, 23, 291–318.

Community for Advancing Discovery Research in Education. (2017). Emerging design principles for online and blended teacher professional development in K-12 STEM education. Waltham, MA: Education Development Center, Inc. Retrieved from http://cadrek12.org/resources/emerging-design-principles-online-and-blended-teacher-professional-development-k-12-stem.

Corcoran, T. B. (1995). Transforming professional development for teachers: A guide for state policymakers. Washington, DC: National Governors’ Association.

Cunningham, C. M., & Carlsen, W.S. (2014) Teaching Engineering Practices. Journal of Science Teacher Education, 25, 197-210.

Dare, E. A., Ellis, J. A., & Roehrig, G. H. (2014). Driven by beliefs: Understanding challenges physical science teachers face when integrating engineering and physics. Journal of Pre-College Engineering Education Research, 4(2), 47-61.

Dare, E. A., Rafferty, D., Scheidel, E., & Roehrig, G. H. (2017). Flood rescue: A gender-inclusive integrated STEM curricular unit. K-12 STEM Education, 3, 193-203.

Darling-Hammond. L. (2005). Teaching as a profession: Lessons in teacher preparation and professional development. Phi Delta Kappan, 86, 235-240.

Ellis, J., Dare, E., Voigt, M., & Roehrig, G. (2015). Rethinking the egg drop with NGSS science and engineering practices. Michigan Science Teachers Association Journal, 60(2), 61-66.

Fennema, E., Carpenter, T. P., Franke, M. L., Levi, L., Jacobs, V. R., & Empson, S. B. (1996). A longitudinal study of learning to use children’s thinking in mathematics instruction. Journal for Research in Mathematics Education, 27, 403-434.

Garet, M. S., Porter, A. C. , Desimone, L., Birman, B. F., & Yoon, K. S. (2001).What makes professional development effective? Results from a national sample of teachers. American Education Research Journal, 38, 915–945.

Hirsch, L. S., Carpinelli, J. D., Kimmel, H., Rockland, R., & Bloom, J. (2007). The differential effects of pre-engineering curricula on middle school students’ attitudes to and knowledge of engineering careers. Published in the proceeding of 2007 Frontiers in Education Conference, Milwaukee, WI.

Koszalka, T., Wu, Y., & Davidson, B. (2007). Instructional design issues in a cross-institutional collaboration within a distributed engineering educational environment. In, T. Bastiaens & S. Carliner (Eds.), Proceedings of Work Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 2007 (pp. 1650–1657). Chesapeake, VA: AACE.

Kubitskey, B. (2006). Extended professional development for systemic reform. Unpublished doctoral dissertation. Ann Arbor: University of Michigan.

Loucks-Horsley, S., Hewson, P. W., Love, N., & Stiles, K. E. (1998). Designing professional development for teachers of science and mathematics. Thousand Oaks, CA: Corwin Press.

National Research Council (1996). National science education standards. Washington, DC: National Academy Press.

National Research Council. (2012). A framework for K-12 science education: Practice, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: National Academies Press.

Ortmann, L. (2015). Disciplinary literacies in STEM integration: An interpretive study of discourses within classroom communities of practice (Doctoral Dissertation). Retrieved from ProQuest Digital Dissertations. (3727938)

Richardson, V. (2003). The dilemmas of professional development. Phi Delta Kappan, 84, pp. 401–406.

Schnittka, C. G. (2009). Save the penguins STEM teaching kit: An introduction to thermodynamics and heat transfer. Auburn, AL: Auburn University.

Schön, D. A. (1983). The reflective practitioner: How professionals think in action (Vol. 5126). Basic books.

Supovitz, J. A., & Turner, H. M. (2000). The effects of professional development on science teaching practices and classroom culture. Journal of Research in Science Teaching, 37, pp. 963–980.

York-Barr, J., Sommers, W.A., Ghere, G.S., & Montie, J.K. (2006). Reflective practice to improve schools: An action guide for educators (2nd ed.). Thousand Oaks, CA: Corwin.

Cobern and Loving’s Card Exchange Revisited: Using Literacy Strategies to Support and Enhance Teacher Candidates’ Understanding of NOS

Citation
Print Friendly, PDF & Email

Allaire, F.S. (2018). Cobern and Loving’s card exchange revisited: Using literacy strategies to support and enhance teacher candidates’ understanding of NOS. Innovations in Science Teacher Education, 3(3). Retrieved from https://innovations.theaste.org/cobern-and-lovings-card-exchange-revisited-using-literacy-strategies-to-support-and-enhance-teacher-candidates-understanding-of-nos/

by Franklin S. Allaire, University of Houston-Downtown

Abstract

The nature of science (NOS) has long been an essential part of science methods courses for elementary and secondary teachers. Consensus has grown among science educators and organizations that developing teacher candidate’s NOS knowledge should be one of the main objectives of science teaching and learning. Cobern and Loving’s (1998) Card Exchange is a method of introducing science teacher candidates to the NOS. Both elementary and secondary teacher candidates have enjoyed the activity and found it useful in addressing NOS - a topic they tend to avoid. However, the word usage and dense phrasing of NOS statements were an issue that caused the Card Exchange to less effective than intended. This article describes the integration of constructivist cross-curricular literacy strategies in the form of a NOS statement review based on Cobern and Loving’s Card Exchange statements. The use of literacy strategies transforms the Card Exchange into a more genuine, meaningful, student-centered activity to stimulate NOS discussions with teacher candidates.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

American Association for the Advancement of Science (AAAS). (1993). Benchmarks for Science Literacy: Project 2061. New York: Oxford University Press.

Ardasheva, Y., Norton-Meier, L., & Hand, B. (2015). Negotiation, embeddedness, and non-threatening learning environments as themes of science and language convergence for English language learners. Studies in Science Education, 51, 201-249.

Ardasheva, Y., & Tretter, T. (2017). Developing science-specific, technical vocabulary of high school newcomer English learners. International Journal of Bilingual Education and Bilingualism, 20, 252-271.

Clough, M. (2011). Teaching and Assessing the Nature of Science. The Science Teacher, 78(6), 56-60.

Cobern, W. W. (1991). Introducing Teachers to the Philosophy of Science: The Card Exchange. Journal of Science Teacher Education, 2(2), 45-47.

Collier, S., Burston, B., & Rhodes, A. (2016). Teaching STEM as a second language: Utilizing SLA to develop equitable learning for all students. Journal for Multicultural Education, 10, 257-273.

Harmon, J., Hedrick, W., & Wood, K. (2005). Research on Vocabulary Instruction in the Content Areas: Implications for Struggling Readers. Reading & Writing Quarterly, 21, 261-280.

Herman, B. C., Clough, M. P., & Olson, J. K. (2013). Teachers’ Nature of Science Implementation Practices 2–5 Years After Having Completed an Intensive Science Education Program. Science Education, 97, 271–309.

Jung, K., & Brown, J. (2016). Examining the Effectiveness of an Academic Language Planning Organizer as a Tool for Planning Science Academic Language Instruction and Supports. Journal of Science Teacher Education, 27, 847-872.

Miller, D., Scott, C., & McTigue, E. (2016). Writing in the Secondary-Level Disciplines: a Systematic Review of Context, Cognition, and Content. Educational Psychology Review, 1-38.

Moje, E. (2008). Foregrounding the disciplines in secondary literacy teaching and learning: A call for change. Journal of Adolescent & Adult Literacy, 52, 96-107.

Nagy, W. (1988). Teaching Vocabulary to Improve Reading Comprehension. Newark, DE: International Reading Association.

Nagy, W., & Townsend, D. (2012). Words as tools: Learning academic vocabulary as language acquisition. Reading Research Quarterly, 47(1), 91-108.

National Council for Accreditation of Teacher Education. (2008). Professional Standards for the Accreditation of Teacher Preparation Institutions. Retrieved from Washington, D.C.:

National Research Council. (2012). A Framework for K-12 Science Education: Practices, Crosscutting concepts, and Core Ideas. Retrieved from Washington, D.C.:

National Research Council. (2013). Next generation science standards: For states, by states.

National Science Foundation. (1996). Shaping the future: New expectations for undergraduate education in science, mathematics, engineering, and technology. Washington, D.C.: National Science Foundation.

National Science Teacher’s Association. (2012). NSTA Standards for Science Teacher Preparation. Retrieved from http://www.nsta.org/preservice/

NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

Reed, D. K., Petscher, Y., & Truckenmiller, A. J. (2016). The Contribution of General Reading Ability to Science Achievement. Reading Research Quarterly.

Shanahan, T., & Shanahan, C. (2012). What is disciplinary literacy and why does it matter? Topics in language disorders, 32(1), 7-18.

Taboada, A. (2012). Relationships of general vocabulary, science vocabulary, and student questioning with science comprehension in students with varying levels of English proficiency. Instructional Science, 40, 901-923.

Vacca, R., Vacca, J., & Mraz, M. (2016). Content area reading: Literacy and learning across the curriculum: Pearson.

Van Laere, E., Aesaert, K., & van Braak, J. (2014). The role of students’ home language in science achievement: A multilevel approach. International Journal of Science Education, 36, 2772-2794.

 

Personal Science Story Podcasts: Enhancing Literacy and Science Content

Citation
Print Friendly, PDF & Email

Frisch, J.K. (2018). Personal science story podcasts: Enhancing literacy and science content. Innovations in Science Teacher Education, 3(2). Retrieved from https://innovations.theaste.org/personal-science-story-podcasts-enhancing-literacy-and-science-content/

by Jennifer K. Frisch, University of Minnesota Duluth

Abstract

Podcasts (like “You are Not So Smart”, “99% Invisible”, or “Radiolab”) are becoming a popular way to communicate about science. Podcasts often use personal stories to connect with listeners and engage empathy, which can be a key ingredient in communicating about science effectively. Why not have your students create their own podcasts? Personal science stories can be useful to students as they try to connect abstract science concepts with real life. These kinds of stories can also help pre-service elementary or secondary teachers as they work towards understanding how to connect science concepts, real life, and literacy. Podcasts can be powerful in teaching academic language in science because through producing a podcast, the student must write, speak, and listen, and think about how science is communicated. This paper describes the personal science podcast assignment that I have been using in my methods courses, including the literature base supporting it and the steps I take to support my teacher candidates in developing, writing, and sharing their own science story podcasts.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Amicucci, A. N. (2014). How they really talk. Journal of Adolescent & Adult Literacy, 57, 483-491.

Anthony, L. (2014). AntWordProfiler (Version 1.4.1) [Computer Software]. Tokyo, Japan: Waseda University. Retrieved from http://www.laurenceanthony.net/

Borgia, L. (2009). Enhanced vocabulary podcasts implementation in fifth grade classrooms. Reading Improvement, 46, 263-272.

Burmark, L. (2004). Visual presentations that prompt, flash & transform. Media and Methods, 40(6), 4-5.

Challinor, J., Marín, V. I., & Tur, G. (2017). The development of the reflective practitioner through digital storytelling. International Journal of Technology Enhanced Learning9, 186-203.

Couldry, N. (2008). Mediatization or mediation? Alternative understandings of the emergent space of digital storytelling. New Media & Society, 10, 373-391.

Coxhead, A. (2000). A new academic word list. TESOL Quarterly, 34, 213-238.

Delpit, L. (2005). Other People’s Children: Cultural Conflict in the Classroom. 1995. New York: New Press.

Derman-Sparks, L. (1989). Anti-bias curriculum: Tools for empowering young children. National Association for the Education of Young Children, 1834 Connecticut Avenue, NW, Washington, DC 20009-5786.

Dillingham, B. (2001). Visual portrait of a story: Teaching storytelling. Juneau, AK: School Handout.

Dip, J. M. R. B. P. (2014). Voices from the heart: the use of digital storytelling in education. Community Practitioner, 87(1), 28.

Dong, Y. (2002). Integrating language and content: how three biology teachers work with non-English speaking students. International Journal of Bilingual Education and Bilingualism, 5, 40-57.

Frisch, J.K., Cone, N. & Callahan, B. (2017). Using Personal Science Story Podcasts to Reflect on Language and Connections to Science. Contemporary Issues in Technology and Teacher Education, 17, 205-228.

Frisch, J. K., Jackson, P. C., & Murray, M. C. Transforming undergraduate biology learning with inquiry-based instruction. Journal of Computing in Higher Education, 1-26. https://doi.org/10.1007/s12528-017-9155-z

Hendry PM (2007) The future of narrative. Qualitative Inquiry, 13, 487–498.

Huber, J., Caine, V., Huber, M., & Steeves, P. (2013). Narrative inquiry as pedagogy in education: The extraordinary potential of living, telling, retelling, and reliving stories of experience. Review of Research in Education, 37, 212-242.

Hung, C. M., Hwang, G. J., & Huang, I. (2012). A Project-based Digital Storytelling Approach for Improving Students’ Learning Motivation, Problem-Solving Competence and Learning Achievement. Educational Technology & Society, 15, 368-379.

Lambert, J. (2002). Digital storytelling: Capturing lives, creating communities. Berkeley, CA: Digital Diner.

Lambert, J. (2010). Digital Storytelling Cookbook. Berkley, CA: Digital Diner.

Ohler, J. B. (2013). Digital storytelling in the classroom: New media pathways to literacy, learning, and creativity. Thousand Oaks, CA: Corwin Press.

Pearson, P., Moje, E., and Greenleaf, C. (2010). Literacy and science: Each in the service of the other. Science, 328, 459-463.

Pegrum, M., Bartle, E., and Longnecker, N. (2015). Can creative podcasting promote deep learning? The use of podcasting for learning content in an undergraduate science unit. British Journal of Educational Technology, 46, 142-152.

Putman, S. M., & Kingsley, T. (2009). The atoms family: Using podcasts to enhance the development of science vocabulary. The Reading Teacher, 63, 100-108. Roadside Theater. (2016). Imagining America: Artists and Scholars in Public Life. Case Study: Story Circles as an Evaluation Tool. Retrieved from https://roadside.org/asset/case-study-story-circles-evaluation-tool

Robin, B.R. (2008). Digital storytelling: A powerful technology tool for the 21st century classroom. Theory into practice, 47, 220-228.

Snow, C. E. (2010). Academic language and the challenge of reading for learning about science. Science, 328, 450-452.

Silva, C., Weinburgh, M., and Smith, K.H. (2013). Not just good science teaching: Supporting academic language development. Voices from the middle, 20, 34- 42.

West, M., & West, M. P. (Eds.). (1953). A general service list of English words: with semantic frequencies and a supplementary word-list for the writing of popular science and technology. Boston, MA: Addison-Wesley Longman Limited.

Willox, A. C., Harper, S. L., & Edge, V. L. (2012). Storytelling in a digital age: digital storytelling as an emerging narrative method for preserving and promoting indigenous oral wisdom. Qualitative Research, 13, 127-147

 

 

Supporting Science Teachers In Creating Lessons With Explicit Conceptual Storylines

Citation
Print Friendly, PDF & Email

Cisterna, D., Lipsitz, K., Hanuscin, D., de Araujo, Z., & van Garderen, D. (2018). Supporting science teachers in creating lessons with explicit conceptual storylines. Innovations in Science Teacher Education, 3(1). Retrieved from https://innovations.theaste.org/supporting-science-teachers-in-creating-lessons-with-explicit-conceptual-storylines/

by Dante Cisterna, University of Nebraska-Lincoln; Kelsey Lipsitz, University of Missouri; Deborah Hanuscin, Western Washington University; Zandra de Araujo, University of Missouri; & Delinda van Garderen, University of Missouri

Abstract

We describe a four-step strategy used in our professional development program to help elementary science teachers recognize and create lesson plans with coherent conceptual storylines. The conceptual storyline of a lesson refers to sequencing its scientific concepts and activities to help students develop a main scientific idea and, often, is an implicit component of a lesson plan. The four steps of this learning strategy are, 1) Building awareness of conceptual storylines; (2) Analyze the coherence of the conceptual storyline of existing lessons; (3) Creating an explicit conceptual storyline as part of the planning process; and (4) Promote conceptual coherence throughout the storyline. We provide examples of how these steps were developed in our professional development program as well as evidence of teachers’ learning. We also discuss practical implications for using conceptual storylines in professional development for science teachers.

Introduction

Lesson planning is a central activity for developing and enacting teachers’ instructional practices. A well-designed lesson plan concretizes the multiple decisions made by teachers to organize their instruction, based on their knowledge of teaching and student learning (Remillard, 2005). However, lesson plans–even detailed ones—do not necessarily convey the rationale behind choices made regarding teaching approaches, sequences of ideas, and specific activities and representations of content (Brown, 2009). In fact, teachers use a variety of lesson plan formats that require a variety of different components, often based on school or district priorities (e.g. connections to other content areas, integration of technology, etc.). Likewise, some lesson plans have teachers indicate the science standards that are aligned with the activities, while other lessons do not.

In our professional development program targeted to elementary science teachers and focused on physical science concepts (see more details of the PD model in van Garderen, Hanuscin, Lee, & Kohn, 2012), we support teachers in making the central features of a lesson plan more explicit. Given that the teachers who participate in our professional development program come from different school buildings and districts (and may use different curricula), we are interested in promoting their pedagogical design capacity (Brown, 2009) so they can apply and adapt the central features of lesson plan design into their particular contexts. We also use the 5E Learning Cycle (Bybee et al., 2006) as a model for guiding the organization of their lesson activities. A substantial body of research over past decades shows that lessons that utilize a learning cycle framework (Bybee, 1997) can result in greater achievement in science, better retention of concepts, improved attitudes toward science and science learning, improved reasoning ability, and superior process skills than would be the case with traditional instructional approaches (e.g., Bilgin, Coşkun, & Aktaş, 2013; Evans, 2004; Liu, Peng, Wu, & Lin, 2009; Wilder & Shuttleworth, 2005). During our professional development program, teachers learn first about physical science concepts, and then, they refine their understanding of the 5E Learning Cycle and select activities that are aligned to the purpose of each phase in their lesson plans. We know that learning to plan using the 5E Learning Cycle may be challenging for some teachers, as described in previous research studies (e.g., Ross & Cartier, 2015; Settlage, 2000). However, in our experience working with teachers, we noticed a new challenge for teachers’ lesson plan design: recognizing the sequence of concepts so that the lesson has conceptual coherence.

Although teachers were often adept at aligning particular activities with specific phases of the 5E Learning Cycle based on their intended purposes, the complete sequence of activities they chose did not always exhibit strong conceptual connections or align with the scientific concepts stated in lesson learning goal(s). Many teachers focused more on the activities in which students engaged than the science concepts that students should be developing through the activities. A similar finding was also described in the Trends in International Mathematics and Science Study (TIMSS) video analysis study, which indicated that in the majority of US classrooms, “ideas and activities are not woven together to tell or reveal a coherent story” (Roth et al., 2011, p. 120).

In our experience, we found that even teachers who are provided lesson plans that have a coherent sequence of concepts may not recognize this key element of lesson design, and may make adaptations to lessons that are counterproductive to their intent and purpose (Hanuscin et al., 2016). We saw teachers struggled to select activities whose underlying scientific concepts were connected to one another and followed a coherent progression that helped students connect the different concepts to better support their learning. That is, the particular challenge we noticed was related to the creation of a coherent conceptual storyline.

What is a Conceptual Storyline?

We use Ramsey’s (1993) definition of conceptual storylines in our professional development program. The conceptual storyline of a lesson refers to the flow and sequencing of learning activities so that concepts align and support one another in ways that are instructionally meaningful to student learning. We focus on ensuring that the sequence of activities for a particular lesson plan is coherent; that means, the organization of the underlying scientific concepts allows students to develop a full understanding of the scientific concepts stated in the lesson learning goals. Therefore, we expect the conceptual storyline of a lesson to be coherent both in terms of activities and scientific concepts to help students build an organized understanding of a scientific phenomenon (McDonald, Criswell, & Dreon, 2007). Similarly, incoming research suggests that the use of some strategies related to building coherence in lesson plans can impact student learning (see Roth et al., 2011).

Conceptual coherence in lessons

The conceptual storyline of a lesson is often an implicit dimension of planning and, as such, teachers may lack awareness of storylines and how to develop them. Therefore, a key goal that we implemented in our professional development model was supporting teachers’ development of coherent conceptual storylines as an explicit element of lesson design. We have been working with several strategies to help teachers recognize conceptual storylines as an explicit and central component of a lesson plan. We begin by using a Conceptual Storyline Probe (Hanuscin et al., 2016), an example of which is shown in Table 1, to highlight differences in two teachers’ lesson plans. Showing these differences to teachers is the first step to help them recognize that lessons have storylines with different levels of coherence.

Table 1 (Click on image to enlarge)
Two Lessons with Different Levels of Conceptual Coherence

After reading both lessons, teachers share examples of the criteria they used for evaluating the lessons. In doing this, it is very important that PD facilitators or instructors let teachers talk and provide all the criteria they consider relevant. For example, these criteria might include whether the lesson is hands-on, and whether or not there are connections to the students’ daily lives. Sometimes, during the discussion teachers make comments about the sequence of activities (see examples of teachers’ responses in Figure 1). When prompted about this, teachers mention that there is ‘something’ in the lesson activities that make them flow differently. To be clear, Diana’s lesson includes different ideas about bulbs that lack connections between each other, while Michelle’s lesson organizes its activities in a sequence by which students can build an understanding of a central concept (switches). Therefore, noticing the difference in each lesson’s conceptual coherence is the first step in recognizing conceptual storylines as a component of lesson design.

Figure 1 (Click on image to enlarge). Examples of teachers’ initial responses to the evaluation of two lessons with different levels of conceptual coherence.

A Strategy to Supporting Teachers Plan Lessons with Coherent Conceptual Storylines

Given the challenging nature of identifying the conceptual nuances in lesson plans, we recognize the importance of providing teachers support in constructing lessons with coherent conceptual storylines. To help teachers recognize coherent conceptual storylines as essential for well-designed lessons and encourage them to plan lessons that are conceptually coherent, our team has developed a strategy that includes four distinctive steps, as illustrated in Figure 2. Although our prior work was situated in elementary science, awareness of conceptual storylines can extend to all grade levels.

Figure 2 (Click on image to enlarge). Steps for supporting teachers in developing a coherent conceptual storyline.

Step 1. Building awareness of conceptual storylines

For teachers unfamiliar with conceptual storylines as a component of lesson planning, we help them build their awareness of what storylines are, how important they are for meaningful instruction, and how they may support student learning. We help teachers think about the storyline of an instructional lesson or learning cycle by making an analogy using two familiar television shows, Saturday Night Live (SNL) and Downton Abbey. While SNL has consistencies in structure between shows (e.g. musical guest, celebrity monologue, etc.) the storylines of sketches within an episode, and indeed from episode to episode lack coherence. This means that the viewer can watch a whole episode or pieces of a given episode in any sequence. In contrast, to make sense of the storyline of Downton Abbey, one needs to watch the episodes in sequence to connect the events and ideas. Thus, Downton Abbey exemplifies a coherent storyline within and across episodes. When discussing this analogy between TV shows, teachers easily recognize that lessons also need to organize their concepts sequentially so each activity is necessary and sufficient for promoting student understanding. Drawing on this analogy helps teachers realize that conceptual coherence is an important feature of a lesson and that planning with conceptual storylines allows students to build science concepts within a larger arc and in connected ways—rather than as disconnected pieces.

Step 2. Analyze the coherence of the conceptual storyline of existing lessons

Once teachers recognize the importance of conceptual coherence in a lesson, they can use conceptual storylines for analyzing existing lesson plans. Some teachers examined their own lesson plans and others focused on district-provided lesson plans or lesson plans from commercial curricula. To help teachers learn how to identify and evaluate conceptual storylines, we provide them with two contrasting lesson plans, similar to the lessons presented in Table 1. One lesson has a coherent set of activities focused on a single concept (coherent conceptual storyline), and the second lesson includes activities that address multiple concepts loosely related to a topic (incoherent conceptual storyline). As teachers compare and contrast these lessons, they identify key considerations of different types of conceptual storylines. For example, the coherent conceptual storyline would sequence a key concept in such a manner that one concept builds to the next and allow students to develop the scientific concepts of the lesson learning goal, scientific phenomenon, or big idea.

We also provide teachers support in identifying the lesson’s main scientific idea and the key concepts that students should develop in each phase of the 5E Learning Cycle. For example, we use a card-sorting activity to help teachers make connections between the specific key ideas in a lesson and the phases of the 5E Learning Cycle. Before introducing this aspect of lesson plan design, we have teachers sequence the activities of a lesson based on their own understanding of a good instructional sequence. After learning about the 5E Learning Cycle and conceptual storylines, teachers sort the cards again and provide a rationale for their choices. To illustrate this we include responses of Anne, a fourth grade teacher, to the card sorting activity about a lesson focused on identifying characteristics of conductors and insulators (See Figure 3). At the end, Anne was able to justify that the activity in which students test a mystery box for electrical connections was not adequate for the Engage phase of the lesson, because this activity did not provide enough evidence for students about the components of an electric circuit that would serve as a foundation for the following activities through the lesson. We recognize that the process of learning about conceptual storylines is often slow, and needs to be fostered through several activities.

Figure 3 (Click on image to enlarge). Responses to a card sorting activity before and after learning about conceptual storylines.

Overall, these learning opportunities allow for the teachers to examine different lesson plans and engage in discussions about what a coherent conceptual storyline looks like, as well as potential implications for student learning when using coherent or incoherent lessons.

Step 3. Creating an explicit conceptual storyline as part of the planning process

Once teachers were able to identify a lesson’s conceptual storyline and assess it for coherence, we engaged them in the design of a new conceptual storyline for their own lesson plans. We scaffolded this process by helping teachers break down a main concept, a scientific phenomenon, or big idea into more specific key ideas. Similarly, the use of the NGSS Disciplinary Core Ideas can help teachers identify key scientific concepts to organize the conceptual storyline. The example presented in Figure 4 shows how the main concept about magnetic poles is ‘unpacked’ in several sub-concepts. The teacher began the sequence by anticipating a student misconception and used it to build the storyline.

Figure 4 (Click on image to enlarge). Examples of specific concepts about magnet poles organized by teachers in the creation of a conceptual storyline.

To support teachers in making explicit connections among those key ideas, we introduce teachers to a Conceptual Storyline Map, an instructional scaffold adapted from Bybee’s (2015) work (see map in Appendix A). By using this map, teachers sequence the specific concepts and are able to connect two concepts through a linking question, while making connections to the phases of the 5E Learning Cycle. For example, one third grade teacher created a lesson plan to help her students understand how magnetic objects interact. When articulating the conceptual storyline she linked two important key ideas: 1) that magnets can attract, repel, or have no interaction with other objects, and 2) that magnets attract or repel other magnets, attract some metals (ferromagnetic), but have no interaction with other materials. In this case, the second idea builds on the first one and supports the construction of a conceptual storyline. The teacher included a linking question to make the connection between both ideas explicit, “What types of interactions do magnets have?”.

We note this process may be frustrating for some teachers who are not as familiar with the content knowledge or struggle to articulate the links between key concepts in a conceptual storyline. We recommend that PD instructors or facilitators do not provide the connections between the key concepts of the conceptual storyline, because these connections are not necessarily explicit for teachers. In our experience, having teachers create the conceptual storyline in collaborative teams has been helpful for addressing these potential problems.

Articulating concepts in a coherent conceptual storyline as an explicit component in lesson planning provided the teachers’ with a basis for the selection of activities and content representations. Therefore, the storyline acts as a backbone for the lesson. That backbone is a necessary foundation for the lesson, but does not provide a complete lesson plan; teachers must still select the particular activities and content representations to complete the lesson. In this way, the activities and content representations become the ‘connective tissue’ to the backbone of the lesson.

Step 4. Promote conceptual coherence throughout the storyline

Following teachers’ identification of the big idea or main concepts for the storyline, as well as the specific key ideas targeted during each phase of the learning cycle, the last step in teachers’ construction of conceptual storylines involves the ‘fine grain’ work needed to secure conceptual coherence in a lesson. In this step, teachers select activities and content representations (e.g., models, diagrams, analogies), and make any adjustments to their lessons to retain the conceptual coherence.

As teachers select activities and content representations, they must attend to the ‘big idea’ they developed in Step 3 that encompasses the various activities in the lesson. Likewise, these activities might provide opportunities to explore a scientific phenomenon and engage students in tasks related to the NGSS performance expectations. Whether teachers use curricular standards for their big idea or independently identify the main concepts, the main ideas guide the development of the lesson storyline. To assist teachers in planning a lesson with a coherent conceptual storyline, we provide teachers with a lesson plan form that designates the first column to the main concept that students are developing in that particular phase of the 5E learning cycle. Consequently, those concepts help teachers select and organize the activities of a lesson. For example, one fifth grade teacher created a lesson plan named “What is matter?”, in order to help students develop a scientific definition of matter and an understanding that matter can take multiple forms (see Appendix B).

The process of selecting particular activities and representations is iterative, and multiple adjustments can and should be made to ensure conceptual coherence across the big idea, the key concepts of the storyline, the concept representations, and activities. Because lesson plans are not created in isolation, we encourage teachers to make connections with ideas that were developed in previous lessons or relate to prior knowledge and students’ ideas.

Concluding Thoughts

Designing lesson plans with a coherent conceptual storyline may take more time initially because of the added layer of complexity in aligning concepts and activities. However, every lesson plan is based on a storyline—coherent or incoherent. If teachers do not plan for coherence, the result may be a set of disconnected concepts and activities.

In our professional development experience, we have noticed that teachers not only use conceptual storylines to select activities and content representations, but also for assessment purposes. In the last iteration of our program, we started supporting teachers in making connections between the concepts included in particular storylines and the ways to assess these concepts—either formatively or summatively (see matrix on Appendix C). We decided to include this component because we noticed teachers struggled to select topic-specific assessments strategies throughout the lesson. Given that many lesson plans require the inclusion of the assessment strategies, the use of conceptual storylines may help teachers identify what concepts need to be assessed during the lesson and when. The use of conceptual storylines may become an important tool to gather students’ evidence, especially to guide students in developing main scientific ideas.

In addition, the use of conceptual storylines is key towards building conceptually coherent lessons and thus, helping students build foundational science concepts. In our work, participant teachers are able to recognize the importance of planning lessons with conceptual coherence as an explicit component of lesson plan design and as a guide for the use of activities and representations. As one participant teachers stated:

When we planned our entire learning cycle we really did go over what the storyline would be…I think [PD facilitator] really helped us understand what may be a huge piece of what’s missing with a lot of instruction…the storyline of each of the learning cycles really built upon the previous one.

Conceptual storylines are just one tool that teachers can use to create coherent lesson plan designs. In emphasizing the importance of conceptual coherence, we do not mean to imply that content has greater importance than the process by which students learn the content—indeed, careful consideration should be given to the kinds of activities that will support students in building new understandings, developing facility with new skills, and developing confidence and competence as learners. We recognize that to create conceptual storylines, teachers need strong foundations in content knowledge to identify the key scientific concepts and the ways they are connected to each other. Therefore, in our professional development program, learning about conceptual storylines is embedded as part of a comprehensive curriculum that integrates content knowledge about physical science concepts and pedagogical lenses. For professional developers interested in adapting this strategy in their contexts, we recommend that learning about conceptual storylines be embedded in a larger professional development program rather than included as an isolated feature of lesson design.

References

Abell, S. K., & Volkmann, M. J. (2006). Seamless Assessment in Science: A Guide for Elementary and Middle School Teachers. Portsmouth, NH: Heinemann.

Bilgin, I., Coşkun, H., & Aktaş, I. (2013). The effect of 5E learning cycle on mental ability of elementary students. Journal of Baltic Science Education, 12, 592-607.

Brown, M. (2009). The teacher–tool relationship: Theorizing the design and use of curriculum materials. In J. T. Remillard, B. A., Herbel-Eisenmann, & G. M. Lloyd (Eds.), Mathematicsteachers at work: Connecting curriculum materials and classroom instruction (pp. 17–35). New York, NY: Routledge, Taylor, and Francis.

Bybee, R. W. (1997). Achieving scientific literacy: From purposes to practices. Portsmouth, NH: Heinemann.

Bybee, R.W., Taylor, J.A., Gardner, A., Van Scotter, P., Carlson, J., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins, effectiveness, and applications. Unpublished white paper. Retrieved August 2008, from http://www.bscs.org/pdf/5EFull Report.pdf.

Bybee, R., Taylor, J., Gardner, A., Van Scotter, P., Carlson, J., Westbrook, A., & Landes, N. (2006). The BSCE 5E instructional model: Origins, effectiveness, and applications. Colorado Springs: BSCS.

Bybee, R. W. (2015). The BSCS 5E instructional model—Creating teachable moments. Arlington, VA: NSTA Press.

Evans, C. (2004). Learning with inquiring minds, students are introduced to the unit on gas laws and properties of gases using the 5E model. The Science Teacher, 71(1), 27-30.

Hanuscin, D., Lipsitz, K., Cisterna-Alburquerque, D., Arnone, K. A., van Garderen, D., de Araujo, Z., & Lee, E. J. (2016). Developing coherent conceptual storylines: Two elementary challenges. Journal of Science Teacher Education, 27, 393-414.

Liu, T. C., Peng, H., Wu, W. H., & Lin, M. S. (2009). The effects of mobile natural-science learning based on the 5E learning cycle: A case study. Educational Technology & Society, 12, 344–358.

McDonald, S., Criswell, B., & Dreon, O. (2008). Inquiry in the chemistry classroom: Perplexity, model testing, and synthesis. In J. Luft, R. Bell, & J. Gess-Newsome & (Eds.). Science as Inquiry in the Secondary Setting (pp. 41-51). Arlington, VA: NSTA Press.

Ramsey, J. (1993). Developing conceptual storylines with the learning cycle. Journal of Elementary Science Education, 5(2), 1-20.

Remillard, J. T. (2005). Examining key concepts in research on teachers’ use of mathematics curricula. Review of Educational Research, 75, 211-246.

Ross, D. K., & Cartier, J. L. (2015). Developing Pre-service Elementary Teachers’ Pedagogical Practices While Planning Using the Learning Cycle. Journal of Science Teacher Education, 26, 573-591.

Roth, K. J., Garnier, H., Chen, C., Lemmens, M., Schwille, K., & Wickler, N. I. Z. (2011). Videobased lesson analysis: Effective science PD for teacher and student learning. Journal of Research in Science Teaching, 48, 117-148.

Settlage, J. (2000). Understanding the learning cycle: Influences on abilities to embrace the approach by preservice elementary school teachers. Science Education, 84, 43-50.

van Garderen, D., Hanuscin, D., Lee, E., & Kohn, P. (2012). QUEST: A collaborative professional development model to meet the needs of diverse learners in K‐6 science. Psychology in the Schools, 49, 429-443

Wilder, M. & Shuttleworth, P., (2005). Cell inquiry: A 5E learning cycle lesson. Science Activities: Classroom Projects and Curriculum Ideas, 41(4), 37-43.

The Home Inquiry Project: Elementary Preservice Teachers’ Scientific Inquiry Journey

Citation
Print Friendly, PDF & Email

Kazempour, M. (2017). The home inquiry project: Elementary preservice teachers’ scientific inquiry journey. Innovations in Science Teacher Education, 2(4). Retrieved from https://innovations.theaste.org/the-home-inquiry-project-elementary-preservice-teachers-scientific-inquiry-journey/

by Mahsa Kazempour, Penn State University (Berks Campus)

Abstract

This article discusses the Home Inquiry Project which is part of a science methods course for elementary preservice teachers. The aim of the Home Inquiry Project is to enhance elementary preservice teachers’ understanding of the scientific inquiry process and increase their confidence and motivation in incorporating scientific inquiry into learning experiences they plan for their future students. The project immerses preservice teachers in the process of scientific inquiry and provides them with an opportunity to learn about and utilize scientific practices such as making observations, asking questions, predicting, communicating evidence, and so forth. Preservice teachers completing this project perceive their experiences favorably, recognize the importance of understanding the process of science, and reflect on the application of this experience to their future classroom science instruction. This project has immense implications for the preparation of a scientifically literate and motivated teacher population who will be responsible for cultivating a scientifically literate student population with a positive attitude and confidence in science.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Adams, A., Miller, B., Saul, M., Pegg, J. (2014). Supporting elementary preservice teachers to teach STEM through place-based teaching and learning experiences. Electronic Journal of Science Education, 18(5). Retrieved from http://ejse.southwestern.edu/issue/view/1119

Appleton, K. (2006). Science pedagogical content knowledge and elementary school teachers. In K. Appleton (Ed.), Elementary science teacher education: International perspectives on contemporary issues and practice (pp. 31–54). Mahwah, NJ: Association for Science Teachers and Laurence Erlbaum.

Avery, L., & Meyer, D. (2012). Teaching science as science is practiced: Opportunities and limits for enhancing preservice elementary teachers’ self-efficacy for science and science teaching. School Science and Mathematics, 112, 395–409.

Banilower, E. R., Smith, P. S., Weiss, I. R., Malzahn, K. A., Campbell, K. M., & Weis, M. (2013). Report of the 2012 national survey of science and mathematics education. Chapel Hill, NC: Horizon Research, Inc.

Barman, C. (1997). Students’ views of scientists and science. Science & Children, 35(1), 18-23

Chichekian, T., Shore, B., & Yates, G. (2016). Preservice and practicing teachers’ self-efficacy for inquiry-based instruction. Cogent Education, 3(1). Retrieved from http://www.tandfonline.com/doi/full/10.1080/2331186X.2016.1236872?scroll=top&needAccess=true

Driver, R., Leach, J., Millar, R., & Scott, P. (1996). Young people’s images of science. Philadelphia: Open University Press.

Fulp, S. L. (2002). The 2000 national survey of science and mathematics education: Status of elementary school science teaching. Chapel Hill, NC: Horizon Research.

Hechter, R. P. (2011). Changes in pre-service elementary teachers’ personal science teaching efficacy and science teaching outcome expectancies: The influence of context. Journal of Science Teacher Education, 22, 187–202.

Kazempour, M. (2013). The interrelationship of science experiences, beliefs, attitudes, and self-efficacy: A case study of a pre-service teacher with positive science attitude and high science teaching self-efficacy. European Journal of Science and Mathematics Education, 1(1), 106-124.

Kazempour, M. (2014). I can’t teach science! A case study of an elementary pre-service teacher’s intersection of science experiences, beliefs, attitude, and self-efficacy.” International Journal of Environmental and Science Education, 9(1), p.77-96.

Kazempour, M., Sadler, T. D. (2015). Pre-service teachers’ science beliefs, attitudes, and self-efficacy: A multi-case study.” Teaching Education, 26, 247-271.

Keys, P. & Watters, J. J. (2006). Transforming pre-service teacher knowledge in science education through multimedia and ICT. Proceedings annual meeting of the National Association for Research in Science Teaching (NARST), San Francicso, CA.

King, K., Shumow, L., & Lietz, S. (2001). Science education in an urban elementary school: Case studies of teacher beliefs and classroom practices. Science Education, 85, 89–110.

Lewis, E., Dema, O., & Harshbarger, D. (2014). Preparation for practice: elementary preservice teachers learning and using scientific classroom discourse community instructional strategies. School Science and Mathematics, 114, 154-165.

Morrell, P. D., & Carroll, J. B. (2003). An extended examination of preservice elementary teachers’ science teaching self-efficacy. School Science and Mathematics, 103, 246–251.

Mulholland, J., & Wallace, J. (2000). Beginning elementary science teaching: Entryways to different worlds. Research in Science Education, 30, 151– 171.

NGSS Lead States. 2013. Next generation science standards: For states, by states. Washington, DC; National Academies Press.

National Research Council (NRC). 2007. Taking science to school: Learning and teaching science in grades K–8. Washington, DC: National Academies Press.

National Research Council (NRC). 2012. A Framework for K–12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

National Science Teachers Association (NSTA). 2002. NSTA position statement: Elementary school science. Retrieved from http://www.nsta.org/about/positions/elementary.aspx

National Science Teachers Association (NSTA). 2002. NSTA position statement: Early childhood school science. Retrieved from http://www.nsta.org/about/positions/earlychildhood.aspx

Plevyak, L. (2007). What do preservice teachers learn in an inquiry-based science methods course? Journal of Elementary Science Education, 19(1). doi:10.1007/BF03173650

Quita, I. (2003, Fall). What is a scientist? Perspectives of teachers of color. Multicultural Education, 11, 29–31.

Tosun, T. (2000). The beliefs of pre-service elementary teachers toward science and science teaching. School Science and Mathematics, 100, 374–379.

Windschitl, M. (2004). Caught in the cycle of reproducing folk theories of “inquiry”: How preservice teachers continue the discourse and practices of an atheoretical scientific method.    Journal of Research in Science Teaching, 41, 481–512.

A Lesson to Unlock Preservice Science Teachers’ Expert Reading Strategies

Citation
Print Friendly, PDF & Email

Mawyer, K.K.N. & Johnson, H. J. (2017). A lesson to unlock preservice science teachers’ expert reading strategies. Innovations in Science Teacher Education, 2(3). Retrieved from https://innovations.theaste.org/a-lesson-to-unlock-preservice-science-teachers-expert-reading-strategies/

by Kirsten K.N. Mawyer, University of Hawai‘i at Mānoa; & Heather J. Johnson, Vanderbilt University

Abstract

New standards for K-12 science education task science teacher educators with providing preservice teachers strong preparation that will help them to embrace their role as teachers of science literacy (National Research Council, 2012). Even though there is a growing trend for teacher preparation programs to offer literacy courses that focus on reading in the content areas, often they do not provide aspiring science teachers the science-specific tools needed to teach reading in secondary science contexts. This article addresses the question, “How can we, as science teacher educators, prepare our teacher candidates to teach reading in the context of science?” We designed an initial literacy lesson to help preservice teachers enrolled in two science methods courses to unpack their content knowledge about literacy in science. Our hope was that by unlocking their personal strategies they would be better positioned for engaging in conversations about literacy. We found that using this initial literacy lesson provided our preservice teachers with a solid foundation for engaging in conversations about how to scaffold student reading. This lesson also provided preservice teachers an opportunity to collaboratively develop a common beginner’s repertoire of reading strategies that we subsequently used as a building block for designing activities and lessons that engage middle and high school students in big science ideas and understanding real-world phenomena through reading a variety of kinds of science texts.

Introduction

According to literacy researchers, different disciplines demonstrate both social and cognitive practices that embody distinct ways group members use reading and writing within their discipline (Buehl, 2011; Goldman & Bisanz, 2002; Heller & Greenleaf, 2007). The Framework for K-12 Science Education (NRC, 2012), Next Generation Science Standards (NGSS Lead States, 2013) and Common Core State Standards (Council of Chief State School Officers, 2010) all specify that literacy—the ability to read in the context of science—is an essential scientific practice. These recent national reform documents emphasize that by the time students graduate from high school they should be able to analyze, evaluate, and synthesize information from scientific texts (Council of Chief State School Officers, 2010; NGSS Lead States, 2013; National Research Council, 2012). Thus, it comes as no surprise that science teachers must incorporate literacy into their curriculum and instruction. In the wake of these reforms, the expectation that students will have more opportunities to engage with scientific texts is now firmly in place. However, this vision of ‘literacy for all students’ (Carnegie Council on Advancing Adolescent Literacy, 2010) can only be achieved to the extent secondary science teachers are able or inclined to meet this goal (Cohen & Ball, 1990).

In response to this call for literacy, experienced secondary science teachers we talked to expressed that they feel they “have a responsibility to work on literacy” but do not know how to go about teaching and incorporating reading in their instruction. Unfortunately, the majority of otherwise competent or even expert teachers do not have the knowledge or training to teach literacy skills required to engage students with science texts (Norris & Phillips, 2003; National Research Council, 2012). Secondary science teachers are largely unprepared because their teacher preparation programs included little or no coursework focused on literacy. Even though there is a growing trend for teacher preparation programs to offer literacy courses that focus on reading in the content areas, often they still do not provide aspiring science teachers the science-specific tools needed to teach reading in secondary science contexts. One inservice teacher we spoke with commented that while she had taken a literacy course in graduate school it “really didn’t help me at all because it was too general and disconnected from the kind of reading you have to do in science.” Her sense that strategies introduced in her graduate school preservice coursework were too generic is not surprising given that science texts require content specific approaches and an understanding about how to read and engage with various disciplinary-specific genres (Carnegie Council on Advancing Adolescent Literacy, 2010; Lee & Spratley, 2010). This raises the question, “How can we, as science teacher educators, prepare our teacher candidates to teach reading in the context of science?”

Instead of depending on general content area courses designed for preservice teachers regardless of discipline or specialty, science teacher educators need to design lessons for secondary science methods courses that target how to teach reading as an integral and integrated component of 6th-12th grade science curricula. Fortunately, preservice science teachers are not walking into science methods classes as blank slates. They enter with extensive science content expertise and are generally proficient or advanced readers of scientific texts. The challenge for science teacher educators is that even though preservice secondary teachers know how to read and make meaning of texts within their discipline, it is difficult for individuals to leverage well-developed personal strategies for reading a variety of science texts in their planning and instruction to support struggling readers (Carnegie Council on Advancing Adolescent Literacy, 2010; Norris & Phillips, 2003). If reading is to play a more prominent role in secondary science, preservice teachers need help in making tacit knowledge about how to read common genres of science texts, such as popular science texts, textbooks, and primary scientific literature, explicit so they can use this knowledge as a foundation for learning how to teach middle school and high school students to read and make sense of science texts.

Context & Framing

The context for this study was a one semester secondary science methods course we taught at our respective institutions to a mix of undergraduate, post-baccalaureate, and masters students. We co-designed and taught a sequence of seminar sessions on how to use literacy activities, specifically reading different genres of science texts, to meaningfully help students learn science. This paper describes the first session in the sequence. We framed the design of the lesson using Ball & Bass’s (2000) notion of decompression. This is the perspective that as individuals learn to teach they need to unpack, and make visible the connections between the integral whole of their content knowledge so that it is accessible to develop pedagogical content knowledge (Shulman, 1986) In this particular case the knowledge and skills necessary to use literacy strategies to teach reading in the context of science (Figure 1). Why is unpacking preservice teachers content knowledge about science reading strategies important? Unless one’s content expertise is the study of reading, the act of reading can seem or intuitively be thought “a simple process” in which “text can seem transparent” (Norris & Phillips, 2003, p. 226). Helping preservice teachers identify their existing “expert” knowledge of how to read science texts—and preparing them to design lessons that productively incorporate literacy activities into their science instruction—is foundational for developing strategies to teach middle school and high school students how to read science texts.

Figure 1 (Click on image to enlarge). As preservice secondary science teachers decompress their content knowledge about literacy and their personal reading strategies they develop PCK for teaching reading in science.

 

 

Lesson Design

In order to unpack preservice teachers’ genre specific strategies, we designed a structured introductory literacy activity that would:

● Help preservice teachers identify existing personal reading strategies for reading science texts
● Compare personal reading strategies with other preservice teachers
● Identify general and science genre specific reading strategies
● Engage preservice teachers in a dialogue about text features of different genres of science texts
● Brainstorm ideas about when and why teachers would want to use different genres of science texts in instruction
● Provide a foundation for designing lesson plans that include literacy activities that support ambitious science teaching practices—eliciting student ideas, supporting ongoing changes in student thinking, and pressing for evidence-based explanations (Windschitl, Thompson, Braaten, & Stroupe, 2012).

Specifically, we asked our preservice teachers to read three common genres of science texts—a newspaper article (popular science text), a science textbook (science text for education), and a scientific journal article (primary scientific literature)—that a science teacher might have their students read in class (Goldman & Bisanz, 2002). Relatively short texts about the same content—global climate change—were purposefully selected. Each student was given a packet of the readings that they were welcome to write on. We instructed preservice teachers to read each article with the goal of making sense of the text. They were given 10 minutes to read each text. How they spent this time, including what order they read the different texts, was left up to them.

After reading all of the texts, we made the preservice teachers aware of our purpose. We did not seek to assess them on their understanding of the content within each text. Instead, we wanted to make visible the strategies they used to read each type of text. Before we debriefed as a group, we asked each preservice teacher to respond in writing to the following questions for each genre of text:

● What did you do as you read the text?
● How did you make sense of the text?
● How did you interact with the text?
● Why did you approach the text in this way?

Asking preservice teachers to notice strategies encouraged them to make visible the latent expert knowledge they use to analyze the texts (Sherin, Jacobs, & Philipp, 2011). After students individually responded to the prompts on how they read each of the three texts, we split them into small groups of 3-4 to identify and record the reading strategies used to make sense of each text type. This activity was followed by a whole class discussion about reading order, reading strategies, and patterns in reading approaches across the three genres of science text: a newspaper article, a science textbook, and a journal article. Our preservice teachers’ discussion and written reflections revealed that they did indeed have both general and subject specific approaches to reading different kinds of science texts.

Reading the Newspaper Article

Popular texts, such as newspapers, magazines, online sites, trade books, and longer nonfiction science texts, take complex scientific information and phenomena and simplify it for the public—generally for the purpose of raising awareness and increasing understanding of important issues that are relevant to and impact citizens’ everyday lives (Goldman & Bisanz, 2002). The newspaper article our preservice teachers read introduced international efforts to draft a world climate policy to limit global warming to 2oC by drastically cutting down on fossil fuel emissions to head off the negative impacts, such as rising sea-levels, of global warming (Gillis, 2014).

The discussion kicked off with one preservice teacher noting that the “writing was very straightforward” so it was not necessary to take notes as compared to engagement with the textbook or journal article. Another echoed this sentiment commenting that she read it like a story with a “main thread…which I grasped and everything else revolved around”. Several made remarks that were consistent with the objective of this text genre such as, “I wasn’t really ever exposed to the 2o C global climate change goals before so I felt I had to keep ready to gain more insight as to what it is and why it is important” and “science is controversial—one group may agree and another group may disagree”.

It was clear from the discussion that preservice teachers had a deep, established, and readily accessible understanding of the structure and purpose of a scientific newspaper article and that these pre-existing orientations to this genre shaped how they read the text (Figure 2). Strategies our preservice teachers used to read the newspaper article included:

● Using the title to identify who/what/when
● Using the first sentence to identify the tone
● Identifying the writer’s position and identifying bias
● Identifying stakeholders and different opinions with respect to the issue
● Evaluating the credibility of the source
● Identifying evidence, notably by locating quotations from scientists
● Skimming for the main idea and ignoring the “fluff”

Figure 2 (Click on image to enlarge). Preservice teachers’ strategies for reading newspaper articles.

Reading the Textbook

Science textbooks, the mainstay of secondary science, are expository which means they are written to inform, describe, explain or define patterns, and to help students construct meanings about science information (Goldman & Bisanz, 2002). Even though the objective of textbooks is to scaffold student learning, students often find them difficult reading because of content density, complex text structures, domain specific vocabulary, multimodal representations, lack of relevance to students’ lives and prior knowledge (Lee & Spratley, 2010). The textbook reading on global climate change detailed specific consequences of global warming including warmer temperatures, more severe weather events, melting ice and snow, rising sea levels, and human health (Edelson et al., 2005).

As preservice teachers reflected on and discussed how they read the science textbook we observed a high degree of commonality across the approaches utilized. Most notably, conversation centered on text features that organize information in the text. For example, one preservice teacher shared that he “figured that a textbook would give the big ideas in the title and probably within the first couple of lines of the section so this helped me to get to the point faster, it helped me understand with less reading”. Similarly another said “I first flipped through the text [and] read all of the headings and subheadings” upon which other students elaborated that “the headings and subheadings are great clues as to what the text is talking about” and that headings and subheadings helped to “identify the main idea of each section”.

As with the newspaper article, the discussion of the textbook reading revealed that our preservice teachers have well developed strategies for reading science textbooks. Their strategies included:

● Reading the title to identify the focus of the entire reading
● Reading headings and subheadings to determine the main idea of each section
● Asking how the section relates to the title
● Asking how each section is connected to the sections before and after
● Reading for the main idea
● Reading first/last sentences of each paragraph
● Making a distinction between main idea(s) and evidence
● Skimming for unfamiliar science words, bolded vocabulary and associated definitions

Reading the Journal Article

Goldman and Bisanz (2002) point to the research report, such as a journal article, as the primary text genre used by scientists. Research reports are of particular interest because they are vehicles through which scientists present a scientific argument for consumption, evaluation, and response by their peers. Publication, circulation, evaluation, and response serves as a mechanism for providing information about research, making claims, and generating new scientific knowledge. According to Phillips & Norris (2009) journal articles present arguments about the need for conducting research, enduring or emerging methodology, analysis and provisions against alternative explanations—all in the service of supporting interpretation of authors’ findings. Generally, these types of texts are infrequently used in the science classroom. The journal article we asked our preservice teachers to read presented an index for when temperature will increase beyond historic levels yielding worldwide shifts in climate (Mora et al., 2013).

Preservice teachers agreed that of the three texts the journal article was hands down the most difficult to read and understand. Even though they struggled with this article they had no trouble articulating how they read this text. As with the other two text types, preservice teachers used specific text features of journal articles to scaffold their reading. One shared that she “usually start[s] with the abstract of a journal article because it tends to give some sort of summary of the whole article.” Another built on this by saying that the “abstract is a good summary of key points.” In addition to the abstract, preservice teachers focused on reading the “intro and conclusion because they highlight scientist’s argument and claims,” as well as on “tables and figures because they provide evidence visually.” There was also widespread agreement with one preservice teacher that if the goal is to understand the article, it was fine to “skim the methods [because]…taking the time to read the methods portion would not provide me with the important information to understand the context.”

The discussion of the journal article reading uncovered that our preservice teachers have well developed strategies for reading scientific texts. Their strategies included:

● Reading abstract, introduction and conclusion for summary of argument and primary findings
● Reading discussion for explanation of findings
● Looking at graphs, tables and figures for evidence supporting claim
● Skipping or skimming methods
● Asking do I understand what this article is about
● Reflecting on whether I can tell someone what this article is about

Reading Across the Science Texts

We noticed that in addition to the genre specific strategies outlined above, preservice teachers talked about how—as they read with the goal of making sense of the texts—almost all indicated that they annotated the text in some fashion. When we collected and analyzed preservice teachers’ annotated texts, we observed that they had underlined, highlighted, and jotted down questions or comments directly on the text. When they reflected on their textual reading practices, they indicated that they marked-up the text because they planned to re-read the texts and that annotating and highlighting specific features (headings, main ideas, or writing questions), would facilitate their future re-skimming of the texts and allow them to focus on only re-reading the most relevant sections or re-engaging with the most salient information in the article (Mawyer & Johnson, 2017). It seems that preservice teachers engaged in a meta-dialogue with the text that would allow for the most effective and efficient interaction with the text to maximize understanding.

Preservice Teachers’ Ideas for Scaffolding Literacy

After students discussed the various texts and worked together to identify patterns and commonalities in how they read the three texts, we asked them to talk about implications of their personal strategies for reading different types of science texts for their own teaching. One of the preservice teachers commented that going into the activity she did not really think that she had any specific strategies for reading science texts and “felt uncomfortable and overwhelmed about the prospect of teaching literacy” and that the activity helped her to see that she “had more experience with literacy” than she originally thought. We noticed that in both of our classes the literacy activity our preservice secondary teachers engaged in and their subsequent small group discussions allowed them to think deeply about how to concretely support literacy. They were able to work together to develop ideas about how they could build on the reading strategies they identified in our class to design their own lessons and curriculum in order to integrate literacy activities into their teaching practice. Specifically we observed students leveraging their personal strategies into supports that could be helpful to students before, during, and after they directly interact with the text (Table 1).

Table 1 (Click on image to enlarge)
Preservice Teachers’ Ideas for Scaffolding Literacy for Different Types of Science Texts

Formal lesson plans and classroom observations revealed that after this literacy lesson our preservice teachers began incorporating these three genres of science texts into their science instruction and put the strategies and supports they identified into practice. For example, one student adapted a journal article to make it easier for her students to read. She structured reading by giving her students the following instructions:

“You will mark the text, highlight words you do not know or feel that are important, write in the side columns thoughts/responses/ideas, and form a thesis summary. To form a thesis means to make a conclusive statement (claim) on what you read. You will support this claim by providing 3-5 key details.”

The observation that our preservice teachers started using science texts after this literacy session, suggested they had more confidence in engaging their own students with literacy activities in the science classroom.

Implications for Science Teacher Educators

The Framework specifies that preservice science teacher education needs to be aligned with the scientific practices. Furthermore, it tasks science teacher educators with providing preservice teachers strong preparation that will help them to embrace their role as teachers of science literacy (National Research Council, 2012). In response to this call we designed this initial literacy lesson to help preservice teachers enrolled in our science methods courses to unpack their content knowledge about literacy in science with the hope that by unlocking their personal strategies they would be better positioned for engaging in conversations about literacy. In the words of one preservice teacher this activity helped him realize that his reading strategies were “so intuitive that they were tacit” and that previously he never “consciously thought about the text and how I approach reading”.

Challenges in implementation

As noted earlier one challenge that arose during this lesson was that our preservice teachers struggled with reading the journal article. Often journal articles are quite lengthy so we purposefully selected the shortest article we could find about global climate change in the hope that they would be able to read it in its entirety in the allotted 10 minutes. As the lesson unfolded we realized that this particular article was exceptionally dense conceptually and included a large number of visual representations.

Suggestions for future implementation

As we tweak this lesson for future use we plan to select another article that is more typical of scientific journal articles. That said, the very rich conversation that we had around the difficulties surrounding reading this particular article led to productive lines of inquiry in subsequent literacy sessions. In particular, we used it as a jumping off point for talking about adapting primary literature (Philips & Norris, 2009) to make scientific journal articles accessible to middle and high school students. We also realized that we needed to include explicit instruction around scaffolding reading visual representations such as tables, graphs, and diagrams. Another modification that we are considering is assigning the three readings and written responses to the four prompts as homework. This would allow preservice teachers to read each text at their own pace and take away the artificial constraint of a time limit.

Conclusion

This lesson highlights that preservice teachers’ actual familiarity with reading strategies and content specific literacy expertise is different from their initial self-perception that they know very little about literacy. The combination of genre specific and general reading strategies our preservice teachers used demonstrated that they use visual and symbolic cues in the text in combination with prior knowledge to construct new meaning from the text by utilizing comprehension strategies as they read. The fact that preservice teachers have these highly developed metacognitive strategies to pinpoint important ideas, make inferences, ask questions, utilize text structure, and monitor comprehension while reading highlights a high level expertise (Gomez & Gomez, 2006; Pearson, Roehler, Dole & Duffy, 1992; Yore, 1991, 2004; Yore & Shymansky, 1991).

We found that using this initial literacy lesson provided our preservice teachers with a solid foundation for engaging in conversations about how to scaffold student reading. This lesson provided preservice teachers an opportunity to collaboratively develop a common beginner’s repertoire of reading strategies that we subsequently used as a building block for designing activities and lessons that engage middle and high school students in big science ideas and understanding real-world phenomena through reading a variety of kinds of science texts. Also, compared to previous years, we noticed that how these preservice teachers were able to design and scaffold reading with their students was objectively more sophisticated and would allow students to engage with the science in more meaningful ways.

References

Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to teach: Knowing and using mathematics. Multiple perspectives on the teaching and learning of mathematics, 83-104.

Ball, D. L., Thames, M. H. & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59 (5), 389-407.

Buehl, D. (2011). Developing readers in the academic disciplines. International Reading Assoc..

Carnegie Council on Advancing Adolescent Literacy. (2010). Time to act: An agenda for advancing adolescent literacy for college and career success.

Cohen, D. K., & Ball, D. L. (1990). Relations between policy and practice: A commentary. Educational Evaluation and Policy Analysis, 12(3), 249–256.

Council of Chief State School Officers (2010). The Common Core State Standards for Literacy in Science and Technical subjects

Edelson, D. C. (Ed.). (2005). Predicted Effects. Investigations in environmental science: A case-based approach to the study of environmental systems. (pp. 440-443).

Gillis, J. (2014). 3.6 Degrees of Uncertainty. The New York Times. Retrieved from http://nyti.ms/1zXo0Gd

Goldman, S.R. & Bisanz, G. L. (2002). Toward a functional analysis of scientific genres: Implications for understanding and learning processes. In (Eds.) Jose Otero, Jose Leon, and Arthur Graesser The Psychology of science text comprehension. Lawrence Erlbaum Associates: New Jersey. pp.19-50.

Gomez, L., & Gomez, K. (2006). Reading for learning: Literacy supports for 21st century work. Phi Delta Kappan.

Heller, R., & Greenleaf, C. L. (2007). Literacy instruction in the content areas: Getting to the core of middle and high school improvement. Alliance for Excellent Education.

Lee, C & Spratley, A. (2010). Reading in the disciplines: The challenges of adolescent literacy.

Mawyer, K. K. N. & Johnson, H. J. (2017, May 1). Decompressing Preservice Science Teachers’ Reading Strategies. Paper presented at the 2017 annual meeting of the American Educational Research Association. Retrieved from the AERA Online Paper Repository.

Mora, C., Frazier, A. G., Longman, R. J., Dacks, R. S., Walton, M. M., Tong, E. J., & Giambelluca, T. W. (2013). The projected timing of climate departure from recent variability. Nature, 502(7470), 183-187.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.

National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common Core State Standards for English language arts and literacy in history/social studies, science, and technical subjects. Washington, DC: Authors.

NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

Norris, S. P. & Phillips, L. M. (2003) How literacy in its fundamental sense is central to scientific literacy. Science Education. 87:224-240.

Pearson, P. D., Roehler, L. R., Dole, J. A., & Duffy, G. G. (1992). What Research Has to Say about Reading Instruction. Developing expertise in reading comprehension, 154-169

Phillips, L. M., & Norris, S. P. (2009). Bridging the gap between the language of science and the language of school science through the use of adapted primary literature. Research in Science Education, 39(3), 313-319.

Sherin, M. G., Jacobs, V. R., & Philipp, R. A. (2011). Mathematics teacher noticing: Seeing through teachers’ eyes. Routledge: New York, NY.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational researcher, 15(2), 4-14.

Windschitl, M., Thompson, J., Braaten, M., & Stroupe, D. (2012). Proposing a core set of instructional practices and tools for teachers of science. Science education, 96(5), 878-903.

Yore, L. D. (1991). Secondary science teachers’ attitudes toward and beliefs about science reading and science textbooks. Journal of Research in Science Teaching, 28(1), 55-72.

Yore, L. D. (2004). Why do future scientists need to study the language arts. Crossing borders in literacy and science instruction: Perspectives on theory and practice, 71-94.

Yore, L. D., & Shymansky, J. A. (1991). Reading in science: Developing an operational conception to guide instruction. Journal of Science Teacher Education, 2(2), 29-36.

 

Why is the Good Stuff at the Bottom of the Cooler? An Inquiry about Inquiry for Preservice Secondary Science Teachers

Citation
Print Friendly, PDF & Email

Burgin, S.R. (2017). Why is the good stuff at the bottom of the cooler? An inquiry about inquiry for preservice secondary science teachers. Innovations in Science Teacher Education, (2)3. Retrieved from https://innovations.theaste.org/why-is-the-good-stuff-at-the-bottom-of-the-cooler-an-inquiry-about-inquiry-for-preservice-secondary-science-teachers/

by Stephen R. Burgin, University of Arkansas

Abstract

The following article describes a lesson that was originally implemented in a high school chemistry classroom for the purpose of teaching students about density and was subsequently revised in order to teach preservice science teachers about inquiry and the practices of science. Lesson plans turned in after the experience revealed that preservice teachers demonstrated an understanding of the importance of allowing students to engage in the practices of science in order to construct their own meanings of natural phenomenon prior to being provided with an expected result. Practical examples of how science investigations can be modified for the purposes of science teacher preparation are included.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Bell, R. L., Smetana, L., & Binns, I. (2005). Simplifying inquiry instruction. The Science Teacher, 72(7), 30-33.

Herrick, R. S., Nestor, L. P., & Benedetto, D. A. (1999). Using data pooling to measure the density of sodas: An introductory discovery experiment. Journal of Chemical Education, 76, 1411.

National Research Council (NRC). (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academy Press.

National Research Council (NRC). (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington DC: National Academies Press.