Learning About Science Practices: Concurrent Reflection on Classroom Investigations and Scientific Works

by Mo A. Basir, University of Central Missouri

The NRC (2012) emphasizes eight science practices as a constitutive part of science teaching and learning. Pre-service teachers should be able to perform those practices at least in an introductory-level science investigation. Additionally, they also need to be able to elicit and interpret those science practices in the work of students. Through the integration of doing science and reading about how scientists do science, this article provides a practical teaching approach encouraging critical thinking about science practices. The instructional approach emphasizes on performing science practices, explicitly thinking about how students and scientists do science, and reflecting on similarities and differences between how students and scientists perform science practices. The article provides examples and tools for the proposed instructional approach.

Theory to Process to Practice: A Collaborative, Reflective, Practical Strategy Supporting Inservice Teacher Growth

by Martha Inouye, University of Wyoming; & Ana Houseal, University of Wyoming

To successfully implement the Next Generation Science Standards (NGSS), more than 3.4 million in-service educators in the United States will have to understand the instructional shifts needed to adopt these new standards. Here, based on our recent experiences with teachers, we introduce a professional learning (PL) strategy that employs collaborative video analysis to help teachers adjust their instruction to promote the vision and learning objectives of the Standards. Building on effective professional development characteristics, we created and piloted it with teachers who were working on making student thinking visible. In our setting, it has been effective in providing relevant, sustainable changes to in-service teachers' classroom instruction.

Increasing Science Teacher Candidates’ Ability To Become Lifelong Learners Through A Professional Online Learning Community

by William Veal, College of Charleston; Kathy Malone, The Ohio State University; Julianne A. Wenner, Boise State University; Michael Odell, University of Texas at Tyler; & S. Maxwell Hines, Winston Salem State University

This article describes the use of an online professional learning community within the context of K-8 science education methods courses. The article describes the unique usage of the learning community with preservice teachers at different certification levels within the context of five distinct universities. While each approach is different there exists commonalities of usage. Specifically, the site is used to develop mastery of science content, exposure to pedagogical content knowledge, and classroom activities that focus on authentic science practices. Each case provides specific details of how the preservice teachers were immersed into a learning community that can serve them throughout their teaching career.

Taking Our Own Medicine: Revising a Graduate Level Methods Course on Curriculum Change

by Rudolf V. Kraus, Rhode Island College; & Lesley J. Shapiro, Keene State College

Implementing the Next Generation Science Standards presents challenges for practicing teachers. This article presents our reflection on creating and revising a class designed to teach inservice teachers about curriculum change and the Next Generation Science Standards. In its initial iteration, the course was designed to address the intellectual and practical aspects of this change in standards. Interaction with teachers, as well as gathered course reflections, indicated that addressing the process of curriculum change is both a practical task and an emotional one.

A Blended Professional Development Model for Teachers to Learn, Implement, and Reflect on NGSS Practices

by Emily A. Dare, Michigan Technological University; Joshua A. Ellis, Michigan Technological University; & Jennie L. Tyrrell, Michigan Technological University

In this paper we describe a professional development project with secondary physics and physical science teachers. This professional development supported fifteen teachers in learning the newly adopted Next Generation Science Standards (NGSS) through integrating physical science content with engineering and engineering practices. Our professional development utilized best practices in both face-to-face and virtual meetings to engage teachers in learning, implementing, and reflecting on their practice through discussion, video sharing, and micro-teaching. This paper provides details of our approach, along with insights from the teacher participants. We also suggest improvements for future practice in professional development experiences similar to this one. This article may be of use to anyone in NGSS or NGSS-like states working with either pre- or in-service science teachers.

Cobern and Loving’s Card Exchange Revisited: Using Literacy Strategies to Support and Enhance Teacher Candidates’ Understanding of NOS

by Franklin S. Allaire, University of Houston-Downtown

The nature of science (NOS) has long been an essential part of science methods courses for elementary and secondary teachers. Consensus has grown among science educators and organizations that developing teacher candidate’s NOS knowledge should be one of the main objectives of science teaching and learning. Cobern and Loving’s (1998) Card Exchange is a method of introducing science teacher candidates to the NOS. Both elementary and secondary teacher candidates have enjoyed the activity and found it useful in addressing NOS - a topic they tend to avoid. However, the word usage and dense phrasing of NOS statements were an issue that caused the Card Exchange to less effective than intended. This article describes the integration of constructivist cross-curricular literacy strategies in the form of a NOS statement review based on Cobern and Loving’s Card Exchange statements. The use of literacy strategies transforms the Card Exchange into a more genuine, meaningful, student-centered activity to stimulate NOS discussions with teacher candidates.

Personal Science Story Podcasts: Enhancing Literacy and Science Content

by Jennifer K. Frisch, University of Minnesota Duluth

Podcasts (like “You are Not So Smart”, “99% Invisible”, or “Radiolab”) are becoming a popular way to communicate about science. Podcasts often use personal stories to connect with listeners and engage empathy, which can be a key ingredient in communicating about science effectively. Why not have your students create their own podcasts? Personal science stories can be useful to students as they try to connect abstract science concepts with real life. These kinds of stories can also help pre-service elementary or secondary teachers as they work towards understanding how to connect science concepts, real life, and literacy. Podcasts can be powerful in teaching academic language in science because through producing a podcast, the student must write, speak, and listen, and think about how science is communicated. This paper describes the personal science podcast assignment that I have been using in my methods courses, including the literature base supporting it and the steps I take to support my teacher candidates in developing, writing, and sharing their own science story podcasts.

Supporting Science Teachers In Creating Lessons With Explicit Conceptual Storylines

by Dante Cisterna, University of Nebraska-Lincoln; Kelsey Lipsitz, University of Missouri; Deborah Hanuscin, Western Washington University; Zandra de Araujo, University of Missouri; & Delinda van Garderen, University of Missouri

We describe a four-step strategy used in our professional development program to help elementary science teachers recognize and create lesson plans with coherent conceptual storylines. The conceptual storyline of a lesson refers to sequencing its scientific concepts and activities to help students develop a main scientific idea and, often, is an implicit component of a lesson plan. The four steps of this learning strategy are, 1) Building awareness of conceptual storylines; (2) Analyze the coherence of the conceptual storyline of existing lessons; (3) Creating an explicit conceptual storyline as part of the planning process; and (4) Promote conceptual coherence throughout the storyline. We provide examples of how these steps were developed in our professional development program as well as evidence of teachers’ learning. We also discuss practical implications for using conceptual storylines in professional development for science teachers.

The Home Inquiry Project: Elementary Preservice Teachers’ Scientific Inquiry Journey

by Mahsa Kazempour, Penn State University (Berks Campus)

This article discusses the Home Inquiry Project which is part of a science methods course for elementary preservice teachers. The aim of the Home Inquiry Project is to enhance elementary preservice teachers’ understanding of the scientific inquiry process and increase their confidence and motivation in incorporating scientific inquiry into learning experiences they plan for their future students. The project immerses preservice teachers in the process of scientific inquiry and provides them with an opportunity to learn about and utilize scientific practices such as making observations, asking questions, predicting, communicating evidence, and so forth. Preservice teachers completing this project perceive their experiences favorably, recognize the importance of understanding the process of science, and reflect on the application of this experience to their future classroom science instruction. This project has immense implications for the preparation of a scientifically literate and motivated teacher population who will be responsible for cultivating a scientifically literate student population with a positive attitude and confidence in science.

A Lesson to Unlock Preservice Science Teachers’ Expert Reading Strategies

by Kirsten K.N. Mawyer, University of Hawai‘i at Mānoa; & Heather J. Johnson, Vanderbilt University

New standards for K-12 science education task science teacher educators with providing preservice teachers strong preparation that will help them to embrace their role as teachers of science literacy (National Research Council, 2012). Even though there is a growing trend for teacher preparation programs to offer literacy courses that focus on reading in the content areas, often they do not provide aspiring science teachers the science-specific tools needed to teach reading in secondary science contexts. This article addresses the question, “How can we, as science teacher educators, prepare our teacher candidates to teach reading in the context of science?” We designed an initial literacy lesson to help preservice teachers enrolled in two science methods courses to unpack their content knowledge about literacy in science. Our hope was that by unlocking their personal strategies they would be better positioned for engaging in conversations about literacy. We found that using this initial literacy lesson provided our preservice teachers with a solid foundation for engaging in conversations about how to scaffold student reading. This lesson also provided preservice teachers an opportunity to collaboratively develop a common beginner’s repertoire of reading strategies that we subsequently used as a building block for designing activities and lessons that engage middle and high school students in big science ideas and understanding real-world phenomena through reading a variety of kinds of science texts.