The Framework for Analyzing Video in Science Teacher Education and Examples of its Broad Applicability

Citation
Print Friendly, PDF & Email

Arias, A., Criswell, B., Ellis, J.A., Escalada, L., Forsythe, M., Johnson, H., Mahar, D., Palmeri, A., Parker, M., & Riccio, J. (2020). The framework for analyzing video in science teacher education and examples of its broad applicability. Innovations in Science Teacher Education, 5(4). Retrieved from https://innovations.theaste.org/the-framework-for-analyzing-video-in-science-teacher-education-and-examples-of-its-broad-applicability/

by Anna Arias, Kennesaw State University; Brett Criswell, West Chester University; Josh A. Ellis, Florida International University; Lawrence Escalada, University of Northern Iowa; Michelle Forsythe, Texas State University; Heather Johnson, Vanderbilt University; Donna Mahar, SUNY Empire State College; Amy Palmeri, Vanderbilt University; Margaret Parker, Illinois State University; & Jessica Riccio, Columbia University

Abstract

There appears to be consensus that the use of video in science teacher education can support the pedagogical development of science teacher candidates. However, in a comprehensive review, Gaudin and Chaliès (2015) identified critical questions about video use that remain unanswered and need to be explored through research in teacher education. A critical question they ask is, “How can teaching teachers to identify and interpret relevant classroom events on video clips improve their capacity to perform the same activities in the classroom?” (p. 57). This paper shares the efforts of a collaborative of science teacher educators from nine teacher preparation programs working to answer this question. In particular, we provide an overview of a theoretically-constructed video analysis framework and demonstrate how that framework has guided the design of pedagogical tools and video-based learning experiences both within and across a variety of contexts. These contexts include both undergraduate and graduate science teacher preparation programs, as well as elementary and secondary science methods and content courses. Readers will be provided a window into the planning and enactment of video analyses in these different contexts, as well as insights from the assessment and research efforts that are exploring the impact of the integration of video analysis in each context.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Abell, S.K. & Cennamo, K.S. (2003). Videocases in elementary science teacher preparation. In J. Brophy (Ed.), Using Video in Teacher Preparation (pp. 103-130). Bingley, UK: Emerald Group Publishing Limited.

Abell, S. K., & Bryan, L. A. (1997). Reconceptualizing the elementary science methods course using a reflection orientation. Journal of Science Teacher Education, 8, 153-166.

Barnhart, T., & van Es, E. (2015). Studying teacher noticing: Examining the relationship among pre-service science teachers’ ability to attend, analyze and respond to student thinking. Teaching and Teacher Education, 45, 83-93.

Barth-Cohen, L. A., Little, A. J., & Abrahamson, D. (2018). Building reflective practices in a pre-service math and science teacher education course that focuses on qualitative video analysis. Journal of Science Teacher Education, 29, 83-101.

Benedict-Chambers, A. (2016). Using tools to promote novice teacher noticing of science teaching practices in post-rehearsal discussions. Teaching and Teacher Education, 59, 28-44.

Bybee, R. W. (2014). The BSCS 5E instructional model: Personal reflections and contemporary implications. Science and Children, 51(8), 10–13.

Calandra, B., Brantley-Dias, L., Lee, J. K., & Fox, D. L. (2009). Using video editing to cultivate novice teachers’ practice. Journal of research on technology in education, 42(1), 73-94.

Chan, P.Y.K. & Harris, R.C. (2005). Video ethnography and teachers’ cognitive activities. In J. Brophy & S. Pinnegar (Eds.), Learning from research on teaching: Perspective, methodology and representation. Advances in research on teaching, volume 11 (pp. 337-375). Amsterdam: Elsevier JA1.

Feiman-Nemser, S. (2001). From preparation to practice: Designing a continuum to strengthen and sustain teaching. Teachers College Record, 103, 1013-1055.

Gaudin, C., & Chaliès, S. (2015). Video viewing in teacher education and professional development: A literature review. Educational Research Review, 16, 41-67.

Gelfuso, A. (2016). A framework for facilitating video-mediated reflection: Supporting preservice teachers as they create ‘warranted assertabilities’ about literacy teaching and learning. Teaching and Teacher Education, 58, 68-79.

Gibson, S. A., & Ross, P. (2016). Teachers’ professional noticing. Theory Into Practice, 55, 180-188.

Hawkins, S., & Park Rogers, M. (2016). Tools for reflection: Video-based reflection within a preservice community of practice. Journal of Science Teacher Education, 27, 415-437.

Hundley, M., Palmeri, A., Hostetler, A., Johnson, H., Dunleavy, T.K., & Self, E.A. (2018). Developmental trajectories, disciplinary practices, and sites of practice in novice teacher learning: A thing to be learned. In D. Polly, M. Putman, T.M. Petty, & A.J. Good (Eds.), Innovative Practices in Teacher Preparation and Graduate-Level Teacher Education Programs. (pp. 153-180). Hershey, PA: IGI Global.

Jacobs, V. R., Lamb, L. L., & Philipp, R. A. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169-202.

Jay, J. K., & Johnson, K. L. (2002). Capturing complexity: A typology of reflective practice for teacher education. Teaching and Teacher Education, 18(1), 73-85.

Kang, H., & van Es, E. A. (2018). Articulating design principles for productive use of video in preservice education. Journal of Teacher Education, 0022487118778549.

Kearney, M., Pressick-Kilborn, K., & Aubusson, P. (2015). Students’ use of digital video in contemporary science teacher education. In G. Hoban, W. Nielson & A. Shephard (Eds.), Student-generated digital media in science education: Learning, explaining and communicating content, (pp. 136-148).

Knight, S.L., Lloyd, G.M., Arbaugh, F., Gamson, D., McDonald, S., Nolan Jr., J., Whitney, A.E. (2015). Reconceptualizing teacher quality to inform preservice and inservice professional development. Journal of Teacher Education, 66, 105-108.

Luft, J. (2007). Minding the gap: Needed research on beginning/newly qualified science teachers. Journal of Research in Science Teaching44, 532-537.

Luft, J.A., Roehrig, G.H., & Patterson, N.C. (2003). Contrasting landscape: A comparison of the impact of different induction programs on beginning secondary science teachers’ practices, beliefs, and experiences. Journal of Research in Science Teaching, 40, 77-97.

Luft, J.A., & Hewson, P.W. (2014). Research on teacher professional development programs in science. In S.K. Abell & N.G. Lederman (Eds.), Handbook of Research on Science Education (pp. 889- 909). Mahwah, NJ: Lawrence Erlbaum Associates.

Martin, S. N., & Siry, C. (2012). Using video in science teacher education: An analysis of the utilization of video-based media by teacher educators and researchers. In B.J. Fraser, K. Tobin, C.J. McRobbie (Eds.), Second international handbook of science education (pp. 417-433). Dordrecht, the Netherlands: Springer.

Stanford Center for Assessment, Learning, and Equity. (2013). edTPA Field Test: Summary Report. Stanford, CA: Stanford University. Retrieved from http://edtpa.aacte.org/news-area/announcements/edtpa-summary-report-is-now-available.html

Tripp, T. R., & Rich, P. J. (2012). The influence of video analysis on the process of teacher change. Teaching and Teacher Education, 28, 728-739.

van Es, E. A., Tunney, J., Goldsmith, L. T., & Seago, N. (2014). A framework for the facilitation of teachers’ analysis of video. Journal of Teacher Education, 65, 340-356.

van Es, E. A., & Sherin, M. G. (2002). Learning to notice: Scaffolding new teachers’ interpretations of classroom interaction. Journal of Technology and Teacher Education10, 571-596.

A 20-year Journey in Elementary and Early Childhood Science and Engineering Education: A Cycle of Reflection, Refinement, and Redesign

Citation
Print Friendly, PDF & Email

Sandifer, C., Lottero-Perdue, P., & Miranda, R.J. (2020). A 20-year journey in elementary and early childhood science and engineering education: A cycle of reflection, refinement, and redesign. Innovations in Science Teacher Education, 5(4). Retrieved from https://innovations.theaste.org/a-20-year-journey-in-elementary-and-early-childhood-science-and-engineering-education-a-cycle-of-reflection-refinement-and-redesign/

by Cody Sandifer, Towson University; Pamela S. Lottero-Perdue, Towson University; & Rommel J. Miranda, Towson University

Abstract

Over the past two decades, science and engineering education faculty at Towson University have implemented a number of course innovations in our elementary and early childhood education content, internship, and methods courses. The purposes of this paper are to: (1) describe these innovations so that faculty looking to make similar changes might discover activities or instructional approaches to adapt for use at their own institutions and (2) provide a comprehensive list of lessons learned so that others can share in our successes and avoid our mistakes. The innovations in our content courses can be categorized as changes to our inquiry approach, the addition of new out-of-class activities and projects, and the introduction of engineering design challenges. The innovations in our internship and methods courses consist of a broad array of improvements, including supporting consistency across course sections, having current interns generate advice documents for future interns, switching focus to the NGSS science and engineering practices (and modifying them, if necessary, for early childhood), and creating new field placement lessons.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Banchi, H., & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26-29.

Center for Educational Research. (1967). Conceptually Oriented Program in Elementary Science.  New York, NY: New York Center for Field Research and School Services, New York University.

Cunningham, C. M., & Kelly, G. J. (2017). Epistemic practices of engineering for education. Science Education, 101(3), 486-505. doi:10.1002/sce.21271

Elementary School Science Project. (1966). Elementary Science Study. Berkeley, CA: University of California, Berkeley.

Engineering is Elementary (EiE). (2011b). A stick in the mud: Evaluating a landscape. Boston, MA: Museum of Science.

Engineering is Elementary (EiE). (2011b). A sticky situation: Designing walls. Boston, MA: Museum of Science.

Engineering is Elementary (EiE). (2011c). The best of bugs: Designing hand pollinators. Boston, MA: Museum of Science.

Engineering is Elementary (EiE). (2011d). Lighten up: Designing lighting systems. Boston, MA: Museum of Science.

Engineering is Elementary (EiE). (2019). The engineering design process: A five-step process Retrieved January 28, 2019 from https://eie.org/overview/engineering-design-process

Goldberg, F., Robinson, S., Price, E., Harlow, D., Andrew, J., & McKean, M. (2018).  Next Generation Physical Science and Everyday Thinking.  Greenwich, CT: Activate Learning

Karplus, R. (1964). Science Curriculum Improvement Study. Journal of Research in Science Teaching, 2(4), 293-303.

Lave, J. & Wegner, E. (1991). Situated learning: Legitimate peripheral practice. New York: Cambridge University Press.

Lottero-Perdue, P.S. (2017a). Engineering design into science classrooms. In Settlage, J., Southerland, S., Smetana, L., & Lottero-Perdue, P.S. Teaching Science to Every Child: Using Culture as a Starting Point. (Third Edition). (pp. 207-266). New York, NY: Routledge.

Lottero-Perdue, P.S. (2017b). Pre-service elementary teachers learning to teach science-integrated engineering design PBL. In Saye, J. & Brush, T. (Eds.), Developing and supporting PBL practice: Research in K-12 and teacher education settings. (pp. 105-131). West Lafayette, IN: Purdue University Press.

Lottero-Perdue, P.S., Bolotin, S., Benyameen, R., Brock, E., and Metzger, E. (September 2015). The EDP-5E: A rethinking of the 5E replaces exploration with engineering design. Science and Children 53(1), 60-66.

Lottero-Perdue, P.S., Bowditch, M. Kagan, M. Robinson-Cheek, L., Webb, T., Meller, M. & Nosek, T. (November, 2016) An engineering design process for early childhood: Trying (again) to engineer an egg package. Science and Children, 54(3), 70-76.

Lottero-Perdue P.S., Haines, S., Baranowski, A. & Kenny, P. (2020). Designing a model shoreline: Creating habitat for terrapins and reducing erosion into the bay. Science and Children, 57 (7), 40-45.

Lottero-Perdue, P.S. & Parry, E. (2019, March). Scaffolding for failure: Upper elementary students navigate engineering design failure. Science and Children, 56(7), 86-89.

Lottero-Perdue, P. & Sandifer, C. (in press). Using engineering to explore the Moon’s height in the sky with future teachers. Science & Children.

Lottero-Perdue, P.S., Sandifer, C. & Grabia, K. (2017, December) “Oh No! Henrietta got out! Kindergarteners investigate forces and use engineering to corral an unpredictable robot.” Science and Children, 55(4), 46-53.

Michaels, S., Shouse, A.W., & Schweingruber, H. A. (2008). Ready, Set, Science. Washington, D.C.: National Academies Press.

National Governors Association Center for Best Practices and Council of Chief State School Officers (NGAC and CCSSO). 2010. Common core state standards. Washington, DC: NGAC and CCSSO.

National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.

National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academy Press.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, D.C.: The National Academies Press.

NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.

Sandifer, C. (2010, January).  Interns helping interns: Advice documents as meaningful authentic assessments. Talk presented at the meeting of the Association for Science Teacher Education, Sacramento, CA.

Sandifer, C. (2018). Activities in physical science. Unpublished course text.

Sandifer, C., Hermann, R. S., Cimino, K., & Selway, J. (2015). Early teaching experiences at Towson University: Challenges, lessons, and innovations. In C. Sandifer & E. Brewe (Eds.), Recruiting and Educating Future Physics Teachers: Case Studies and Effective Practices (pp. 129-145). College Park, MD: American Physical Society.

Sandifer, C., Lising, L., & Renwick, E.  (2007). Towson’s PhysTEC course improvement project, Years 1 and 2: Results and lessons learned. 2007 Conference Proceedings of the Association for Science Teacher Education.

Sandifer, C., Lising, L., & Tirocchi, L.  (2006). Our PhysTEC project:  Collaborating with a classroom teacher to improve an elementary science practicum.  2006 Conference Proceedings of the Association for Science Teacher Education.

Sandifer, C., Lising, L., Tirocchi, L, & Renwick, E.  (2019, February 28). Towson University’s Elementary PhysTEC project: Final report. Retrieved from https://www.phystec.org/institutions/Institution.cfm?ID=1275

Sandifer, C., & Lottero-Perdue, P.  (2014, April). When practice doesn’t make perfect: Common misunderstandings of the NGSS scientific practices. Workshop presented at the meeting of the National Science Teachers Association, Boston, MA.

Sandifer, C., & Lottero-Perdue, P. S.  (2019). Activities in Earth and space science and integrated engineering (2nd ed.). Unpublished course text.

 

 

Student-Generated Photography as a Tool for Teaching Science

Citation
Print Friendly, PDF & Email

Bradbury, L., Goodman, J., & Wilson, R.E. (2020). Student-generated photography as a tool for teaching science. Innovations in Science Teacher Education, 5(4). Retrieved from https://innovations.theaste.org/student-generated-photography-as-a-tool-for-teaching-science/

by Leslie Bradbury, Appalachian State University; Jeff Goodman, Appalachian State University; & Rachel E. Wilson, Appalachian State University

Abstract

This paper describes the experiences of three science educators who used student-generated photographs in their methods classes. The paper explains the impetus for the idea and includes a summary of the literature that supports the use of photographs to teach science. The authors explain the process that they used in their classes and share examples of student-generated photographs. The paper concludes with a summary of the benefits that the authors felt occurred through the use of the photographs including the building of community within the classes and the encouragement of the preservice teachers’ identity as science learners and future science teachers.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Arnheim, R. (1980). A plea for visual thinking. Critical Inquiry, 6, 489-497.

Britsch, S. (2019). Exploring science visually: Science and photography with pre-kindergarten children. Journal of Early Childhood Literacy, 19(1), 55-81.

Byrnes, J., & Wasik, B.A. (2009). Picture this: Using photography as a learning tool in early childhood classrooms. Childhood Education, 85, 243-248.

Cappello, M., & Lafferty, K. E. (2015). The roles of photography for developing literacy across the disciplines. The Reading Teacher, 69, 287-295.

Cook, K., & Quigley, C. (2013) Connecting to our community: Utilizing photovoice as a pedagogical tool to connect college students to science. International Journal of Environmental & Science Education, 8, 339-357.

Eschach, H. (2010). Using photographs to probe students’ understanding of physical concepts: the case of Newton’s 3rd law. Research in Science Education, 40, 589-603.

Good, L. (2005/2006). Snap it up: Using digital photography in early childhood. Childhood Education, 82, 79-85.

Hoisington, C. (2002). Using photographs to support children’s science inquiry. Young Children, 57(5), 26-30, 32.

Jones, A.D. (2010). Science via photography. Science and Children, 47(5), 26-30.

Katz, P. (2011) A case study of the use of internet photobook technology to enhance early childhood “scientist” identity. Journal of  Science Education and Technology, 20, 525-536.

Krauss, D.A., Salame, I.I., & Goodwyn, L.N. (2010). Using photographs as case studies to promote active learning in biology. Journal of College Science Teaching, 40(1), 72-76.

Lee. H., & Feldman, A. (2015). Photographs and classroom response systems in middle school astronomy classes.  Journal of Science Education and Technology, 24, 496-508.

McConnell, H. P. (1952). Photography as a teaching tool and student activity in general science. School Science & Mathematics, 52, 404–407.

Next Generation Science Standards (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.

A District-University Partnership to Support Teacher Development

Citation
Print Friendly, PDF & Email

Wade-Jaimes, K., Counsell, S., Caldwell, L., & Askew, R. (2020). A district-university partnership to support teacher development. Innovations in Science Teacher Education, 5(4). Retrieved from https://innovations.theaste.org/a-district-university-partnership-to-support-teacher-development/

by Katherine Wade-Jaimes, University of Memphis; Shelly Counsell, University of Memphis; Logan Caldwell, University of Memphis; & Rachel Askew, Vanderbilt University

Abstract

With the shifts in science teaching and learning suggested by the Framework for K-12 Science Education, in-service science teachers are being asked to re-envision their classroom practices, often with little support. This paper describes a unique partnership between a school district and a university College of Education, This partnership began as an effort to support in-service science teachers of all levels in the adoption of new science standards and shifts towards 3-dimensional science teaching. Through this partnership, we have implemented regular "Share-A-Thons," or professional development workshops for in-service science teachers. We present here the Share-A-Thons as a model for science teacher professional development as a partnership between schools, teachers, and university faculty. We discuss the logistics of running the Share-A-Thons, including challenges and next steps, provide teacher feedback, and include suggestions for implementation.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Counsell, S. (2011). GRADES K-6-Becoming Science” Experi-mentors”-Tenets of quality professional development and how they can reinvent early science learning experiences. Science and Children49(2), 52.

Ingersoll, R. E. (2004). Who controls teachers’ work? Power and accountability in America’s schools. Cambridge, MA: Harvard University Press.

Kennedy, M. M. (1999). Form and Substance in Mathematics and Science Professional Development. NISE brief3(2), n2.

Luft, J. A., & Hewson, P. W. (2014). Research on teacher professional development programs in science. Handbook of research on science education2, 889-909.

National Research Council (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academy Press.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.

NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

Opfer, V. D., & Pedder, D. (2011). Conceptualizing teacher professional learning. Review of educational research81, 376-407.

Palmer, D. (2004). Situational interest and the attitudes towards science of primary teacher education students. International Journal of Science Education26, 895-908.

Shapiro, B., & Last, S. (2002). Starting points for transformation resources to craft a philosophy to guide professional development in elementary science. Professional development of science teachers: Local insights with lessons for the global community, 1-20.

Supovitz, J. A., & Turner, H. M. (2000). The effects of professional development on science teaching practices and classroom culture. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching37, 963-980.

Tennessee State Board of Education. (n.d.). Science. Retrieved from https://www.tn.gov/sbe/committees-and-initiatives/standards-review/science.html

Wilson, S. M., & Berne, J. (1999). Chapter 6: Teacher Learning and the Acquisition of Professional Knowledge: An Examination of Research on Contemporary Professlonal Development. Review of research in education24(1), 173-209

 

Facilitating Preservice Teachers’ Socioscientific Issues Curriculum Design in Teacher Education

Citation
Print Friendly, PDF & Email

Foulk, J.A., Sadler, T.D., & Friedrichsen, P.M. (2020). Facilitating preservice teachers’ socioscientific issues curriculum design in teacher education. Innovations in Science Teacher Education, 5(3). Retrieved from https://innovations.theaste.org/facilitating-preservice-teachers-socioscientific-issues-curriculum-design-in-teacher-education/

by Jaimie A. Foulk, University of Missouri - Columbia; Troy D. Sadler, University of North Carolina – Chapel Hill; & Patricia M. Friedrichsen, University of Missouri - Columbia

Abstract

Socioscientific issues (SSI) are contentious and ill-structured societal issues with substantive connections to science, which require an understanding of science, but are unable to be solved by science alone. Consistent with current K-12 science education reforms, SSI based teaching uses SSI as a context for science learning and has been shown to offer numerous student benefits. While K-12 teachers have expressed positive perceptions of SSI for science learning, they cite uncertainty about how to teach with SSI and lack of access to SSI based curricular materials as reasons for not utilizing a SSI based teaching approach. In response to this need we developed and taught a multi-phase SSI Teaching Module during a Science Methods course for pre-service secondary teachers (PSTs), designed to 1) engage PSTs as learners in an authentic SSI science unit; 2) guide PSTs in making sense of an SSI approach to teaching and learning; and 3) support PSTs in designing SSI-based curricular units. To share our experience with the Teaching Module and encourage teacher educators to consider ways of adapting such an approach to their pre-service teacher education contexts, we present our design and resources from the SSI Teaching Module and describe some of the ways PSTs described their challenges, successes, and responses to the experience, as well as considerations for teacher educators interested in introducing PSTs to SSI.

Introduction

Socioscientific issues (SSI) based teaching is a pedagogical philosophy consistent with current reform movements in K-12 science education (Zeidler, 2014b). SSI are societal issue[s] with substantive connections to science ideas (Sadler, Foulk, & Friedrichsen, 2017, p. 75), which lack structure, are controversial in nature, and for which science understanding is necessary but insufficient to offer complete solutions (Borgerding & Dagistan, 2018; Kolstø, 2006; Owens, Sadler, & Friedrichsen, 2019; Simonneaux, 2007). Because they are values-influenced, lack clear solutions, and bear significant, and often conflicting, implications for society, SSI tend to be contentious (Zeidler, 2014a).

Studies of SSI-focused learning contexts have identified many learner benefits. Students who participated in SSI-based learning experiences have demonstrated gains in understanding of science ideas (Dawson & Venville, 2010, 2013; Sadler, Klosterman, & Topcu, 2011; Sadler, Romine, & Topçu, 2016; Venville & Dawson, 2010), nature of science (Khishfe & Lederman, 2006; Lederman, Antink, & Bartos, 2014; Sadler, Chambers, & Zeidler, 2004); and scientific practices, such as modeling (Peel, Zangori, Friedrichsen, Hayes, & Sadler, 2019; Zangori, Peel, Kinslow, Friedrichsen, & Sadler, 2017) and argumentation (Venville & Dawson, 2010). Beyond these traditional learning outcomes, studies have also identified benefits such as improved reasoning skills (Kolstø et al., 2006; Sadler et al., 2004; Sadler & Zeidler, 2005; Zeidler, Applebaum, & Sadler, 2011); moral, ethical, and character development (Fowler, Zeidler, & Sadler, 2009; H. Lee, Abd‐El‐Khalick, & Choi, 2006); and increased enthusiasm and interest within science learning contexts (M. K. Lee & Erdogan, 2007; Saunders & Rennie, 2013).

The role of classroom teachers is of primary importance in facilitating reform-oriented learner experiences (Bybee, 1993) such as those based on SSI. Research has revealed that many classroom teachers hold favorable perceptions of SSI; however, despite some K-12 science teachers’ recognition of potential benefits to learners, and acknowledgements of the subsequent importance of incorporating SSI into science classroom contexts, research indicates that K-12 science teachers struggle to incorporate an SSI-focused pedagogy in their classrooms, and those who utilize SSI tend to do so infrequently and superficially (H. Lee et al., 2006; Lumpe, Haney, & Czerniak, 1998; Sadler, Amirshokoohi, Kazempour, & Allspaw, 2006; Saunders & Rennie, 2013). Three notable explanations for teachers’ omission of SSI-focused activities from their classrooms are: teachers’ unfamiliarity, lack of experience, and/or discomfort with an SSI-focused teaching approach (H. Lee et al., 2006; Sadler et al., 2006; Saunders & Rennie, 2013); teachers’ limited access to SSI-focused curricular resources (Sadler et al., 2006); and discrepancies between teachers’ perceptions of SSI and the philosophical basis of the pedagogy (Hansen & Olson, 1996; H. Lee et al., 2006; Sadler et al., 2006).

While a small number of prepared curricular resources for SSI have begun to be made available to teachers (cf. Kinslow & Sadler, 2018; Science Education Resource Center; The ReSTEM Institute; Zeidler & Kahn, 2014a), practical access to SSI curricula remains limited. Literature around SSI features an array of project-specific SSI-focused curricular resources on a variety of topics (Carson & Dawson, 2016; Christenson, Chang Rundgren, & Höglund, 2012; Dawson & Venville, 2010; Eilks, 2002; Eilks, Marks, & Feierabend, 2008; Friedrichsen, Sadler, Graham, & Brown, 2016; Kolstø, 2006; Lederman et al., 2014; H Lee et al., 2013; Peel et al., 2019; Sadler & Zeidler, 2005). However, only very few of the studies (Eilks, 2002; Friedrichsen et al., 2016; Zeidler et al., 2011) have focused on the process or products of SSI curricular design and the curricula from this research generally have not been distributed for classroom use. In addition, research has demonstrated the potentially transformative power to teachers of engaging in the design of reform-oriented, including SSI-focused, curricular resources (Coenders, Terlouw, Dijkstra, & Pieters, 2010; Eilks & Markic, 2011; Hancock, Friedrichsen, Kinslow, & Sadler, 2019; Zeidler et al., 2011).

In view of the demonstrated discrepancy between teachers’ perceptions and enactment of SSI; limited access to SSI curricular resources; the transformative value of engaging in reform-oriented curricular design; and the potential of SSI-based pedagogy to promote reform-oriented learning experiences; we view supporting teachers in the design of SSI-oriented curricula as a promising approach to educational reform. This project reflects that view. We sought to support pre-service science teachers (PSTs) in their uptake of SSI-based teaching in a Science Methods course through our design and teaching of an SSI Teaching Module intended to: 1) engage PSTs as learners in an authentic SSI science unit; 2) guide PSTs in making sense of an SSI approach to teaching and learning; and 3) support PSTs in designing SSI-based curricular units. The purpose of this paper is to describe our Teaching Module and share related resources with teacher educators, as well as to provide some examples of PSTs’ challenges, successes, and responses to the experience. It is our hope that the Teaching Module will serve as an inspiration for teacher educators interested in supporting future science teachers’ uptake of SSI.

SSI-TL – A Framework to Operationalize SSI-Based Pedagogy

Our group has developed the SSI Teaching and Learning (SSI-TL) Framework (Sadler et al., 2017) for the purpose of supporting teachers’ uptake of SSI-based teaching. Intended as a guide for classroom teachers, the SSI-TL framework highlights elements we consider to be essential to teaching science with SSI, while also remaining highly adaptable to various subdisciplines, courses, and classroom contexts in K-12 science education. SSI-TL is one instantiation of SSI-based teaching, developed from multiple projects that utilized research-based SSI frameworks featured in previous literature (Foulk, 2016; Friedrichsen et al., 2016; Klosterman & Sadler, 2010; Presley et al., 2013; Sadler, 2011; Sadler et al., 2015; Sadler et al., 2016). This project contributed to the development of SSI-TL, and we drew from an intermediate version of the framework throughout the project (See Figure 1).

Figure 1 (Click on image to enlarge)
SSI-TL Framework

SSI-TL specifies requisite components of SSI-based learning experiences, the sum total of which are necessary for a complete SSI-TL curricular unit. Such a unit consists of a cohesive, two- to three-week sequence of lessons designed around a particular SSI, to promote students’ achievement of a defined set of science learning objectives. Within any SSI-TL curricular unit, a focal SSI is foregrounded in the curricular sequence and revisited regularly throughout the unit, in order to serve as both motivation and context for learners’ engagement in authentic science practices and sensemaking about science ideas. A continuous focus on the selected SSI also guides students in exploration of societal dimensions of the issue; that is, the potential impacts of the issue on society, such as those of a social, political, or economic nature. Participation in an SSI-TL unit is intended to engage students in sensemaking about both the relevant science ideas and the societal dimensions of the issue. Student learning in SSI-based teaching is assessed with a culminating project in which learners synthesize their understanding of scientific and societal aspects relevant to the issue. In this project, our intermediate version of the SSI-TL framework served as both a representation of SSI-based teaching and a tool to support PSTs’ uptake of the approach.

The SSI Teaching Module in a Methods Course

Project Context, Goals, and Audience

The project described in this paper consisted of a six-week SSI Teaching Module that was implemented during a semester-long Science Methods course for secondary PSTs. The Science Methods course was the last in a sequence of three required methods courses in an undergraduate secondary science education program, and occurred immediately prior to the student teaching experience. The focus of the 16-week course was curricular planning and development, and the primary course goal was that PSTs would be able to design a coherent secondary science curricular unit, consisting of a two- to three-week sequence of related lessons organized around selected NGSS performance expectations. The purposes of the six-week SSI Teaching Module were to facilitate PSTs’ familiarity with SSI-based teaching; to explicate and challenge, as appropriate, PSTs’ perceptions about SSI; and to promote PSTs’ learning about SSI-based science teaching, as evidenced by their ability to develop cohesive science curricular units consistent with the SSI-TL framework.

A cohort of 13 PSTs in their final year of undergraduate coursework completed the SSI Teaching Module during Fall 2015. The first author developed and taught the SSI Teaching Module and the Science Methods course and conducted assessment of PSTs’ work in the course. The second author served in an advisory capacity during design, enactment, and assessment phases of the Teaching Module and Methods course. Both the second and third authors served as advisors during the writing stages of the project.

Project Design

The SSI Teaching Module consisted of three distinct phases, in which PSTs engaged with SSI-based science education from the perspectives of learner, teacher, and curriculum maker. (See SSI Teaching Module Schedule, below). In the first phase of the SSI Teaching Module, PSTs participated as learners of science in a sample secondary science unit designed using the SSI-TL framework, learning science content which was contextualized in an authentic SSI. (See SSI units for secondary science at our project website: http://ri2.missouri.edu/ri2modules.) In the second phase of the SSI Teaching Module, the PSTs spent time considering their SSI learning experience, this time from a teacher perspective, with explicit attention to the SSI-TL framework and key components of the sample SSI unit. Finally, in the third phase, the PSTs created SSI-based curricular units for use in their future secondary science classrooms. In all phases of the SSI Teaching Module, PSTs were asked to engage in personal reflection about their perceptions of SSI and its potential utility in their future teaching practice, with various writing prompts used during class, reflective writing assignments, and in-class discussion. More detailed description of each phase of the SSI Teaching Module follows (See Table 1).

Table 1 (Click on image to enlarge)
SSI Teaching Module Schedule

SSI Teaching Module – Phase 1: Learning Science with SSI

The first phase of the SSI Teaching Module focused on PSTs’ engagement with a sample SSI-TL unit. The sample unit was developed for an Advanced Exercise Science course at the secondary level, using NGSS standards relevant to the topic of energy systems, and presented through a nutritional science lens. The focal SSI for the nutrition unit was taxation of obesogenic foods. The SSI nutrition unit, as representation of the SSI-TL approach, engaged PSTs in several learning activities appropriate for incorporation into their own secondary-level SSI curricular unit designs. During this phase PSTs explored societal dimensions of the issue and engaged in sensemaking about the relevant science ideas, just as secondary students would do. Find the complete “Fat Tax” SSI-TL unit plan on our project website: http://ri2.missouri.edu/ri2modules/Fat Tax/intro.

The nutrition focus of the sample SSI unit was purposely selected for several reasons. First, this choice of topic leveraged the first author’s personal background and interest in nutritional sciences. Second, a pair of teaching partners in a local secondary school had approached the first author for help with preparing a unit for a new course they would be teaching. Finally, this topic offered opportunities for the methods students who had content backgrounds in different science disciplines to see the integration of diverse science ideas, and to build upon their own content knowledge. The SSI nutrition unit and the secondary course for which it was prepared represented authentic possibilities for PSTs’ future teaching assignments.

As specified in the SSI-TL framework, the SSI nutrition unit was introduced with a focal SSI. PSTs began by reading an article about a proposed “fat tax,” and were then asked to articulate and share ideas about the issue, providing reasoning to support their positions. Various positions were proposed, and a lively discussion followed. “Henry,” who had previously worked in a grocery store, shared initial support for the tax, justified by his personal observations of patterns in consumer buying habits. “Gregg” pushed back on what he considered to be stereotyping in Henry’s example, and argued that taxation of groups of food items toward controlling consumer choice was not within the purview of government agencies and could place an unnecessary burden on population subgroups such as college students and young families, who might depend on convenience foods during particular life phases. Various PSTs shared about personal and family experiences linking nutrition and health, which highlighted the challenge of defining “healthful” nutrition. The result of this introductory activity was PSTs’ recognition of their need to better understand both scientific and societal dimensions of the issue.

Because societal dimensions of SSI are a key focus of SSI-based teaching, and because research indicates that science teachers may struggle most with this component of SSI (Sadler et al., 2006), the relevant social aspects of the nutrition focal SSI were heavily featured in the SSI Teaching Module. An example of a nutrition lesson that emphasized societal dimensions of the focal SSI was one that incorporated an SSI Timeline activity (Foulk, Friedrichsen, & Sadler, 2020). In small groups, PSTs explored historically significant nutrition recommendations, summarizing their findings and posting them on a collaborative class timeline. Then the PSTs discussed their collective findings, comparing and contrasting nutrition recommendations through the years, and proposing significant historical events that may have impacted recommendations. Next, the small groups reconvened to research scientific, political, and economic events, which had been selected for their historical significance to nutritional health. PSTs summarized the impact of their assigned events, color coded according to the nature of impacts on historical nutritional recommendations. The result was a very engaged group of learner-participants, and a great deal of discussion about their new understandings of nutrition policy. Following the introduction of the issue and participation in this timeline activity, PSTs expressed an awareness that meaningful interpretation and assessment of commonly shared nutrition advice (e.g., “eat everything in moderation” or “avoid cholesterol and saturated fat”) depends on an understanding of scientific ideas about nutrition. Specifically, the PSTs recognized their need to be able to make sense of the structure and function of nutrition macromolecules and their significance in metabolic pathways. As learners, PSTs benefitted from this activity by identifying science concepts they needed to know in order to address the focal issue (See Figure 2 and Figure 3).

Figure 2 (Click on image to enlarge)
SSI Timeline Activity

Figure 3 (Click on image to enlarge)
SSI Timeline Categories of Societal Dimensions

SSI Teaching Module – Phase 2: Teaching Science with SSI

The second phase of the SSI Teaching Module allowed PSTs to reflect on their learner experiences with the SSI nutrition unit, from the perspective of teachers. After participating in selected portions of the SSI nutrition unit, the PSTs began the process of unpacking their experience and making sense of the teaching approach. They were first asked to inspect the SSI-TL framework, and then they received written copies of the SSI nutrition unit for comparison. In small groups PSTs discussed elements of the framework they were able to distinguish in the nutrition unit, as well as the purposes they saw for each activity they had identified. A whole class discussion of the unit resulted in a mapping of the unit to the SSI-TL framework (See Figure 4).

Figure 4 (Click on image to enlarge)
Unit Map

In another lesson during the second phase of the SSI Teaching Module, a whole class discussion of the philosophical assumptions of the SSI-TL framework helped PSTs to consider broader educational purposes of the approach (Zeidler, 2014a). The instructor again provided a copy of the framework and asked PSTs to consider ways it compared and contrasted to their experiences as learners of science, and their ideas about teaching science. During the discussion, “Travis” shared, “I would’ve eaten this up as a high school student, because I didn’t always like science classes. I think connecting science to real life is a great way to reach students who might not like science otherwise.” Conversely, “Dale” expressed his concerns about shaking up tried and true teaching methods in his subdiscipline, arguing that there are more beneficial ways to teach than forcing science learning into SSI: “Everything we teach at the high school level for physics was settled 200 years ago. Why should students spend time looking at news stories and history?” The group revisited these conversations about educational philosophy and socioscientific issues frequently.

Following a whole class discussion about the SSI-TL framework and nutrition unit as an exemplar, PSTs used the framework to collaboratively analyze examples of externally created SSI-focused curricula. Small groups identified components of SSI-based teaching such as the focal issue, opportunities to consider societal dimensions of the issue, and connections to relevant science ideas. (Friedrichsen et al., 2016; Schibuk, 2015; Zeidler & Kahn, 2014a, 2014b, 2014c). Finally, individual PSTs completed a structured analysis of these assigned SSI curricular units. This activity served to further help the PSTs in identifying key components of SSI-based science curricula, and to see varied ways that classroom activities, lessons, and units might be created to align with the approach. See the analysis rubric tool designed to support PSTs’ individual curricular analyses (See Figure 5).

Figure 5 (Click on image to enlarge)
Curriculum Analysis Rubric

SSI Teaching Module – Phase 3: Designing SSI Curricula

The third and final phase of the SSI Teaching Module focused on curricular design. Because curricular design was the primary goal of the Science Methods course, activities prior to the SSI Teaching Module had been designed to engage PSTs in utilizing NGSS and other educational standards, as well as in structuring and planning for meaningful learning activities in secondary science classrooms. This phase of the SSI Teaching Module was designed to build upon the PSTs’ prior experiences with elements of curriculum planning, and to integrate them with the activities of the previous phases of the module.

Over a series of lessons, in various formats, and with numerous feedback opportunities, the PSTs were supported in their development of a cohesive SSI-focused curricular unit designed around the SSI-TL framework, which served as the culminating course project. With regular instructor feedback, in both in-class collaborative settings and as out-of-class assignments, PSTs selected topics applicable to their science certification areas, brainstormed potential focal SSIs in which to contextualize their science units, and identified NGSS standards most relevant to their topics. In addition to feedback from both instructor comments and class discussions, PSTs used several resources intended as tools to guide their process, including the SSI-TL framework, written requirements for the SSI Curriculum Design task, access to the SSI nutrition unit from phase one of the SSI Teaching Module, and an electronic template in which to create their units (See Figure 6).

Figure 6 (Click on image to enlarge)
Curriculum Design Task Requirements

All activities in phase three of the SSI Teaching Module served to help PSTs draft detailed unit overviews consisting of a two- to three-week sequence of lessons with multiple detailed lesson plans, specifically focused on introducing the focal SSI, exploring societal dimensions of the issue, and activities for mastery of related science content ideas. Assessment of PSTs’ units was based upon a detailed scoring rubric collaboratively constructed with the PSTs during the third phase of the Teaching Module. Together the course instructor and PSTs used the Curriculum Design Task Requirements and the SSI-TL framework, as well as the Curriculum Analysis Rubric, to prioritize elements and characteristics of SSI units. Finished units were later assessed for alignment to the SSI-TL framework in terms of unit structure, principles of SSI, and general quality of activities and lessons. See the scoring rubric for the unit design task, below. Note also that NGSS-aligned lesson plan design was a requirement for the PSTs in a previous methods course and continued as an expectation throughout PSTs’ education program. Selected PSTs’ SSI unit design products are summarized (See Figure 7 and Table 2).

Figure 7 (Click on image to enlarge)
SSI Unit Design Task – Scoring Rubric

 

Table 2 (Click on image to enlarge)
Table of Selected PST Curricular Units

 

Discussion & Conclusion

In this project, we sought address the tension between K-12 science teachers’ favorable perceptions of SSI-based pedagogy and their simultaneous unlikelihood to utilize SSI in their science classrooms. Specifially, we designed and implemented an SSI Teaching Module intended to leverage the transformative potential of the curriculum design process, in an effort to address commonly cited barriers to SSI-based pedagogy enactment, including: unfamiliarity or discomfort with SSI-based teaching; lack of access to SSI curricular resources; and misalignment between teachers’ perceptions and the pedagogical philosophy of SSI. We observed several specific examples of favorable impacts for the PST participants in this experience.

First, PSTs expressed excitement about learning with SSI. In a whole class conversation following phase one of the teaching module, Adam described his positive experience as a learner of SSI. Referring specifically to the use of SSI and related societal dimensions in the learning experience, he commented, “I think as a [secondary] student I would’ve been, like, sucked in from the very first day of the nutrition unit.” Adam’s sentiment echoed the enthusiasm that Travis had clearly demonstrated during phase one of the SSI Teaching Module. Having previously spoken to the first author privately regarding his uncertainty about a career path in education, Travis exceeded task expectations during the learner phase of the project. In ways that were atypical for him, Travis assumed leadership responsibilities for his group, encouraging his peers to explore and make connections among science and societal dimensions of the issue they were studying. On one occasion, Travis stayed after class to make additional contributions to the collaborative activity from that day’s lesson, describing to the first author his own engagement during participation in the SSI nutrition unit in class. During a whole class discussion in phase two of the SSI Teaching Module, Travis spoke favorably of his firsthand experience with SSI and enthusiastically shared with his peers his perception of the potential for SSI to promote learner engagement, particularly for those students who, like himself, are likely to find traditional K-12 science coursework unenjoyable.

Second, PSTs expressed enthusiasm for teaching with SSI during phases two and three of the SSI Teaching Module. In class conversations about the SSI-TL framework as well as in written reflections about SSI unit design required with the Unit Design Task, multiple PSTs expressed enthusiasm for SSI and plans to use it, despite its challenges. For example, after designing his unit, “Cooper” wrote, “I found that creating this [SSI] unit about waves was challenging, but also sort of exciting, because it makes me think about how much I’m looking forward to being a teacher.” Similarly, during our whole class discussion about the philosophical underpinnings of SSI, Adam repeatedly expressed his perception of the value of teaching science with SSI. Adam’s SSI curricular unit design was exceptional for his thoughtful choice of issue and the complex connections he made among science ideas and societal dimensions related to the issue, and his comments throughout the learner experience indicated his consideration of the challenges and possible solutions to utilizing SSI in the classroom. During his third year of teaching, Adam reached out to the first author to describe his own use of SSI-based pedagogy and asked for help in supporting veteran teachers in his department to take up the approach. Adam expressed a highly favorable view of teaching with SSI, and the project seemed to prepare him to do so.

Finally, PSTs demonstrated success in designing coherent SSI-TL curricular resources. Consistent with our framework, we considered an SSI unit to be successfully designed if it met the criteria specified in the Curriculum Design Task and Scoring Rubric, by including essential elements and characteristics of SSI and by representing the intent of the approach. Regarding elements and characteristics of SSI and by representing the intent of the approach. Regarding elements and characteristics, a unit overview was required, with specific reference to the science topic and related standards from NGSS, a thorough explanation of pertinent science ideas, and the selected focal SSI in which the unit was contextualized. The overview would also include a brief timeline describing a coherent sequence of lessons related to the topic. In addition, units were to include detailed plans for three specific types of lesson: introduction of the focal issue, exploration of societal dimensions of the issue, and explicit sensemaking about science ideas. Finally, a successful unit would describe plans for assessment, including requirements for a culminating unit project in which learners would demonstrate understanding of science ideas and societal dimensions related to the issue. Throughout the unit design, the selected SSI would feature prominently, and activities would allow for students’ meaningful sensemaking about the science ideas and societal dimensions relevant to the issue.

With participation in the SSI Teaching Module, support from their instructor, and interactions with the learning community in their methods course, each of our participant PSTs satisfied the requirements of the unit design task and designed curricular units consistent with the SSI-TL framework. PSTs were able to identify learning standards relevant to their selected science topics, provide explanations of their topics, and contextualize science learning opportunities within authentic, real-world issues. In addition, PSTs were able to create broad, cohesive overviews of their units, as well as detailed plans for specific lessons. Most notable with regard to the emphasis on SSI, PSTs were able to select relevant, appropriate socioscientific issues for their topics, and to thoughtfully weave these issues into their unit designs. PSTs reflected about general struggles related to selecting focal issues or integrating science ideas and societal dimensions, and the experiences in the SSI Teaching module that they found especially helpful, such as small group discussions during the planning process, and peer feedback on the drafts of their units.

Consistent with current calls for science education reform, we know SSI offer valuable opportunities for student learning, and we believe SSI curriculum design to be a beneficial way to support teachers’ uptake of SSI-based teaching. Furthermore, we view teacher education to be an appropriate context to support pre-service and early career teachers’ in making sense of and adopting the approach. We share the design of SSI Teaching Module to support other teacher educators in innovating pre-service methods courses toward promoting PSTs’ uptake of SSI.

References

Borgerding, L. A., & Dagistan, M. (2018). Preservice science teachers’ concerns and approaches for teaching socioscientific and controversial issues. Journal of Science Teacher Education, 29, 283-306.

Bybee, R. W. (1993). Leadership, Responsibility, and Reform in Science Education. Science Educator, 2(1), 1-9.

Carson, K., & Dawson, V. (2016). A teacher professional development model for teaching socioscientific issues. Teaching science, 62(1), 28.

Christenson, N., Chang Rundgren, S.-N., & Höglund, H.-O. (2012). Using the SEE-SEP Model to Analyze Upper Secondary Students’ Use of Supporting Reasons in Arguing Socioscientific Issues. Journal of Science Education and Technology, 21, 342-352.

Coenders, F. G., Terlouw, C., Dijkstra, S., & Pieters, J. (2010). The effects of the design and development of a chemistry curriculum reform on teachers’ professional growth: A case study. Journal of Science Teacher Education, 21, 535-557.

Dawson, V., & Venville, G. (2010). Teaching strategies for developing students’ argumentation skills about socioscientific issues in high school genetics. Research in Science Education, 40, 133-148.

Dawson, V., & Venville, G. (2013). Introducing High School Biology Students to Argumentation About Socioscientific Issues. Canadian Journal of Science, Mathematics and Technology Education, 13(4).

Eilks, I. (2002). Teaching ‘Biodiesel’: A sociocritical and problem-oriented approach to chemistry teaching and students’ first views on it. Chemistry Education Research and Practice, 3(1), 77-85.

Eilks, I., & Markic, S. (2011). Effects of a Long-Term Participatory Action Research Project on Science Teachers’ Professional Development. Eurasia Journal of Mathematics, Science & Technology Education, 7(3).

Eilks, I., Marks, R., & Feierabend, T. (2008). Science education research to prepare future citizens–Chemistry learning in a socio-critical and problem-oriented approach. Promoting successful science learning–The worth of science education research, 75-86.

Foulk, J. A. (2016). Changes in pre-service teachers’ ideas about socioscientific issues teaching and learning in a science methods course. Paper presented at the annual meeting of the National Association for Research in Science Teaching, Baltimore, Maryland.

Foulk, J. A., Friedrichsen, P., & Sadler, T. D. (2020). Embedding Science in Socio-scientific Issues: Teaching with A Timeline Activity. The Science Teacher, 87(7),

Fowler, S. R., Zeidler, D. L., & Sadler, T. D. (2009). Moral sensitivity in the context of socioscientific issues in high school science students. International Journal of Science Education, 31, 279-296.

Friedrichsen, P., Sadler, T. D., Graham, K., & Brown, P. (2016). Design of a socio-scientific issue curriculum unit: Antibiotic resistance, natural selection, and modeling. International Journal of Designs for Learning, 7(1).

Hancock, T. S., Friedrichsen, P. J., Kinslow, A. T., & Sadler, T. D. (2019). Selecting Socio-scientific Issues for Teaching. Science & Education, 28, 639-667.

Hansen, K. H., & Olson, J. (1996). How teachers construe curriculum integration: The science, technology, society (STS) movement as Bildung. Journal of Curriculum Studies, 28, 669-682.

Khishfe, R., & Lederman, N. (2006). Teaching nature of science within a controversial topic: Integrated versus nonintegrated. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 43, 395-418.

Kinslow, A. T., & Sadler, T. D. (2018). Making Science Relevant: Using Socio-Scientific Issues to Foster Critical Thinking, 40.

Klosterman, M. L., & Sadler, T. D. (2010). Multi‐level Assessment of Scientific Content Knowledge Gains Associated with Socioscientific Issues‐based Instruction. International Journal of Science Education, 32, 1017-1043.

Kolstø, S. D. (2006). Patterns in Students’ Argumentation Confronted with a Risk‐focused Socio‐scientific Issue. International Journal of Science Education, 28, 1689-1716.

Kolstø, S. D., Bungum, B., Arnesen, E., Isnes, A., Kristensen, T., Mathiassen, K., . . . Ulvik, M. (2006). Science students’ critical examination of scientific information related to socioscientific issues. Science Education, 90, 632-655.

Lederman, N. G., Antink, A., & Bartos, S. (2014). Nature of science, scientific inquiry, and socio-scientific issues arising from genetics: A pathway to developing a scientifically literate citizenry. Science & Education, 23, 285-302.

Lee, H., Abd‐El‐Khalick, F., & Choi, K. (2006). Korean science teachers’ perceptions of the introduction of socio‐scientific issues into the science curriculum. Canadian Journal of Science, Mathematics and Technology Education, 6, 97-117.

Lee, H., Yoo, J., Choi, K., Kim, S.-W., Krajcik, J., Herman, B. C., & Zeidler, D. L. (2013). Socioscientific Issues as a Vehicle for Promoting Character and Values for Global Citizens. International Journal of Science Education, 35(12).

Lee, M. K., & Erdogan, I. (2007). The effect of science–technology–society teaching on students’ attitudes toward science and certain aspects of creativity. International Journal of Science Education, 29, 1315-1327.

Lumpe, Haney, & Czerniak. (1998). Science teacher beliefs and intentions regarding the use of cooperative learning. School Science and Mathematics, 98, 123-135.

Owens, D. C., Sadler, T. D., & Friedrichsen, P. (2019). Teaching Practices for Enactment of Socio-scientific Issues Instruction: an Instrumental Case Study of an Experienced Biology Teacher. Research in Science Education. https://doi.org/10.1007/s11165-018-9799-3

Peel, A., Zangori, L., Friedrichsen, P., Hayes, E., & Sadler, T. (2019). Students’ model-based explanations about natural selection and antibiotic resistance through socio-scientific issues-based learning. International Journal of Science Education, 41, 510-532.

Presley, M. L., Sickel, A. J., Muslu, N., Merle-Johnson, D., Witzig, S. B., Izci, K., & Sadler, T. D. (2013). A Framework for Socio-Scientific Issues Based Education. Science Educator, 22(1), 26-32.

Sadler, T. D. (2011). Socio-scientific issues in the classroom: Teaching, learning and research (Vol. 39): Springer Science & Business Media.

Sadler, T. D., Amirshokoohi, A., Kazempour, M., & Allspaw, K. M. (2006). Socioscience and ethics in science classrooms: Teacher perspectives and strategies. Journal of Research in Science Teaching, 43, 353-376.

Sadler, T. D., Chambers, F. W., & Zeidler, D. L. (2004). Student conceptualizations of the nature of science in response to a socioscientific issue. International Journal of Science Education, 26, 387-409.

Sadler, T. D., Foulk, J. A., & Friedrichsen, P. J. (2017). Evolution of a Model for Socio-Scientific Issue Teaching and Learning. International Journal of Education in Mathematics, Science and Technology, 5(1).

Sadler, T. D., Friedrichsen, P., Graham, K., Foulk, J., Tang, N., & Menon, D. (2015). The derivation of an instructional model and design processes for socioscientific issues-based teaching. Paper presented at the annual meeting of the National Association for Research in Science Teaching, Chicago IL.

Sadler, T. D., Klosterman, M. L., & Topcu, M. S. (2011). Learning science content and socio-scientific reasoning through classroom explorations of global climate change. In Socio-scientific Issues in the Classroom (pp. 45-77): Springer.

Sadler, T. D., Romine, W. L., & Topçu, M. S. (2016). Learning science content through socio-scientific issues-based instruction: A multi-level assessment study. International Journal of Science Education, 38, 1622-1635.

Sadler, T. D., & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socioscientific decision making. Journal of Research in Science Teaching, 42, 112-138.

Saunders, K. J., & Rennie, L. J. (2013). A Pedagogical Model for Ethical Inquiry into Socioscientific Issues In Science. Research in Science Education, 43(1).

Schibuk, E. (2015). Teaching the Manhattan Project. The Science Teacher, 82(7), 27.

Science Education Resource Center. Using Issues to Teach Science. Pedagogy in Action: Connecting Theory to Practice. Retrieved from https://serc.carleton.edu/sp/library/issues/examples.html

Simonneaux, L. (2007). Argumentation in Science Education: An Overview. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in Science Education: Perspectives from Classroom-Based Research (pp. 179-199). Dordrecht: Springer Netherlands.

The ReSTEM Institute. [RI]^2 Modules. Rigorous Investigations of Relevant Issues. Retrieved from http://ri2.missouri.edu/ri2modules

Venville, G., & Dawson, V. (2010). The impact of a classroom intervention on grade 10 students’ argumentation skills, informal reasoning, and conceptual understanding of science. Journal of Research in Science Teaching, 47, 952-977.

Zangori, L., Peel, A., Kinslow, A., Friedrichsen, P., & Sadler, T. D. (2017). Student development of model‐based reasoning about carbon cycling and climate change in a socio‐scientific issues unit. Journal of Research in Science Teaching, 54, 1249-1273.

Zeidler, D. L. (2014a). Socioscientific issues as a curriculum emphasis: Theory, research, and practice. In Handbook of Research on Science Education, Volume II (pp. 711-740): Routledge.

Zeidler, D. L. (2014b). STEM education- A deficit framework for the twenty first century? A sociocultural socioscientific response.

Zeidler, D. L., Applebaum, S. M., & Sadler, T. D. (2011). Enacting a socioscientific issues classroom: Transformative transformations. In Socio-scientific issues in the classroom (pp. 277-305): Springer.

Zeidler, D. L., & Kahn, S. (2014a). It’s Debatable!: Using Socioscientific Issues to Develop Scientific Literacy K-12: NSTA press.

Zeidler, D. L., & Kahn, S. (2014b). “Mined” Over Matter. In It’s Debatable!: Using Socioscientific Issues to Develop Scientific Literacy K-12 (pp. 221-260): NSTA Press.

Zeidler, D. L., & Kahn, S. (2014c). “Pharma’s” Market. In It’s Debatable!: Using Socioscientific Issues to Develop Scientific Literacy K-12 (pp. 262-292): NSTA Press.

 

 

A Framework for Science Exploration: Examining Successes and Challenges for Preservice Teachers

Citation
Print Friendly, PDF & Email

Croce, K. (2020). A framework for science exploration: Examining successes and challenges for preservice teachers. Innovations in Science Teacher Education, 5(2). Retrieved from https://innovations.theaste.org/a-framework-for-science-exploration-examining-successes-and-challenges-for-preservice-teachers/

by Keri-Anne Croce, Towson University

Abstract

Undergraduate preservice teachers examined the Science Texts Analysis Model during a university course. The Science Texts Analysis Model is designed to support teachers as they help students prepare to engage with the arguments in science texts. The preservice teachers received instruction during class time on campus before employing the model when teaching science to elementary and middle school students in Baltimore city. This article describes how the preservice teachers applied their knowledge of the Science Texts Analysis Model within this real world context. Preservice teachers’ reactions to the methodology are examined in order to provide recommendations for future college courses.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Arnold, N. (2013). Comment ca marche? Moteurs et voitures. Paris: Gallimard Jeunesse

Croce, K. (2014). Assessment of Burmese refugee students’ meaning making of scientific informational texts. Journal of Early Childhood Literacy, 14, 389-424.

Croce, K. (2015). Latino(a) and Burmese elementary school students reading scientific informational texts: The interrelationship of the language of the texts, students’ talk, and conceptual change theory. Linguistics and Education, 29, 94-106.

Croce, K. (2017). Navigating assessment with linguistically diverse learners. Charlotte: Information Age Publishing

Colman, J. & Goldston, J. (2011). What do you see? Science and Children, 49(1), 42-47.

Colman, J. & McTigue, E. (2013). Methods & Strategies: Unlocking the power of visual communication. Science and Children, 50(5), 73-77.

Cosgrove, B. (2004). Weather. New York: DK Publishing.

Dusling, J. (1998). Bugs! Bugs! Bugs! New York: DK Publishing

Fang, Z. & Coatom, S. (2013). Disciplinary literacy: What you want to know about it. Journal of Adolescent & Adult literacy, 56, 627-632.

Gibbons, G. (1991). From seed to plant. New York: Holiday House.

Green, R. (1986). Caterpillars. New York: Mondo publishing

Halliday, M.A.K. & Hasan, R. (1985). Language, context, and text: Aspects of language in a social semiotic perspective. New York: Oxford University Press

Kress, G. (1999). Genre and the changing contexts for English language arts. Language Arts, 76, 461-469.

Mawyer and Johnson (2017). Read like a scientist. The Science Teacher, 84(10). 43-48.

Miller, D. & Czegan, D. (2016). Integrating the liberal arts and chemistry: A series of general chemistry assignments to develop science literacy. Journal of Chemical Education, 93, 864-869.

National Academies of Sciences, Engineering, and Medicine. (2017). Seeing students learn science: Integrating assessment and instruction in the classroom. Washington, DC: The National Academies Press.

National Research Council. (2012). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas. Committee on a conceptual framework for new K–12. Science education standards. Board on science education, Division of behavioral and social sciences and education. Washington, DC: The National Academies Press.

Next Generation Science Standards (2013). Connections to the Common Core Standards for literacy in science and technical subjects. http://static.nsta.org/ngss/AppendixM-ConnectionsToTheCCSSForLiteracy-6.12.13.pdf

Shanahan, T. & Shanahan, C. (2012). What is disciplinary literacy and why does it matter? Topics in Language Disorders, 32(1), 7-18.

Shore, L. (2010). How to make slime. Mankato: MN, Capstone Press.

Simon, S. (1999).Tornadoes. New York: HarperCollins Publishing.

Simon, S. (2006). Volcanoes. New York: HarperCollins Publishing.

Parsons, A. (1990). Amazing Spiders. Dorling Kindersley: London.

Partnership for 21st Century Learning. (2007). Framework for 21st Century Learning. http://www.p21.org/our-work/p21-framework

Wicks, M. (2016). Science Comics: Coral Reefs: Cities of the Ocean. New York: First Second.

Wiesner, D. (2006). Flotsam. New York: Clarion Books

Scaffolding Preservice Science Teacher Learning of Effective English Learner Instruction: A Principle-Based Lesson Cycle

Citation
Print Friendly, PDF & Email

Roberts, S.A., & Bianchini, J.A. (2019). Scaffolding preservice science teacher learning of effective english learner instruction: A principle-based lesson cycle. Innovations in Science Teacher Education, 4(3). Retrieved from https://innovations.theaste.org/scaffolding-preservice-science-teacher-learning-of-effective-english-learner-instruction-a-principle-based-lesson-cycle/

by Sarah A. Roberts, University of California, Santa Barbara; & Julie A. Bianchini, University of California, Santa Barbara

Abstract

This paper examines a lesson development, implementation, revision, and reflection cycle used to support preservice secondary science teachers in learning to teach English learners (ELs) effectively. We begin with a discussion of our framework for teaching reform-based science to ELs – four principles of effective EL instruction and three levels of language – that shaped both our science methods course, more generally, and the lesson cycle, in particular. We then present a model lesson implemented in the methods course that highlighted these principles and levels for our preservice teachers. Next, we describe how preservice teachers used their participation in and analysis of this model lesson as a starting point to develop their own lessons, engaging in a process of development, implementation, revision, and reflection around our EL principles and language levels. We close with a description of our course innovation, viewed through the lens of the preservice teachers. We attempt to provide practical insight into how other science teacher educators can better support their preservice teachers in effectively teaching ELs.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Aguirre, J. M. & Bunch, G. C. (2012). What’s language got to do with it?: Identifying language demands in mathematics instruction for English language learners. In S. Celedón-Pattichis & N. Ramirez (Eds.), Beyond good teaching: Advancing mathematics education for ELLs. (pp. 183-194). Reston, VA: National Council of Teachers of Mathematics.

Bleicher, R. E., Tobin, K. G., & McRobbie, C. J. (2003). Opportunities to talk science in a high school chemistry classroom. Research in Science Education, 33, 319-339. doi:10.1023/A:1025480311414

Bravo, M. A., Mosqueda, E., Solís, J. L., & Stoddart, T. (2014). Possibilities and limits of integrating science and diversity education in preservice elementary teacher preparation. Journal of Science Teacher Education, 25, 601-619. doi:10.1007/s10972-013-9374-8

Buck, G., Mast, C., Ehlers, N., & Franklin, E. (2005). Preparing teachers to create a mainstream science classroom conducive to the needs of English-language learners: A feminist action research project. Journal of Research in Science Teaching, 42, 1013–1031. doi:10.1002/tea.20085

Bunch, G. C. (2014). The language of ideas and the language of display: Reconceptualizing academic language in linguistically diverse classrooms. International Multilingual Research Journal, 8(1), 70-86. https://doi.org/10.1080/19313152.2014.852431

Calabrese Barton, A., & Tan, E. (2018). Teacher learning and practices toward equitably consequential science education. In H. Kang (Chair), Pre-service science teacher education symposium: Re-framing problems of practice in preparing new science teachers for equity in the NGSS era. Symposium conducted at the meeting of the National Association for Research in Science Teaching, Atlanta, GA.

Cohen, E. G., & Lotan, R. (2014). Designing groupwork: Strategies for the heterogeneous classroom (3rd ed.). New York, NY: Teachers College.

Dutro, S., & Moran, C. (2003). Rethinking English language instruction: An architectural approach. In G. Garcia (Ed.), English learners: Reaching the highest level of English literacy (pp. 227-258). Newark, DE: International Reading Association.

Fang, Z. (2005). Scientific literacy: A systemic functional linguistics perspective. Science Education, 89, 335–347. doi:10.1002/sce.20050

Goldenberg, C. (2008). Teaching English language learners: What the research does – and does not – say. American Educator, 32, 8-23, 42-44.

Iddings, A. C. D. (2005). Linguistic access and participation: English language learners in an English-dominant community of practice. Bilingual Research Journal, 29, 165-183. http://dx.doi.org/10.1080/15235882.2005.10162829

Johnson, C. C., Bolshakova, V. L. J., & Waldron, T. (2016). When good intentions and reality meet: Large-scale reform of science teaching in urban schools with predominantly Latino ELL students. Urban Education, 51, 476-513. doi:10.1177/0042085914543114

Khisty, L. L., & Chval, K. B. (2002). Pedagogic discourse and equity in mathematics: When teachers’ talk matters. Mathematics Education Research Journal, 14, 154-168. doi:10.1007/BF03217360

Lee, O., & Buxton, C. A. (2013). Teacher professional development to improve science and literacy achievement of English language learners. Theory Into Practice, 52, 110-117. http://dx.doi.org/10.1080/00405841.2013.770328

Lee, O., Deaktor, R., Enders, C., & Lambert, J. (2008). Impact of a multiyear professional development intervention on science achievement of culturally and linguistically diverse elementary students. Journal of Research in Science Teaching45, 726-747. doi:10.1002/tea.20231

Lee, O., Quinn, H., & Valdés, G. (2013). Science and language for English language learners in relation to Next Generation Science Standards and with implications for Common Core State Standards for English Language Arts and Mathematics. Educational Researcher, 42, 223-233. doi:10.3102/0013189X13480524

Lyon, E. G., Tolbert, S., Stoddart, P., Solis, J., & Bunch, G. C. (2016). Secondary science teaching for English learners: Developing supportive and responsive learning contexts for sense-making and language development. New York, NY: Rowman & Littlefield.

Moll, L. C., Amanti, C., Neff, D., & Gonzalez, N. (1992). Funds of knowledge for teaching: Using a qualitative approach to connect homes and schools. Theory into Practice, 31, 132-141. http://dx.doi.org/10.1080/00405849209543534

Moschkovich, J. (2002). A situated and sociocultural perspective on bilingual mathematics learners. Mathematical Thinking and Learning, 4, 189-212. http://dx.doi.org/10.1207/S15327833MTL04023_5

Moschkovich, J. (2007). Using two languages when learning mathematics. Educational Studies in Mathematics, 64, 121-144. doi:10.1007/s10649-005-9005-1

National Clearinghouse for English Language Acquisition. (2009). How has the limited English proficient student population changed in recent years? Washington, DC: NCELA. Retrieved from http://www.ncela.us/files/rcd/BE021773/How_Has_The_Limited_English.pdf

NGSS Lead States. (2013). Next generation science standards: For states, by states. Retrieved from http://www.nextgenscience.org/next-generation-science-standards

National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, D.C.: National Academies Press.

National School Reform Faculty. (2014). ATLAS: Learning from student work. Retrieved from https://www.nsrfharmony.org/system/files/protocols/atlas_lfsw_0.pdf

Planas, N., & Gorgorió, N. (2004). Are different students expected to learn norms differently in the mathematics classroom? Mathematics Education Research Journal, 16, 19-40. doi:10.1007/BF03217389

Quinn, H., Lee, O., & Valdés, G. (2012). Language demands and opportunities in relation to next generation science standards for English language learners: What teachers need to know. Retrieved from http://ell.stanford.edu/publication/language-demands-and-opportunities-relation-next-generation-science-standards-ells

Richardson Bruna, K., Vann, R., & Escudero, M. P. (2007). What’s language got to do with it?: A case study of academic language instruction in a high school “English learner science” class. Journal of English for Academic Purposes, 6(1), 36-54.

Roberts, S. A., Bianchini, J. A., Lee, J. S., Hough, S., & Carpenter, S. (2017). Developing an adaptive disposition for supporting English language learners in science: A capstone science methods course. In A. Oliveira & M. Weinburgh (Eds.), Science Teacher Preparation in Content-Based Second Language Acquisition (pp. 79-96). Columbus, OH: Association of Science Teacher Educators.

Rosebery, A. S., & Warren, B. (Eds.). (2008). Teaching science to English language learners: Building on students’ strengths. Arlington, VA: NSTA Press.

Schleppegrell, M. J. (2004). The language of schooling: A functional linguistics perspective. Mahwah, NJ: Lawrence Erlbaum Associates.

Tekkumru‐Kisa, M., Stein, M. K., & Schunn, C. (2015). A framework for analyzing cognitive demand and content‐practices integration: Task analysis guide in science. Journal of Research in Science Teaching52, 659-685. doi:10.1002/tea.21208

Tobin, K. G., & Kahle, J. B. (1990). Windows into science classrooms: Problems associated with higher-level cognitive learning. Bristol, PA: The Falmer Press, Taylor & Francis Group.

Understanding Language. (2013). Six key principles for ELL instruction. Retrieved from Stanford University, Graduate School of Education, Understanding Language website http://ell.stanford.edu/content/six-key-principles-ell-instruction

Warnock, A., Berkowitz, A., Blank, B., Cano, A., Caplan, B., Covitt, B., . . . Whitmer, A. (2012). School water pathways. Retrieved from http://www.pathwaysproject.kbs.msu.edu/?page_id=49

Windschitl, M., Thompson, J., & Braaten, M. (2018). Ambitious science teaching. Cambridge, MA: Harvard University.

Zwiers, J., O’Hara, S., & Pritchard, R. (2014). Essential practices for developing academic language and disciplinary literacy. Portland, ME: Stenhouse Publishers.

 

The Great Ice Investigation: Preparing Pre-Service Elementary Teachers for a Sensemaking Approach of Science Instruction

Citation
Print Friendly, PDF & Email

McFadden, J.R. (2019). The great ice investigation: Preparing preservice elementary teachers for a sensemaking approach of science instruction. Innovations in Science Teacher Education, 4(3). Retrieved from https://innovations.theaste.org/the-great-ice-investigation-preparing-pre-service-elementary-teachers-for-a-sensemaking-approach-of-science-instruction/

by Justin R. McFadden, University of Louisville

Abstract

The current article describes a sequence of lessons, readings, and resources aimed to prepare elementary preservice teachers for science instruction wherein student sensemaking, rather than vocabulary memorization, is prioritized. Within the article, I describe how the prompts, questions, and logistics of the The Great Ice Investigation drive my students’ in-class and out-of-class learning to start out every science methods course I teach. The readings and resources detailed that compliment the Great Ice Investigation should benefit both preservice as well as in-service elementary teachers just beginning to align their instruction with the Next Generation Science Standards. The lessons, readings, and resources described should be of value to science teacher educators looking to modify and improve how they prepare their students for next generation science instruction.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Tretter, T. & McFadden, J. (2018). Modeling structure and properties of matter: People as particles. Science and Children, 56(4), 67-73.Tretter, T. & McFadden, J. (2018). Modeling Structure and Properties of Matter: People as Particles. Science and Children, 56(4), 67-73.

Bybee, R. W. (2013). Using the 5E Model to Implement the NGSS: Translating the NGSS for classroom instruction. NSTA Press, National Science Teachers Association.

Bybee, R. W. (2014). The BSCS 5E instructional model: Personal reflections and contemporary implications. Science and Children, 51(8), 10-13.

Duncan R., Krajcik, J., & Rivet, A. (2016). Disciplinary Core Ideas: Reshaping Teaching and Learning. NTSA Press, National Science Teachers Association. ISBN: 978-1-938946-41-7.

Duncan, R. G., & Cavera, V. L. (2015). DCIs, SEPs, and CCs, oh my!: Understanding the three dimensions of the NGSS. The Science Teacher, 82(7), 67.

Harlen, W. (2015). Teaching Science for Understanding in Elementary and Middle Schools. Heinemann: Portsmouth, NH. ISBN: 978-0-325-06159-7.

Metz, K. (2008). Narrowing the gulf between the practices of science and the elementary school classroom. Elementary School Journal, 109, 138–161.

Moscovici, H., & Nelson, T. H. (1998). Shifting from activitymania to inquiry. Science and Children, 35(4), 14.

National Research Council. (2012) A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

NGSS Lead States. 2013. Next Generation Science Standards: For states, by states. Washington, DC: National Academies Press. www.nextgenscience.org/ next-generation-science-standards.

Penuel, W., Van Horne, K. & Bell, P. (2016). Steps to designing a three-dimensional assessment. Downloaded from: http://stemteachingtools.org/assets/landscapes/STEM-Teaching-Tool-29-Steps-to-Designing-3D-Assessments.pdf

Reiser, B., Brody, L., Novak, M., Tipton, K., Adams, L. (2017).  Asking questions. In Schwarz, C. V., Passmore, C., & Reiser, B. J. (Eds.), Helping students make sense of the world using next generation science and engineering practices. (p. 87-108). NSTA Press.

Van Zee, E. H., & Roberts, D. (2001). Using pedagogical inquiries as a basis for learning to teach: Prospective teachers’ reflections upon positive science learning experiences. Science Education, 85(6), 733-757.

 

 

Theory to Process to Practice: A Collaborative, Reflective, Practical Strategy Supporting Inservice Teacher Growth

Citation
Print Friendly, PDF & Email

Inouye, M., & Houseal, A. (2019). Theory to process to practice: A collaborative, reflective, practical strategy supporting inservice teacher growth. Innovations in Science Teacher Education, 4(1). Retrieved from https://innovations.theaste.org/theory-to-process-to-practice-a-collaborative-reflective-practical-strategy-supporting-inservice-teacher-growth/

by Martha Inouye, University of Wyoming; & Ana Houseal, University of Wyoming

Abstract

To successfully implement the Next Generation Science Standards (NGSS), more than 3.4 million in-service educators in the United States will have to understand the instructional shifts needed to adopt these new standards. Here, based on our recent experiences with teachers, we introduce a professional learning (PL) strategy that employs collaborative video analysis to help teachers adjust their instruction to promote the vision and learning objectives of the Standards. Building on effective professional development characteristics, we created and piloted it with teachers who were working on making student thinking visible. In our setting, it has been effective in providing relevant, sustainable changes to in-service teachers' classroom instruction.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Appleby, J. (1998). Becoming critical friends: Reflections of an NSRF coach. Providence, RI: Annenberg Institute for School Reform at Brown University

Ball, D.L., & Cohen, D.K. (1999). Developing practice, developing practitioners: Toward a practice-based theory of professional education. In G. Sykes & L. Darling-Hammond (Ed.), Teaching as the learning profession: Handbook of policy and practice (pp. 3–32). San Francisco, CA: Jossey Bass.

Banilower, E. R., Smith, S. P., Weiss, I. R., Malzahn, K. A., Campbell, K. M., & Weis, A. M. (2013). Report of the 2012 National Survey of Science and Mathematics Education. Chapel Hill, NC: Horizon Research, Inc.

Beaudoin, C., Johnston, P., Jones, L., & Waggett, R. (2013). University support of secondary stem teachers through professional development. Education, 133, 330-339.

Borko, H. (2004). Professional development and teacher learning: Mapping the terrain. Educational Researcher, 33(8), 3–15.

Bybee, R (2014). NGSS and the next generation of science teachers. Journal for Science Teacher Education, 25, 211-221.

Cormas, P. C., & Barufaldi, J. P. (2011). The effective research-based characteristics of professional development of the national science foundation’s GK-12 program. Journal of Science Teacher Education, 22, 255-272.

Fullan, M., Hill, P., & Crevola, C. (2006). Breakthrough. Thousand Oaks, CA: Corwin Press.

Guskey, T. R. (1984). The influence of change in instructional effectiveness upon the affective characteristics of teachers. American Educational Research Journal, 21, 245-259.

Guskey, T. R. (2002). Professional development and teacher change. Teachers and Teaching: Theory and Practice, 8, 381–391.

Hestness, E., McDonald, R. C., Breslyn, W., McGinnis, J. R., & Mouza, C. (2014). Science teacher professional development in climate change education informed by the Next Generation Science Standards. Journal of Geoscience Education62, 319-329.

Houseal, A. K., Abd El Khalick, F., & Destefano, L. (2014). Impact of a Student-Teacher-Scientist Partnership on students’ and teachers’ content knowledge, attitudes toward science, and pedagogical practices. Journal of Research in Science Teaching. 51, 84-115.

Keeley, Page. (2008). Science formative assessment: 75 practical strategies for linking assessment, instruction, and learning. Thousand Oaks, CA: Corwin Press.

Krajcik, J. (2015). Three-dimensional instruction: Using a new type of teaching in the science classroom. The Science Teacher, 83(8), 50–52.

Mehan, H. (1979). Learning lessons: social organization in the classroom. Cambridge, MA: Harvard University Press.

Mezirow, J. (1990). Fostering critical reflection in adulthood: A guide to transformative and emancipatory learning. San Francisco: Jossey-Bass.

Miller, R. G., Curwen, M. S., White-Smith, K. A., & Calfee, R. C. (2014). Cultivating primary students’ scientific thinking through sustained teacher professional development. Early Childhood Education Journal, 43, 317-326.

Nagle, B. (2013). Preparing high school students for the interdisciplinary nature of modern biology. CBE-Life Sciences Education12, 144-147.

National Academies of Sciences, Engineering, and Medicine. (2015). Science Teachers Learning: Enhancing Opportunities, Creating Supportive Contexts. Washington, DC: The National Academies Press.

National Research Council. [NRC]. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

NRC. (2015). Guide to Implementing the Next Generation Science Standards. Washington, DC: National Academies Press. Available at http://www.nap.edu/catalog/18802/guide-to-implementing-the-next-generation-science-standards

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington, DC: National Academies Press.

Reiser, B.J. (2013). What Professional Development Strategies Are Needed for Successful Implementation of the Next Generation Science Standards? Paper written for the Invitational Research Symposium on Science Assessment, September 24-25, Educational Testing Service, Washington, DC. Available at http://www.k12center.org/rsc/pdf/reiser.pdf.

Roth, K., Garnier, H., Chen, C., Lemmens, M., Schwille, K., & Wickler, N. (2011). Videobased lesson analysis: Effective science PD for teacher and student learning. Journal of Research in Science Teaching, 48, 117-148.

U.S. Department of Education, National Center for Education Statistics, Schools and Staffing Survey (SASS), “Public School Teacher Data File,” 2011–12.

Project Zero. (2016). Visible Thinking. Retrieved from http://www.pz.harvard.edu/research/Vislhink.htm

Wei, R. C., Darling-Hammond, L., and Adamson, F. (2010). Professional development in the United States: Trends and challenges. Dallas, TX: National Staff Development Council.

 

Increasing Science Teacher Candidates’ Ability To Become Lifelong Learners Through A Professional Online Learning Community

Citation
Print Friendly, PDF & Email

Veal, W., Malone, K., Wenner, J.A., Odell, M., & Hines, S.M. (2019). Increasing science teacher candidates’ ability to become lifelong learners through a professional online learning community. Innovations in Science Teacher Education, 4(1). Retrieved from https://innovations.theaste.org/increasing-science-teacher-candidates-ability-to-become-lifelong-learners-through-a-professional-online-learning-community/

by William Veal, College of Charleston; Kathy Malone, The Ohio State University; Julianne A. Wenner, Boise State University; Michael Odell, University of Texas at Tyler; & S. Maxwell Hines, Winston Salem State University

Abstract

This article describes the use of an online professional learning community within the context of K-8 science education methods courses. The article describes the unique usage of the learning community with preservice teachers at different certification levels within the context of five distinct universities. While each approach is different there exists commonalities of usage. Specifically, the site is used to develop mastery of science content, exposure to pedagogical content knowledge, and classroom activities that focus on authentic science practices. Each case provides specific details of how the preservice teachers were immersed into a learning community that can serve them throughout their teaching career.

Introduction

What is the purpose of a science methods course? It would seem logical that a science methods course would increase the ability of the candidate to learn science content and pedagogy for that content. The actual methods for helping candidates learn to teach science are diverse and include different learning objectives, ‘student’ learning outcomes, and approaches within the classroom. A brief search of syllabi for elementary and middle grades science methods courses at the university level on the Internet yields vastly different approaches to teaching these courses and the reasons why. Science methods courses can be taught to “build fundamental knowledge of elementary science teaching and learning,” teach “strategies to bring scientific inquiry to the elementary classroom,” “increase confidence and enthusiasm for teaching elementary science,” “develop competence and confidence needed to teach science in elementary classrooms,” and “teach science skills and content.” Teacher candidates do not have the time nor training to be able to learn all of the content needed and experience the methods necessary for becoming an ‘experienced’ teacher in their first year of teaching. This article reviews how several university professors focus on a common approach to teaching a science methods course using an online learning community to guide teacher candidates to become lifelong science educators.

The Content of Learning and the Learning of Content

Methods courses are teacher preparation courses designed to prepare teacher candidates to teach a particular content area. There are typically elements of the course that boost content knowledge, but the crux of these courses is allowing teacher candidates to learn and/or practice pedagogical strategies to teach that content effectively. Methods instructors must be thoughtful about not only the activities they employ in their courses to support this knowledge and skill acquisition, but also about the materials and resources they use to support the activities in the course. Moreover, methods instructors must acknowledge they cannot possibly teach everything one needs to know to teach in their content area. Consequently, instructors must also set the foundation for teacher candidates to strategically utilize resources, many of which may be online, so they will be lifelong learners.

Table 1 provides a comparison of common goals of online syllabi from elementary and middle grades science methods courses. The search terms “elementary science methods syllabus” and “middle school science methods syllabus” were used in the Google search window. The first 40 results were downloaded and examined. Three main themes emerge from the syllabi: learning pedagogical skills to teach the science content, developing a set of habits of mind about science, and knowing the science content. In terms of the K-6 student impact, teacher candidates had to translate those skills to the students so that the students could essentially develop the same habits of mind and science content knowledge. Syllabi for courses that included the middle grades (5-8) demonstrated a change in the tenor of the language. When the middle grades course was combined with an elementary science methods course, the middle grades language, goals, and outcomes were very similar to that of the elementary methods course. At many universities, the middle grades science methods courses were combined with the secondary or high school science methods courses. The main differences between elementary and secondary science methods courses were the emphasis on depth of content knowledge and the lessening emphasis on developing habits of mind. Secondary science teachers are considered to have already developed significant content expertise and scientist’s habits of mind.

Table 1 (Click on image to enlarge)
Sample Science Methods Goals and Outcomes on Syllabi

Science teachers need science content knowledge and the appropriate pedagogical knowledge to teach at their respective levels. Elementary school teachers usually focus on pedagogy and multiple content areas, especially at the younger grade levels where classes are self-contained. In terms of elementary teacher candidates, it is well documented that they often feel unprepared to teach science or have negative attitudes towards science due in many cases to their own personal experiences with science education (Tosun, 2000). At the middle grades level, most teacher candidates have more preparation in one or two science content areas and as a result typically have greater content knowledge depth than elementary teachers. At the secondary level, science teachers have certification to teach one, two, or multiple content areas and are considered to have significant content expertise. Typically, secondary teachers hold at least a Bachelor’s degree in the content they teach. This system of silos can be summarized with a question asked to each level of teacher, “What do you teach?” The elementary teacher might say “children,” the middle school teacher might say “adolescent kids” or “science”, and the secondary teacher would say “chemistry” or “biology.” Content knowledge is needed by all science teachers at all levels. College does not prepare teacher candidates to teach all the content, concepts, and facts that teachers will encounter while in the classroom. Teacher candidates need examples of convenient approaches to learning more science content and pedagogy that can become part of their lifelong learning as professional educators.

Pedagogical Content Knowledge

In addition to knowing the content, science educators at all levels also need the pedagogical skills to teach the content, which is often referred to as pedagogical content knowledge (PCK). As Bailie (2017) noted, “PCK has…become a ubiquitous word in the preparation of teachers” (p. 633). Science methods instructors have consistently devised activities and lessons to guide teacher candidates to develop the necessary skills for teaching science. For example, Akerson, Pongsanon, Park Rogers, Carter, and Galindo (2017) implemented a lesson study activity in their science methods course that resulted in the early development of PCK for teaching the nature of science. Hanuscin and Zangori (2016) asked teacher candidates to participate in an innovative field experience that led to the beginning development of PCK for teaching in ways consistent with the NGSS. Finally, Hawkins and Park Rogers (2016) added in video-based group reflections to lesson planning and enactment to support the development of teacher candidates’ PCK. And although Davis and Smithey (2009) state that teacher educators may only be able to support the development of ‘PCK readiness’ because teacher candidates do not have much teaching experience to draw upon, it is widely agreed that strong science PCK is a necessity for successful science teaching.

Abell, Appleton, and Hanuscin (2010) state that the “main aim of a science methods course is to produce graduates who…have a ‘starter pack’ of PCK for science teaching” (p. 81). They go on to suggest that teacher candidates in methods courses should not only learn about science content, curriculum, and the nature of science, but also how to elicit students’ understandings of science, use that data to make informed decisions, and have the knowledge and skills to design instruction that support student learning. These results draw upon the foundational characteristics of PCK that science teachers should have (Veal & MaKinster, 1999). However, as Magnusson, Krajacik, and Borko (1999) and Veal and MaKinster (1999) note, content knowledge is the foundation for PCK. This leads science teacher educators to ask, how does one support the simultaneous development of science content knowledge, pedagogy, and science PCK?

Professional Learning Community

Teacher candidates at all levels learn science content and pedagogy so that they are able to teach the concepts in the appropriate manner to K-12 students. While in college, teacher candidates have the opportunity to enroll and complete science and pedagogy courses, but what happens once they begin their professional career? How do teachers maintain relevancy and stay current with new content or pedagogical practices throughout their career? Lifelong learning of science content and pedagogical strategies should be an emphasis in all methods courses. This is often accomplished by establishing and/or participating in a professional learning community (PLC) or communities of practice. One outcome of a PLC is to increase teacher candidates’ self-efficacy in science by exposing them to inquiry in science during their methods course (Avery & Meyer, 2012) as well as help them to learn more science content. A properly formed PLC can connect and scaffold the teacher candidates’ transition from pre to inservice educator establishing them as lifelong learners (e.g., Akerson, Cullen & Hanson, 2009). Without a proper transition, the elementary teacher candidates with low self-efficacy can become in-service teachers who are less likely to seek out professional development that would support improved science teaching (Ramey-Gassert, et al, 1996). In addition, it has been found that if elementary teacher candidates are uncertain about science then they are less likely to use inquiry oriented pedagogy (Appleton & Kindt, 1999; Ramey-Gassert, & Shroyer, 1992) and the performance of their students can be affected (Bybee et al, 2006).

One method to break the continuous cycle of unprepared elementary (K-6) teachers to teach science is to connect them to a community of practitioners during their science methods class as well as throughout their career. One such community could begin in a science methods course and exist as an on-line platform that allows them easy access to content, new pedagogical techniques, and classroom activities that they can rely upon throughout their career. This community could become a source of guidance as they continue to grow as professional educators of science no matter what grade level they end up teaching. The learning community that the methods instructors establish in their science methods courses must involve the learning of pedagogical strategies and content. Dogan, Pringle, and Mesa (2016) conducted a review of empirical studies investigating PLCs and determined that PLCs increased the science teachers’ content knowledge, PCK, and collaboration about student learning. Educator preparation programs are increasingly using the Internet to deliver and supplement their science methods courses with science content projects, courses, articles, and professional networks/forums. For example, Eicki (2017) studied how Edmodo could be used to create an online learning community for learning to teach science. Part of this learning community involved the communication and exchange of lesson plans and opinions about lessons in an online platform.

Given the vast nature of the Internet, it can sometimes be difficult to gauge the quality, applicability, or ‘user-friendliness’ of Internet resources. To help instructors with this problem, there are multiple legitimate educational organizations that have sites for teachers, videos of instruction, and student- and teacher-based content. For example, in this article, we present multiple cases regarding the use of the National Science Teachers Association (NSTA) Learning Center (LC) as a website in which teacher candidates can learn more about science content, find pedagogical tools that match the content, and begin to see the NSTA LC as a learning community. While this article is not an endorsement of the NSTA Learning Center, we are using the Learning Center as an example of how this site can support teacher candidates in developing the dispositions to become lifelong learners in the science education community.

Context

In science methods courses, instructors try to bring together pedagogy that is appropriate to the science content at the level in which the teacher candidates will teach. The problem with developing one course that fits all students is that science methods courses are often geared toward the developmental level of the future K-12 students. Research evidence suggests that if elementary teachers feel unprepared or negative towards science then they are less likely to teach science to their students (Ramey‐Gassert, Shroyer, & Staver, 1996). The disposition to teach science content using appropriate pedagogy is needed. At the elementary level – which can span pre-kindergarten to eighth grade in some states – most methods courses are focused on broader PCK because it is nearly impossible for the teacher candidates to know the science content across all four science disciplines. However, while elementary standards at each grade level require more integration of concepts and less depth of science-specific knowledge, to choose the appropriate pedagogy to teach content well, one must first know the content itself well. Unfortunately, most elementary teacher candidates only take 2-3 science courses as part of their general education requirements that do not prepare them to teach the breadth nor the depth of science concepts in the standards.

Many middle level certificates overlap grade spans with elementary and secondary, so there exists the potential to have a pedagogically strong teacher needing to teach depth in a science or multiple science areas. For example, in South Carolina elementary certification includes grades 2-6 and middle school includes grades 5-8. On the other extreme, a science discipline teacher may be called upon to teach other courses at the middle school. Middle schools across the country may require science teachers to be proficient in all areas of science (e.g., biology, physics, geology, Earth science, astronomy, and chemistry) since the state or national standards are more integrated or each grade level requires multiple science areas. For example, many states have a general middle grades certificate for science, but Oregon has middle level certificates in each of the science disciplines. How can a middle grades teacher be proficient in all disciplines of science? Just taking the introductory courses in each of the four major disciplines would equate to 32 hours of science (lecture and lab for all courses); and, of course, none of these courses would likely teach how to teach these content areas. In addition, even if they successfully completed these courses, odds are the courses do not cover the basic science content they will teach.

The NSTA Learning Center is an online resource that can be utilized for preservice and inservice teaching and learning by providing a professional learning community in which teachers learn from one another by sharing content knowledge, lesson plans, and strategies. The NSTA Learning Center is an online repository of articles, book chapters, webinars, and short courses aimed at improving the content and pedagogical knowledge of preservice and inservice teachers, connecting teachers through online chats, and delivering depth and breadth of science content for primary, middle, and secondary teachers. The science content, interactive learning modules, and articles are peer reviewed and vetted by content and pedagogical experts. The implementation of this type of content has been described as blended learning by Byers and Mendez (2016). Blended learning involves using online resources with “on-site efforts” to teach students. The case studies in this article show how blended learning, inquiry, project-based learning, and independent learning can be supported to provide science content knowledge, pedagogical knowledge and PCK to teacher candidates. While elementary and middle school science methods courses cannot provide all the science content and pedagogical strategies they will teach and use, these science methods courses can provide an opportunity to demonstrate and model effective lifelong learning skills.

Early Childhood Teacher Candidates

Case 1

One university offers certification through an early childhood (K-3) Masters of Education (MEd) program. The science methods course is designed to support teacher candidates learning of 1) pedagogical content knowledge, 2) science content knowledge; and 3) connect them to a community of elementary teaching practitioners to support their life-long learning of the teaching of elementary science. The learning experiences provided them with an understanding of science teaching and learning from the perspective of both learner and teacher. Though this is not a science content course, the class does utilize model lessons that exemplify science standards elementary teachers are expected to teach as outlined in national science standards such as the Next Generation Science Standards (NGSS Lead States, 2013).

In order to foster long-term and sustained improvement in standards-based science teaching and learning in elementary schools the teacher candidates are asked to demonstrate their understanding of these standards documents by engaging in lesson development during the semester that exemplifies not only the content standards but also exemplary science pedagogical methods grounded in scientific inquiry. The NSTA LC allows the teacher candidates to encounter the use of the 5E method within classroom activities via articles in Science & Children as well as Science Scope, two practitioner publications from NSTA. In addition, NSTA LC e-book chapters are regularly utilized throughout the course. The elementary teacher candidates are required to use the online site as a source of articles about teaching science, as well as basic educational research supporting practice. These NSTA LC resources are used by the teacher candidates to help them develop lesson plans that are based on activities that excite students as well as connect to science content standards.

One aspect of the NSTA LC that the teacher candidates find the most rewarding is the ability to find articles written by other elementary teachers in practitioner journals that have great ideas for their classrooms. For example, when designing lessons focused on the Engineering Design Process many teacher candidates base their lessons on articles and lesson plans found on the LC.  During focus group interviews after the course, one teacher candidate stated that she found the “…readings were relatable and things that we could see doing in our classrooms. So it was really interesting to like keep going in the article.”

The teacher candidates in this M.Ed. program must complete at least one SciPack, read 5 Science Objects, watch two Webinars, listen to two Podcasts, and participate in online discussions with science teachers outside of their class. Teacher candidates also post comments and read the forum to look at past interactions between educators. The Webinars allowed them to listen to educational researchers and scientists discuss new educational policies. Teacher candidates’ use of these resources within the NSTA LC were easily checked on the site as the Learning Center tracks the use of all the resources by students. Thus, the science teacher educator can see if they have used assigned resources such as the SciPacks. The best part of the LC in the teacher candidates’ view is that they were able to put all of the resources they use into a section of the center called “My Library” and those recourses became theirs for the rest of their career! During the post course focus group interviews, teacher candidates mentioned that one down side of the NSTA LC was the cost for a year subscription. But as one teacher candidate said, “Textbooks are sometimes even pricier but with these articles you could save them. Every article I read I saved because I liked the activities that they had.”

The teacher candidates were required to use the Science Objects and SciPacks to learn science content new to them or review content that they were uncomfortable teaching. One goal of the online communities is to illustrate to them that the SciPacks could not only support their content background but usually contain a list of the most common alternative conceptions held by students thus supporting their lesson planning. At the beginning of the class the teacher candidates had voiced concern about not knowing their students’ alternative conceptions due to their own limited science background so this practice alleviated this concern. As one teacher candidate stated, “The articles were very practical and could be used directly in our classroom.  Science is the subject I am most hesitant to teach but the readings made me see how I could teach it.” Several teacher candidates mentioned that they would buy the subscription in future years so they could continue as a member of this community of practice as in-service teachers.

Elementary Teacher Candidates

Case 2

At one Texas university, the NSTA LC has been adopted as the textbook for the Elementary Science Methods course and has been used for the past five years. Teacher candidates have access to the LC during their final methods block of courses prior to student teaching and during student teaching the following semester. Teacher candidates seeking the elementary teaching credential (EC-6) are required to complete four courses in science that must include one course in introductory Biology, Physical Science and Earth Science in addition to pedagogical courses. Typically, teacher candidates seeking elementary certification enroll in science courses for non-science majors. As these are general science courses, there are no guarantees that these courses prepare future elementary teachers in the science content they will be required to teach their future students in the EC-6 classroom.

One of the goals of the course is to prepare teacher candidates to use assessment data to plan and deliver targeted instruction. On the first day of class, teacher candidates complete the latest released version of the State of Texas Assessment of Academic Readiness 5th grade science assessment to develop familiarity with the state assessment and to assess their understanding of the elementary science content they are accountable to teach upon completion of their degree.   Preservice teacher results on the 5th Grade STAAR (state level assessment in Texas) released assessments tend to be disappointing in spite of earning passing grades in the university level science courses. The disconnect between scores on the 5th grade STAAR is in part due to lack of alignment of university science courses that elementary teacher candidates complete and the content they will teach. This creates a dilemma for the science methods instructor. Should class time be utilized and designed to prepare elementary teacher candidates in PCK to remediate content knowledge or stay focused on pedagogy? Future teachers need to be prepared in both content and pedagogy. One without the other is problematic.

To address this issue, the teacher candidates analyze the results of their personal STAAR score. Questions on the released test are categorized by science discipline, and as a PLC they work together to identify the state standard and the Texas Essential Knowledge and Skills (TEKS) each item addresses (Texas Education Agency, 2017). During this process, teacher candidates identify their areas of science content weakness and complete the appropriate NSTA Indexer in the LC for each content area in need of further development. The course instructor identifies and suggests NSTA Professional Development Indexer assessments that align to the content subsections of the STAAR assessment to help guide teacher candidates. Table 2 shows the science content TEKS and the appropriate corresponding Indexer Assessment.

Table 2 (Click on image to enlarge)
Relationship between TEKS and NSTA Indexers

Typically, teacher candidates complete 3-4 of the NSTA Indexer assessments as a result of the STAAR analysis. The number of Indexer assignments has ranged from 1 to 6, which depends upon their background content knowledge. For the purpose of this course, the teacher candidates were required to complete both the pre and posttests. While the STAAR was used due to contextual location of the university, the NSTA Indexer can be used nationally. Once teacher candidates complete their Indexer assessments, the methods professor works with each candidate to select up to two NSTA SciPacks to remediate their content knowledge in the targeted areas. SciPacks are online modules that are completed outside of class. On average, the teacher candidates improve their content scores on the NSTA Indexer by 40% when they take the posttest compared to the initial indexer score. Elementary teacher candidates have shared anecdotally that the SciPacks are very challenging. Using the Indexer and SciPacks allows the instructor to focus on PCK in class and improve teacher candidate content knowledge without sacrificing class time that is dedicated for pedagogy. The analysis of personal assessment data from an online science teacher site provided the scaffolding for these teacher candidates to become lifelong learners.

Case 3

In 2012, North Carolina Department of Public Instruction sent three representatives to Washington, DC to consult on the development of the Next Generation Science Standards. As representatives for one of the lead states for standards adoption (NGSS Lead States, 2013), the representatives were also charged with curricular development for K-12 science classrooms in North Carolina and by extension, science teacher education and professional development.  NGSS considers science learning within a 3-dimensional framework: disciplinary core ideas, science and engineering practices, and crosscutting concepts. Shortly thereafter in preparation for NGSS standards adoption, the elementary science methods course was reconceived, using the NSTA LC. The use of NSTA LC addressed a number of concerns.

The elementary undergraduate teacher candidates in the university’s programs are extremely diverse. They have attended all manner of public, private, parochial, and home schools. As a result, their level of science pedagogical understanding is not uniform. Before enrolling in the science methods course, all teacher candidates had to pass at least one college-level life science and one physical science course. Performing well in these courses provided no guarantee of attainment of the extensive science content needed to support K-6 science content knowledge.  These teacher candidates also take the NSTA Indexer, content pretest, as the first step in designing a self-study program that will fill the holes in each teacher candidates’ science content knowledge. Teacher candidates take the same Indexer posttest to determine how well they have developed their content knowledge through self-study over the semester.

The teacher candidates must contend with having to complete their studies in light of securing and sustaining employment, and using the NSTA LC allows them the course schedule flexibility to become a certified teacher. In other words, if they cannot work, they cannot complete their studies. For many, maintaining employment interferes with their studies. Using the NSTA LC allows the teacher candidates to continue to work on their classroom assignments in between their employment responsibilities. By being able to access their assignments using their e-textbook and having access to other preservice and inservice professionals, they can study, ask questions, and share their concerns without carrying heavy textbooks or waiting for office hours. The PLC emerged from the need to find a different pedagogical approach to science methods due to the personal nature of the candidates.

The University’s motto is, ‘Enter to learn, depart to serve.’ The responsibility to promote social justice and lifelong learning is palpable throughout the campus. The teacher candidates are required to buy access to their NSTA LC e-textbook for a year. This allows them to use this resource through their methods course and student teaching field experience in which they have time to strike up online discussions of national and regional social justice issues.

Course evaluations and online data about the teacher candidates’ usage of the NSTA LC indicated that teacher candidates who demonstrate the highest level of science efficacy, as measured by course grades and use of the online resources, were also the ones who have taken greatest advantage of participation in the online learning community. For example, several teacher candidates mentioned how they increased their excitement and comfort with searching for and learning about science content and science lessons. Those who have less science efficacy are reluctant to communicate and ask questions with practicing teachers in the online forums despite knowing its value. Data gathered through the NSTA LC administrator’s page, indicated that as science efficacy increased over the span of the science methods course, teacher candidates took advantage of the online science learning community. Since all teacher candidates were required to maintain an online ‘portfolio’ (Professional Development Indexer or Learning Plan), there was an increase in the amount of online artifacts (downloadable chapters, articles, lesson plans, podcasts, and videos) from the beginning of the year to the end.

The adoption of the NSTA LC supports teacher candidates to conceive science from a 3-dimensional, national perspective, rather than a 2-dimensional, state perspective. It allowed the diverse teacher candidates to personalize their learning of science content with the accessible 24/7 access to content, pedagogical strategies, and online discussions of various social justice issues. The improvement of lifelong learning through the use of an online professional development community requires continued study, but the outcomes are most promising.

Elementary and Middle Level Teacher Candidates

Case 4

In one university in Idaho, teacher candidates seeking an elementary (K-8) certification take one science methods course, typically at the junior or senior level, one or two semesters before they embark on their year-long field experience. Prior to taking this course, PSTs must have taken two natural science courses with labs (for a total of 8 credit hours); these prerequisites run the gamut from geosciences to astronomy and from biology to chemistry. On the first day of class, teacher candidates are asked to describe their feelings about teaching science at the elementary level. The responses are typically split evenly, with half providing some version of “scared” and half providing some version of “excited.” The case describes a journey into how the implementation of NSTA LC evolved over a year of teaching a science methods course.  The NSTA LC was first implemented into this elementary science methods course in the Spring of 2016 with three goals in mind: 1) to introduce teacher candidates to a supportive professional community; 2) to provide science content knowledge support when needed; and 3) to use practitioner articles to illustrate topics in the course.

As previously noted, the NSTA LC houses lesson plans, books and book chapters, and even opportunities for conferences and professional development. By introducing teacher candidates to the NSTA LC, the goal is to motivate them to find NSTA to be a useful resource and become a lifelong learner. These hopes seemed to bear out, as evidenced by the comments received from teacher candidates in course evaluations over five semesters that they appreciated the LC because they could keep documents in their library forever and refer back to them and the LC when teaching. One teacher candidate stated her appreciation of the resource by stating, “The NSTA LC had so many more resources and articles (written by a variety of authors) that we would not have read in a book,” while another teacher candidate said, “I like that I can keep this account and use the information in my own classroom.”

Given the wild variations in content knowledge encountered in the teacher candidates in the course, the implementation of the NSTA LC resources were used to immediately support teacher candidates in their science understandings for the course, and also demonstrate how one could use the LC to learn/review content for future teaching. Throughout the semester, the teacher candidates were required to complete three Science Objects that related to elementary science centers (Kittleson, Dresden, & Wenner, 2013) they taught during the semester. Unlike the case studies discussed above, candidates in this class were not required to complete the entire NSTA PD Indexer for the course, but rather strongly encouraged to complete this and ‘brush up’ on content prior to their science PRAXIS tests. Indeed, some candidates did recognize the usefulness of the LC in terms of boosting content knowledge that then enabled them to better structure their science centers, and by citing how it could support “individual learning” for the PRAXIS tests and in their careers. Beyond qualitative responses on course evaluations, downloaded statistics from each class cohort on the NSTA LC paint a promising picture: The majority of candidates downloaded at least ten Science Objects and SciPacks throughout their semester in the course. While downloading these resources does not necessarily mean that candidates completed/intend to complete them, anecdotally, teacher candidates shared that they often download the Science Objects and SciPacks as a preventative measure of sorts, thinking about what they may need to learn/review once they have their own classrooms. It is certainly encouraging that PSTs acknowledge they may have gaps in their content knowledge and see that the NSTA LC may be a way to help fill those future gaps.

The use of practitioner articles found in the NSTA LC brings the realities of science activity implementation into the classroom. The articles connect theory and practice and illustrate what elementary science can look like. On average, 30 NSTA practitioner journal articles (from Science and Children and Science Scope) are assigned for teacher candidates to read throughout the semester. These readings cover topics such as integrating the NGSS and Common Core State Standards (CCSS, National Governors Association Center for Best Practices & Council of Chief State School Officers, 2010) , argumentation, science for all students, assessment, and engineering at the elementary level. Many teacher candidates commented on the usefulness of these articles, stating, “The articles that we read were beneficial and related to the discussions we had in the classroom,” and “I will refer back to all the articles when I am teaching.” And while the majority of articles downloaded by teacher candidates were the assigned readings, nearly all of them downloaded additional articles related to other assignments in the course (lesson plans, student misconceptions, etc.), indicating that teacher candidates found the articles to be useful resources. The ensuing discussions about content from the articles helped to establish an atmosphere of professional exchange of ideas to teaching science concepts that they intend to use well into their careers as lifelong learners.

Case 5

This elementary and middle level science methods course is taught at a university in the southeast. The course focuses on the PCK necessary to teach science, which includes science content knowledge and instructional strategies. Since the focus is on teacher candidates who will become certified to teach from grade 2 to 8, the focus is on general science pedagogy with content-specific examples so that activities and demonstrations can show the depth of concepts at different grade levels within the spiral curriculum. For example, two weeks are spent discussing misconceptions related to seasons and moon phases. The content is appropriate in that the activities relate the content at the fourth and eighth grade levels due to the science standards in the state. While discussing how to introduce and conduct activities, teachers need to know depth of knowledge so that they can address potential and real misconceptions. The teacher candidates must learn the content of why there are seasons and why there are different phases of the moon not just the facts of seasons and the names of phases of the moon.

The course emphasizes learning appropriate science content knowledge for specific lesson plans so that inappropriate activities and misconceptions are not taught. While the course grade and objectives cannot require the students to know all science content knowledge in the grade 2-8 standards, it is a learning outcome that the teacher candidates can research the content needed for that lesson plan. Reading book chapters and articles and communicating with classroom teachers in an online platform helped teacher candidates understand how to teach specific topics better as evidenced by their graded and implemented lesson plans over the course of the semester. The NSTA LC was chosen for its ease of use and type of activities that could be used by teacher candidates so that they could learn content, develop pedagogical skills, and participate in a community of teachers who share ideas.

The teacher candidates in the combined elementary and middle grades science methods course subscribe to the NSTA LC for six months. During this time period they download any content they feel they can and will use in the future. These downloaded resources are theirs for a lifetime. The NSTA LC is integrated into a project for integrating science content and pedagogy. The project requires the teacher candidates to take a pre-test exam, gather online resources from the site’s resources, complete mini-courses about the science topic, and complete a posttest after six weeks. While not part of the course grade, participating and engaging in the online professional discussions and posts is encouraged so that the teacher candidates learn to become part of an extended PLC. Besides the use of the NSTA LC as a project assignment, the website is used during normal instruction to show other possible activities, lesson plans, and explanations of concepts. The project and use of the NSTA LC is more of a self-guided endeavor because when they become classroom teachers they will have to learn more science content on their own and this is one effective method for doing it. Online learning of science content within a community of science teachers is how current teachers develop and grow the depth of their topic-specific PCK. This project and use of the NSTA LC allows teacher candidates to learn this process in a controlled environment in which the content is controlled and other professionals can assist in the learning to implement science content.

Concluding Thoughts

In summary, this article showcased multiple ways to use the online NSTA Learning Center as part of pK-8 science methods courses. The LC has been used as a method to learn topic-specific PCK in multiple contexts as well as an interactive tool for teacher candidates to investigate general pedagogy. In all of the cases there is anecdotal evidence concerning the effectiveness of using the LC either as an addition to one’s course or in lieu of the course textbook. However, as can be seen in a number of the cases the LC is not just a tool one can use in the science methods course but can become part of the teacher candidates’ journey as professional educators to become lifelong learners as they develop PCK. The authors feel that these benefits far outweigh the cost of the use of the LC and put the teacher candidates on the road to becoming highly efficient teachers of science. As one teacher candidate stated:

I found the resources provided for us….like we got NSTA. Most of those articles were pretty applicable. They had ideas you could use in your own classroom. It is so beneficial. It was pricey but it was worth it as we used it every week. The site had very valuable information that I would use in the future.

Part of establishing a community of lifelong learners is to develop the context in which teacher candidates can learn from multiple resources, participate in active dialogue about teaching and learning science, and develop appropriate lesson plans and activities using diverse sources of science content and pedagogy. The introduction and discussion of forming a community of lifelong learners necessitates the need for research to determine the benefits of using online, interactive, and collaborative sites in developing science teacher candidates. The idea and implementation of a single textbook and downloaded articles are gone. The new generation of teacher candidates need more dynamic and interactive methods for developing science content and pedagogy. Online sites for promoting lifelong learning of content, pedagogy, and PCK will become the standard in the near future.

References

Akerson, V. L., Cullen, T. A., & Hanson, D. L. (2009). Fostering a community of practice through a professional development program to improve elementary teachers’ views of nature of science and teaching practice. Journal of research in Science Teaching46, 1090-1113.

Appleton, K., & Kindt, I. (1999). Why teach primary science? Influences on beginning teachers’ practices. International Journal of Science Education21, 155-168.

Avery, L. M., & Meyer, D. Z. (2012). Teaching Science as Science Is Practiced: Opportunities and Limits for Enhancing Preservice Elementary Teachers’ Self‐Efficacy for Science and Science Teaching. School Science and Mathematics112, 395-409.

Bybee, R. W., Taylor, J. A., Gardner, A., Van Scotter, P., Powell, J. C., Westbrook, A., & Landes, N. (2006). The BSCS 5E instructional model: Origins and effectiveness. Colorado Springs, Co: BSCS5, 88-98.

Byers, A., & Mendez, F. (2016). Blended professional learning for science educators: The NSTA Learning Center. Teacher learning in the digital age: Online professional development in STEM education, 167

Dogan, S., Pringle, R., & Mesa, J. (2016). The impacts of professional learning communities on science teachers’ knowledge, practice and student learning: A review. Professional Development in Education, 42, 569-588.

Ekici, D. I. (2017). The Effects of Online Communities of Practice on Pre-Service Teachers’ Critical Thinking Dispositions. Eurasia Journal of Mathematics Science and Technology Education13, 3801-3827.

Kittleson, J., Dresden, J., & Wenner, J.A. (2013).  Describing the Supported Collaborative Teaching Model: A designed setting to enhance teacher education. School-University Partnerships, 6(2), 20-31.

National Governors Association Center for Best Practices & Council of Chief State School Officers. (2010). Common Core State Standards. Authors: Washington D.C.

NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

Ramey-Gassert, L., & Shroyer, M. G. (1992). Enhancing science teaching self-efficacy in preservice elementary teachers. Journal of Elementary Science Education4, 26-34.

Ramey‐Gassert, L., Shroyer, M. G., & Staver, J. R. (1996). A qualitative study of factors influencing science teaching self‐efficacy of elementary level teachers. Science Education80, 283-315.

Veal, W.R., & MaKinster, J.G. (1999). Pedagogical content knowledge taxonomies. Electronic Journal of Science Education, 3(4). Retrieved from http://ejse.southwestern.edu/article/view/7615/5382

Vick, M.E. (2018). Designing a third space science methods course. Innovations in Science Teacher Education 3(1). Retrieved from https://innovations.theaste.org/designing-a-third-space-science-methods-course/