Adapting a Model of Preservice Teacher Professional Development for Use in Other Contexts: Lessons Learned and Recommendations

Citation
Print Friendly, PDF & Email

Park Rogers, M., Carter, I., Amador, J., Galindo, E., & Akerson, V. (2020). Adapting a model of preservice teacher professional development for use in other contexts: Lessons learned and recommendations. Innovations in Science Teacher Education, 5(1). Retrieved from https://innovations.theaste.org/adapting-a-model-of-preservice-teacher-professional-development-for-use-in-other-contexts-lessons-learned-and-recommendations/

by Meredith Park Rogers, Indiana University - Bloomington; Ingrid Carter, Metropolitan State University of Denver; Julie Amador, University of Idaho; Enrique Galindo, Indiana University - Bloomington; & Valarie Akerson, Indiana University - Bloomington

Abstract

We discuss how an innovative field experience model initially developed at Indiana University - Bloomington (IUB) is adapted for use at two other institutions. The teacher preparation programs at the two adapting universities not only differ from IUB, but also from each other with respect to course structure and student population. We begin with describing the original model, referred to as Iterative Model Building (IMB), and how it is designed to incorporate on a variety of research-based teacher education methods (e.g., teaching experiment interviews and Lesson Study) for the purpose of supporting preservice teachers with constructing models of children’s thinking, using this information to inform lesson planning, and then participating in a modified form of lesson study for the purpose of reflecting on changes to the lesson taught and future lessons that will be taught in the field experience. The goal of these combined innovations is to initiate the development of preservice teachers’ knowledge and skill for focusing on children’s scientific and mathematical thinking. We then share how we utilize formative assessment interviews and model building with graduate level in-service teachers at one institution and how the component of lesson study is adapted for use with undergraduate preservice teachers at another institution. Finally, we provide recommendations for adapting the IMB approach further at other institutions.

Introduction

There is a clear consensus that teachers must learn to question, listen to, and respond to what and how students are thinking (Jacobs, Lamb, & Philipp, 2010; NRC, 2007; Russ & Luna, 2013).  With this information teachers can decide appropriate steps for instruction that will build on students’ current understandings and address misunderstandings.  At Indiana University – Bloomington (IUB) we received funding to rethink our approach to the early field experience that our elementary education majors take in order to emphasize this need for developing our preservice teachers’ knowledge and abilities to ask children productive questions (Harlen, 2015), interpret their understanding, and respond with appropriate instructional methods to develop students’ conceptual understanding about the topics being discussed (Carter, Park Rogers, Amador, Akerson, & Pongsanon, 2016).  Our field experience model titled, Iterative Model Building (IMB), is taken in a block with the elementary mathematics methods and science methods courses, and as such half of the field experience time (~5-6 weeks) is devoted to each subject area.  Over the course of the semester, the preservice teachers attend local schools for one afternoon a week.  In teams of four to six, the preservice teachers engage with elementary students through interviews and the teaching of lessons, and then experience various modes of reflection to begin developing an orientation towards teaching mathematics and science that is grounded in the notion that student thinking should drive instruction (National Research Council, 2007).  Thus, the IMB approach consists of four components that include weekly formative assessment interviews with children, discussions regarding models of the children’s thinking from the weekly interviews, lesson planning and teaching, and small group lesson reflections similar in nature to Lesson Study (Nargund-Joshi, Park Rogers, Wiebke, & Akerson., 2012; Carter et al., 2016). The intent of our approach is to teach preservice teachers to not only attend to student thinking, but to learn how to take this information and use it when designing lessons so they will make informed decisions about appropriate instructional strategies.

In this article we describe not only the original IMB approach, but also demonstrate the flexibility in the use of its components  with descriptions of how Authors 2 and 3 (Ingrid and Julie) have adapted aspects of the IMB to incorporate into their science and mathematics teacher education courses at different institutions.  Although this journal focuses on innovations for science teacher education, at the elementary level many teacher educators are asked to either teach both mathematics and science methods, or work collaboratively with colleagues in mathematics education, as students are often enrolled in both content area methods courses during the same semester.  Therefore, we believe sharing our stories of how this shared science and mathematics field experience model was initially developed and employed at IUB, but has been modified for use at two other institutions, has the potential for demonstrating how the components of the model can be used in other contexts.

To begin, we believe it is important to disclose that Ingrid and Julie, who made the adaptations we are sharing, attended or worked at IUB and held positions on the IMB Project for several years during the funded phases of research and development.  When they left IUB for academic positions, they took with them the premise of the IMB approach as foundational to developing quality mathematics and science teachers.  However, the structure of their current teacher education programs are not the same as at IUB, and thus they adapted the IMB approach to fit their institutional structure while trying to staying true to what they believed were core aspects of the approach for quality teacher development.

We begin with sharing an overview of the components of the IMB approach followed by descriptions from Ingrid and Julie about the context and course structure where they implement components of IMB.  In addition, we share examples of how their students discuss K-12 students’ mathematical and scientific ideas and relate this to instructional decision-making.  Through sharing our stories of adaptation of the IMB approach, we aim to inspire other teacher educators to consider how they may incorporate aspects of this approach into their professional development model for preparing or advancing teachers’ knowledge for teaching in STEM related disciplines.

Overview of IMB Approach – Indiana University (IUB)

As previously mentioned, IMB includes four components: (i) developing preservice teachers’ questioning abilities to analyze students’ thinking through the use of formative assessment interviews (FAIs); (ii) constructing models of students’ thinking about concepts that are asked about in the interviews (i.e., Model Building); (iii) developing and teaching lessons that take into consideration the evolving models of children’s thinking about the concepts being taught (i.e., Act of Teaching); (iv) learning to revise lessons using evidence gathered about children’s thinking from the lesson taught (i.e., Lesson Study). Although these components may not appear to be innovative to those in the field of teacher preparation, the unique feature of the IMB model is the iterative process, and weekly combination of all four components, within an early field experience for elementary education majors that we believe demonstrate innovative practice in preparing science and mathematics elementary teachers.  In addition, the field experience at IUB applies this four-step iterative process in the first 5-6 weeks with respect to teaching mathematics concepts, then continues for an additional 5-6 weeks on science concepts.  In the next few paragraphs, each of the IMB components are described in more detail.  We have grouped components according to those that Ingrid and Julie have adopted for use at their institutions.

Formative Assessment Interviews and Model Building

Formative assessment interviews (FAIs) are modified ‘clinical interviews’ that are aimed at understanding students’ conceptualizations of scientific phenomenon or mathematics problems (Steffe & Thompson, 2000).  From these video-recorded interviews, the preservice teachers identify short snippets that illustrate elementary students explaining their thinking about what a concepts is, how it works, and how they solved for it.  These explanations are then used to try to develop a predictive model to help the teachers consider how the students might respond to a related phenomenon, problem, or task (Norton, McCloskey, & Hudson, 2012).  The Model Building sessions require the preservice teachers to consider what is known about the students’ thinking on the concept or problem, based on the specific evidence given in the snippet of video, and identify what other information would be helpful to know. See Akerson, Carter, Park Rogers, & Pongsanon (2018) for further details on the purpose, structure and ability of preservice teachers to participate in a task where they are asked to make evidence-based predictions regarding students future responses to relate content (i.e., anticipate the student thinking).

With respect to the IMB approach, a secondary purpose of the FAI and Model Building sessions is to develop preservice teachers’ knowledge and abilities to think about how to improve their questioning of students’ thinking within the context of their teaching. This relates to being able to develop their professional noticing skills; a core aspect identified in the research literature (Jacobs, et al., 2010; van Es & Sherin, 2008) and critical to fostering the expert knowledge teachers possess (Shulman, 1987). See ‘Resources’ for examples of the post FAI Reflection Form (Document A) and Model Building Form (Document B) preservice teachers complete at IUB as part of their field experience requirements.

Act of Teaching and Lesson Study

Each week the teams develop a lesson plan using the information gathered from the FAIs, Model Building sessions, and as time goes on, their experience of teaching previous lessons to the students in their field classroom.  With respect to the mathematics portion of the field experience, the mathematics lessons are developed in conjunction with the field experience supervisor from week to week.  However, given the additional time that science has, because the science teaching in the field does not start until halfway through the semester, a first draft of all five science lessons are completed as part of the science methods course. Once the switch is made to science in the field, the preservice teachers then revise the drafted lessons from week to week using the information gathered through the IMB approach and with the guidance of the field instructor.

During the teaching of the lesson, two to three members of each team lead the instruction and the other two to three members of the team move around the room amongst the elementary students observing and gathering information about what the students are saying and doing related to the lesson objectives.  After the teaching experience, all members come together and follow the IMB’s modified lesson study approach that is adapted from the Japanese Lesson Study model (Lewis & Tsuchida, 1998)[1].  Using the Lesson Study Form developed for use in the IMB, the different members of the teaching team reflect on what the children understood about the concepts taught in the lesson and propose revisions for that lesson based on the children’s understandings and misunderstandings.  Possible strategies related to these understandings are also discussed with respect to the next lesson to be taught in the series of lessons.  Supporting them in this reflective process is the evidence some members of the team recorded using the Lesson Observation Form (see ‘Resources’, Document C), as well as what those who taught the lesson assessed while teaching.  The Lesson Study Form (see ‘Resources’, Document D) guides this evidence-based, collaborative, and reflective process.

Stories of Adaptation

In the following sections we describe how Ingrid and Julie have adapted components of the IMB approach for use in their teacher education programs.  To keep with the flow of how we described the IMB approach above, we begin with Julie’s story as she adapted the FAI and Model Building components for use at her institution.  Following her story is Ingrid’s, and her adaptation of the teaching and Lesson Study components of the IMB approach.  While neither of these stories demonstrates an adaptation of the complete IMB approach, demonstrating that type of transfer is not our intent with this article.  Rather, we want to share how aspects of the IMB approach could be adapted together for use in other institutional structures.  Table 1 provides a side-by-side comparison of how the IMB components were adapted for use at our different institutions to meet the needs of our students in our different contexts.

Table 1 (Click on image to enlarge)
Comparison of IMB components across Institutions

Julie’s Story of Adaptation at the University of Idaho (UI)

In the final two years of the five year IMB, Julie was a postdoctoral researcher and IMB manager for IMB. In this capacity, she taught the field experience course and coordinated with other instructors of the course. At the same time, she worked with participants after they had completed the field experience and moved to their student teaching or actual teaching placements. Julie was also involved with writing a manual to support others to implement the IMB field experience process.

At her current institution, Julie has incorporated FAIs and Model Building into a graduate course on K-12 mathematics education. The university is a medium-size doctoral granting institution in the upper Northwest of the United States. The course, for which the IMB approach has been adapted, engages masters and doctoral students in exploring: a) connections between research literature and practice (Lambdin & Lester, 2010; Lobato & Lester, 2010), b) the cognitive demand of tasks (Stein, Smith Henningsen, & Silver, 2009), and c) professional noticing (Jacobs et al., 2010; Sherin, Jacobs, & Philipp, 2011). The fully online course lasts sixteen weeks and students engage in weekly modules around these three core foci. Students in the course are primarily practicing teachers from across the state in which the university resides.

The IMB process of engaging teachers in FAIs and Model Building is followed in this course; however, the process spans over a longer period with a whole semester devoted solely to mathematics. Each person designs two FAIs on a specific mathematical topic and completes a Model Building session for each interview. This process is slightly different than the IMB approach because there are fewer students in the graduate class, and since many are practicing K-12 classroom teachers, they have access to students with whom they can easily conduct the FAIs. Despite the teacher population and logistical differences between IUB and UI, Julie used the supporting documents and implemented them in a manner very similar to how they were initially designed and employed for the IMB approach at IUB. For example, at UI each graduate student/teacher selects appropriate mathematics content for the interview based on the standards and learning objectives that are age appropriate for the K-12 student they will interview. They then plan a goal for the interview, along with five problematic questions to be asked during the interview and related follow-up questions. Based on the second focus of the graduate course, they are encouraged to consider the cognitive demand of the tasks they include in their questions. The interview is audio recorded and the graduate students are asked to reflect on the questions outlined on the FAI Reflection Form (see ‘Resources’, Document A).  Referring specifically to the second question on the reflection form, one graduate student responded, “During my post-FAI analysis of the student work and audio, my noticing, once again, improved as I began to consider the relationship between the student’s misconceptions and teaching strategies.” Comments like this were commonly found across the FAI reflection forms, indicating the value of this interview experience in preparing teachers mathematical knowledge of content and students’ understanding of the content (Ball, Thames, & Phelps, 2008).

Following the first FAI, the graduate students are tasked to create a model of the student’s thinking that again mirrors the model-building process of the IMB approach (see ‘Resources,’ Document B). To do this, they are asked to listen to their audio recording and select a clip that highlights what the student says or does as evidence of how the student thinks about particular ideas. They transcribe the segment of audio and conduct an analysis on what the student knows, does not know, and what further information would be helpful. As an example, the following task was given during one FAI conducted by a graduate student — . Going through the Model Building process, the graduate student who gave this question in their FAI highlighted the following portion of their transcript, and provided the accompanying image of the student’s work in solving this question.

Student: I did that because the equal sign is right there.  And so because these numbers are supposed to be at the beginning but they switched them around to the end and then you would add them together to get nine and then you would do plus two and then you write your answer (write 11 underneath the box).

Teacher: How could we check that this (points to the left side of the equation) equals this (points to the right side of the equation?  Is there a way we could check that?

Student: Umm… what do you mean?

Teacher:  So, I saw that you added these numbers together and placed the nine here.  Could we check or is there a way to check that these two things added together equals these numbers added together?

Student: I guess you could just add them together.

Teacher: Do they come out equal?

Student: No because this is eleven (points to left side of equation).  And then this goes three, four, five, six, seven, eight, nine.  Oh! So it goes eleven like that and then eleven, twelve, thirteen, like that and then that will equal nine.

Teacher: So I saw a light bulb go off.  Is that going to change he number you put in there (points to the box)?

Student: So if was eleven, wait, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, twenty-one, twenty-two and that equals twenty-two.  And that is your real answer.

Building on this evidence, the graduate student wrote the following model of the student’s thinking with this problem.  This model is the graduate student’s attempt at explaining the student’s thinking with the evidence provided from the task.

Given a numeric equation with values on each side of the equation but a missing value on one side (e.g. 17+5=___+4), the student added the numbers on one side of the equation and placed that sum into the blank space. The student then continued executing computations by placing another equal sign and adding the newly determined answer with the existing value on that side of the equation. This same action happened in two different tasks with the missing value on the left and right side of the equation. Thus, the student does not conceptually understand the meaning of the equal sign and/or the concept of equality. She does not understand that the equal sign describes the relationship between two expressions and that the correct answer should create two equal expressions.  Instead, the student views the equal sign as an indicator to perform computations to find answers.

This model describes what the student knows and understands with respect to different sides of an equation.

Following this first round of FAIs and Model Building, the graduate students then repeat this entire process again, with the same student. However, before the second round, the graduate students have an opportunity to first share their models and thinking in online discussion boards and receive written instructor feedback. Their peers are also required to comment and engage in dialogue with them through the virtual discussions. With the second FAI, the intent is for the mathematical content to align with the content of the first interview, but focus on revealing deeper understandings of this content from the same student. For example, if the first FAI asked questions that broadly addressed fractional understanding at grade three, and the graduate student recognized some misconceptions related to part-whole relationships and understanding, then the second FAI may be designed to focus entirely on part-whole relationships.  The purpose of the second FAI is to dive deeper into a child’s thinking about the concept to obtain a greater understanding of how the child conceptualizes part and whole.

As the graduate students conducted the series of two FAIs and two Model Building exercises, they focused on the same K-12 student to provide an in-depth understanding of that student’s knowledge. As a result, they were then asked to deeply study what they had learned about that student’s mathematical thinking and focus on that student as a case study. This is a component that is not included in the original IMB process.  Julie elected to add this component of a case study to provide her graduate students the opportunity to revisit both cycles of the FAIs and Model Building processes and formulate some ideas around supporting the student based on evidence from interactions across the two cycles. As a part of the case study, they write a formal paper about the student that includes an analysis of the students’ thinking and makes recommendations for supporting the students’ understanding in the classroom context—these components stem from the research literature on professional noticing and the importance of attending to thinking, interpreting thinking, and making instructional decisions of how to respond (Jacobs et al., 2010). In the final component of the case study paper, the graduate student situates the student’s understanding within the broader mathematics education literature. Therefore, Julie has adapted the FAI and Model Building process of the IMB to engage graduate students in the act of professional noticing through a specific focus on one child as a case study (Jacobs et al., 2010).  The following comment from one of the case study reports illustrates the value of this adapted experience for one student, but the same sentiment was echoed by others.

The student thinking uncovered during the formative assessment interviews and the learning from this course on noticing, cognitive demand, and teacher knowledge combined together to profoundly influence on my views of mathematics instruction. Slowing down to thoughtfully probe a struggling student’s thinking revealed so much more than my prior noticing ability would have allowed.

Ingrid’s Story of Adaptation at Metropolitan State University of Denver (MSU Denver)

Ingrid joined the IMB as a graduate teaching and research assistant in the second year of implementation. In her first year with the IMB, she instructed a section of the field experience with preservice elementary teachers. Later on in her doctoral program, she taught the affiliated science methods course that is taken in the cluster with the field experience, but was no longer an instructor of the field experience.  During this time however, she remained on the IMB as a research assistant. Therefore, throughout her time on the IMB project, Ingrid worked on many facets of the IMB and was integral in developing procedures and protocols for teaching the IMB approach.

At her current institution, Ingrid has adapted the Act of Teaching and Lesson Study components of the IMB, infusing it into her undergraduate elementary science and health methods course. Her institution is a large urban commuter campus with a large majority of students being undergraduates. The student body is diverse and most are from the expansive metropolitan area. For their field experience, which combines science, health, and mathematics, each preservice teacher is placed in an elementary classroom for 45 hours per semester. In most cases, this is usually the fourth field experience these preservice teachers have participated in for their program. The science and health methods course meets face-to-face for 15 weeks of classes and incorporates a teaching rehearsal experience in the methods course to provide the preservice teachers with the opportunity to practice a lesson they have planned and the Lesson Study component of the IMB approach before completing the teaching experience in the field with children.

The preservice teachers at MSU Denver are placed in separate classrooms for their field experience, thus they plan different lessons and teach the lessons independently.  Despite this independent teaching experience, Ingrid has tried to maintain the collaborative integrity of the Lesson Study component of the IMB by pairing preservice teachers that are placed at the same school or nearby schools.  The purpose of this pairing is so they can serve as peer observers for each other and participate in a shared Lesson Study experience. Unfortunately, this request cannot always be made, and in some instances the preservice teachers work with the mentor classroom teacher through the Act of Teaching and Lesson Study components.

Before the preservice teachers begin their teaching cycle in the field however, Ingrid has her preservice teachers participate in a type of teaching rehearsal (Lampert et al., 2013).  The preservice teachers are placed into teams of four or five and together they develop a learning plan (similar to a lesson) but with a focus on just the first three Es of a Learning Cycle (Engage, Explore, and Explain) and the learning objective.  Preservice teachers usually focus on science, but in some cases they elect to teach a health or engineering lesson. Two groups are then brought together to serve as the different members of the teaching cycle.  When one team is teaching, one member of the other team serves as the peer observer completing the Lesson Observation Form (see ‘Resources’, Document C) and all remaining members of the other group are acting as elementary students for the teaching of the lesson. The group then switches and they repeat the experience for another lesson. Following each rehearsal the two groups then walk through the Lesson Study Form and complete it for each rehearsed lesson.  Ingrid believes taking her students through this rehearsal of planning a lesson, teaching it, and practicing with the forms helps the preservice teachers to be more successful in all aspects of the Act of Teaching and Lesson Study when they conduct it in their smaller pairings and in the context of their field experience classrooms.

Due to the complex structure of field placement at Ingrid’s institution, with it being a commuter-based university serving a large urban/suburban area, Ingrid has made more adaptations to the IMB approach and documents than Julie, some of which are described above. Additional adaptations however, include Ingrid providing feedback on the each preservice teacher’s lesson and then having preservice teachers revise the lesson using this feedback, and having the preservice teacher partners participating in a Pre-Observation Conference.  The purpose of this conference is help the preservice teachers who are partnered for the Act of Teaching and Lesson Study (or the preservice teacher and the mentor teacher) to understand the learning objectives of the lesson and the intentions of the preservice teacher for structuring the lesson in the manner they did.  In addition, there is a section called “look-fors” that directs the preservice teachers to anticipate what the children should be able to do by the end of the lesson (with respect to the learning objective) and what evidence will be gathered to determine this goal was met. This is intended to support the preservice teachers to focus on students’ thinking in the Act of Teaching and Lesson Study processes in the field. The pair completes one Pre-Observation Conference Form (see ‘Resources’, Document E) together for each partner’s lesson. To complete the Act of Teaching and Lesson Study cycle, each preservice teacher is required to submit a packet to document the experience that includes: the Pre-Observation Conference Form, the Lesson Observation Form completed by their partner, their collaborative Lesson Study Form, a revised lesson that incorporates the color-coded revisions suggested in the Lesson Study, and a personal reflection paper about what they took away from the experience.

Lastly, Ingrid’s Act of Teaching/Lesson Study cycle concludes with a debriefing about the experience with all students in the class. She focuses much of the conversation on asking the preservice teachers to share what they reflected on in their individual papers about the experience and she guides the discussion with questions such as,

  • What did you think about the peer observation process?
  • How did participating in lesson study support your growth as a teacher?
    • What parts of the lesson study process were particularly helpful for you?
  • What would you do differently if you could do this again?
  • How did lesson study support you in focusing on students’ thinking?
  • What have you learned from the lesson study process that you will take with you in your future classroom?

From this class discussion she is able to glean how they view the whole process as supporting the preservice teachers’ understanding of how to focus their attention on children’s scientific thinking and use this information to inform their future instruction. ​

Reflecting on Our Stories of Adaptation: Lessons Learned

At Julie’s institution (University of Idaho [UI]), implementation using FAIs and Model Building have shown to be beneficial for the graduate students, as most of them are practicing classroom teachers. One accommodation from the IMB model is the time span for the FAIs and Model Building. In the modified version, two cycles are spread over six weeks, as opposed to having a new cycle each week. Additionally, one graduate student interviews one student in K-12, as opposed to working in pairs. This has afforded opportunities for greater flexibility with scheduling and diving in deeper around a specific mathematical topic. However, the graduate student has only one student with whom they work and do not develop a broader understanding of various students, which may lessen their opportunity for understanding the thinking of multiple students. Additionally, at UI, every graduate student selects the grade level and the student with whom they will work. The FAIs and Model Building then focus on their selected student and topic, which restricts collaboration across the graduate students and learning from one another; whereas with the original IMB model, the same mathematics topic (e.g., number sense) is covered by each team.  This modification affords teams experiencing the full IMB model the opportunity to learn from each other within their team, but also across the teams to learn about content progressions. Therefore, a possible limitation of the modification at UI is that every graduate student has a different topic and they are unable to share and discuss students’ thinking and ideas about a similar mathematical domain. Determining ways to work around this limitation depends on the intentions of the course instructor/teacher educator for using FAIs and Model Building.  For Julie, her focus is on developing individual teachers’ professional noticing, thus the limitations in collaborating with others does not prevent her from meeting her intentions.

Another accommodation from the IMB model is that Julie is unable to attend the FAI recordings in person unlike the field instructors at IUB who are present weekly.  The online nature of Julie’s course provided the graduate students with flexibility in accessing students and scheduling the recordings at times throughout the school day that worked for them and the students.  However, being disconnected to the context limited Julie’s abilities, she believes, in providing more targeted or individualized feedback regarding specific student’s thinking.  The inclusion of the case study however, is how Julie works around the limited contextual understanding she feels she has and it affords her the opportunity to dig more into an understanding of the ‘whole’ child that her graduate students’ are presenting to her.  The case study, while it includes evidence from the FAI and Model Building cycles, is only a portion of what is required for the case study paper.  Therefore, we suggest the FAI and Model Building be done not in isolation but merged with other tasks that can help foster deeper professional noticing, such as Julie has done with her Case Study assignment.

With respect to Ingrid’s story of adaptation at MSU Denver, the implementation of the IMB’s modified lesson study has been positively received. As previously described, two accommodations made by Ingrid were the implementation of a modified teaching rehearsal experience and the development of the Pre-Observation Conference Form (see ‘Resources’, Document E).  Considering her field placement arrangements, she learned she needed to include both of these modifications to give the preservice teachers practice with both the Act of Teaching and Lesson Study components before doing it in the field.  Also, because the preservice teachers are not placed in the same classroom (unlike IUB) they need the opportunity to first review each other’s lesson (i.e., Pre-Observation Conference) so they had some idea of what to expect when observing each other teach.

Overall, the preservice teachers at Ingrid’s institution mentioned they enjoy the “lower stakes” atmosphere of being observed by a peer (when possible) rather than a university supervisor and the opportunity to discuss possible revisions to the lesson with a peer considering their different participatory perspectives.  This arrangement can create a challenge however, as not all preservice teachers may provide the same level of constructive criticism for revising the lesson.  Ingrid has attempted to address this challenge by first providing the teaching rehearsal experience in class so students can gain experience in her methods course on how to complete the forms and provide constructive feedback on a lesson.

 Recommendations

There is consensus across both science and mathematics teacher education that for effective teaching to occur teachers must learn to recognize and build on students’ ideas and experiences (Bransford, Brown, &Cocking, 1999; Kang & Anderson, 2015, NRC, 2007; van Es & Sherin, 2008).  Considering this goal, preparation programs often design opportunities for prospective teachers to question and analyze students’ thinking, and when possible do so within the context of teaching science.  However, few programs offer a systematic and iterative experience such as the IMB approach, and this is due in part to the structural variation in teacher education programs and the varied constraints of these different models.  As Zeichner and Conklin (2005) explain,

there will always be a wide range of quality in any model of teacher education….The state policy context, type of institution, and institutional history and culture in which the program is located; the goals and capabilities of the teacher education faculty, and many other factors will affect the character and quality of programs (p. 700).

Therefore, our intent with this article is to show the potential for taking well-recognized practices for teacher education, such as those used in the IMB approach, and demonstrate how they can be combined for use in other science and mathematics teacher education models.  In particular, we wanted to highlight the adaptations made by Ingrid and Julie because their institutions and learner populations are very different from those where the IMB approach was initially developed, and this sort of variation in context is rarely described in the research (Zeichner & Conklin, 2005).  Despite the vast program differences at our three institutions, Ingrid and Julie were able to adapt key aspects of the IMB approach to fit the context and needs of their learners.

More specifically, although we recognize that individually the four aspects of the IMB approach are not innovative, it is the potential for combining features of the IMB, as Authors 2 and 3 have shared, that we believe demonstrates the innovation and potential of the IMB approach for impacting science and mathematics teacher learning. As such, we offer the following recommendations from lessons we have learned through our adaptive processes, with the hope of inspiring others to consider how they may combine features of the IMB for use at their institutions.

  1. Understand your own orientation toward teacher preparation. Begin with selecting aspects of the IMB approach that most align with your own beliefs as to core practices for developing teachers’ cognition about learning to attend to students’ thinking to inform practice. Ingrid and Julie made their selections based on what they viewed as critical practices given the professional development needs of their student teachers (i.e., their population of teacher), as well as the purpose of their course.
  2. Don’t lose sight of the goal! Make modifications to the sample documents provided (see Resources) or provide additional support documents (e.g., the Pre-Observation Conference form designed by Ingrid) to guide preservice or inservice teachers’ cognition of how to uncover K-12 students’ ideas and reflect on their ideas in order to identify rich and appropriate learning tasks.
  3. Choose the strategies that best fit your context. If some components of the IMB approach will not fit into your current program or university structure, select the one that will fit and be most appropriate for your own students and situation. The goal is to help preservice and inservice teachers understand their students’ thinking, and whatever strategies can best work for you and your students given your context are the ones to include.
  4. Remember that improvement is an iterative process. Continue to adapt and refine the approach as needed for your context. Once you have selected the aspect or aspects of IMB that you think will be most impactful, continue to reflect on and obtain feedback about the process from the students with whom you work, and then make modifications to support your goals.
  5. Collaboration is valuable and can take many forms. At the core of the IMB approach is the belief that collaboration leads to better understandings about learning to teach science and mathematics. Whether collaborating to plan, teach, and reflect on lessons taught, or the sharing of models of students’ thinking and engaging through discussion boards online, the notion of collaboration is still at the core of each of our pedagogical approaches to working with teachers. We recognize the structure of various institutions teacher education programs/courses may make it difficult to afford students the opportunity to collaborate in the same physical space (classroom, or school), as did Julie; however, it is worth exploring what technologies your institution may offer to arrange other means of collaborating in synchronous and asynchronous spaces.

[1] For further details comparing these two models of Lesson Study see Carter et al. (2016).

Supplemental Files

IMB-Supplementary-Materials.pdf

References

Akerson V.L., Carter I.S., Park Rogers, M.A. & Pongsanon, K. (2018). A video-based measure of preservice teachers’ abilities to predict elementary students’ scientific reasoning. International Journal of Education in Mathematics, Science and Technology (IJEMST), 6(1), 79-92. DOI:10.18404/ijemst.328335

Ball, D.L., Thames, M.H., Phelps, G.C. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59, 389-407.

Carter, I. S., Park Rogers, M. A., Amador, J. M., Akerson, V. L., & Pongsanon, K. (2016). Utilizing an iterative research-based lesson study approach to support preservice teachers’ professional noticing.  Electronic Journal of Science Education, 20 (8). Retrieved from http://ejse.southwestern.edu/article/view/16434/10861

Harlen, W. (2015). Teaching science for understanding in elementary and middle schools. Portsmouth, NH: Heinemann.

Jacobs, V., Lamb, L., & Philipp, R. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169-202.

Kang, H., & Anderson, C. W. (2015). Supporting preservice science teachers’ ability to attend and respond to student thinking by design. Science Education, 99, 863-895.

Lambdin, D., & Lester, F. (Eds.). (2010). Teaching and learning mathematics: Translating research for elementary school teachers. National Council of Teachers of Mathematics: Reston, Virginia.

Lampert, M., Franke, M., Kazemi, E., Ghousseini, H., Turrou, A., Beasley, H., & Crowe, K. (2013). Keeping it complex: Using rehearsals to support novice teacher learning of ambitious teaching. Journal of Teacher Education, 64, 226–243.

Lewis, C.C., & Tsuchida, I. (1998). A lesson is like a swiftly flowing river: How research lessons improve Japanese education. American Educator, 22(4), 12-14, 50-52.

Lobato, J., & Lester, F. (Eds.). (2010). Teaching and learning mathematics: Translating research for secondary school teachers. National Council of Teachers of Mathematics: Reston, Virginia. [Student should make decision based on area of interest/expertise]

Nargund-Joshi, V. Park Rogers, M. A. Wiebke, H., Akerson, V. L. (2012, March).  Re-thinking early field experiences for the purpose of preparing elementary preservice teachers’ pedagogical content knowledge.  National Association for Research in Science Teaching (NARST), Indianapolis, IN.

National Research Council. (2007).  Taking science to school: Learning and teaching science in grades K-8.  Committee on Science Learning, Kindergarten Through Eighth Grade. Richard A. Duschl, Heidi A. Schweingruber, and Andrew W. Shouse, Editors.  Board on Science Education, Center for Education.  Division of Behavioral and Social Sciences and Education.  Washington, DC: The National Academies Press.

Norton, A., McCloskey, A., & Hudson, R. A. (2011). Prediction assessments: Using video-based predictions to assess prospective teachers’ knowledge of students’ mathematical thinking. Journal of Mathematics Teacher Education, 14, 305-325.

Russ, R., & Luna, M. (2013). Inferring teacher epistemological framing from local patterns in teacher noticing. Journal of Research in Science Teaching, 50, 284-314.

Sherin, M. G., Jacobs, V., & Philipp, R. (Eds.). (2011). Mathematics teacher noticing: Seeing through teachers’ eyes. Routledge: New York.

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-23.

Steffe, L., & Thompson, P. (2000). Teaching experiment methodology: Underlying principles and essential elements. In A. E. Kelley & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 267-306). Mahwah, NJ: Lawrence Erlbaum Associates.

Stein, M. K., Smith, M. S., Henningsen, M. A., & Silver, E. (2009). Implementing standards-based mathematics instruction: A casebook for professional development. Teachers College Press: New York.

van Es, E. A., & Sherin, M. G. (2008). Mathematics teachers’ “learning to notice” in the context of a video club. Teaching and Teacher Education, 24, 244–276.

Zeichner, K. M., & Conklin, H. G.  (2005). Teacher education programs. In M. Cochran-Smith & K. M. Zeichner (Eds.), Studying teacher education: The report of the AERA panel on research and teacher education (pp. 645-736). Mahwah, NJ: Lawrence Erlbaum Associates.

Enacting Wonder-infused Pedagogy in an Elementary Science Methods Course

Citation
Print Friendly, PDF & Email

Gilbert, A., & Byers, C.C. (2020). Enacting wonder-infused pedagogy in an elementary science methods course. Innovations in Science Teacher Education, 5(1). Retrieved from https://innovations.theaste.org/enacting-wonder-infused-pedagogy-in-an-elementary-science-methods-course/

by Andrew Gilbert, George Mason University; & Christie C. Byers, George Mason University

Abstract

Future elementary teachers commonly experience a sense of disconnection and lack of confidence in teaching science, often related to their own negative experiences with school science. As a result, teacher educators are faced with the challenge of engaging future teachers in ways that build confidence and help them develop positive associations with science. In this article, we present wonder-infused pedagogy as a means to create positive pathways for future teachers to engage with both science content and teaching. We first articulate the theoretical foundations underpinning conceptions of wonder in relation to science education, and then move on to share specific practical activities designed to integrate elements of wonder into an elementary methods course. We envision wonder-infused pedagogy not as a disruptive force in standard science methods courses, but rather an effort to deepen inquiry and connect it to the emotive and imaginative selves of our students. The article closes with thorough descriptions of wonder related activities including wonder journaling and a wonder fair in order to illustrate the pedagogical possibilities of this approach. We provide student examples of these artifacts and exit tickets articulating student experiences within the course. We also consider possible challenges that teacher educators may encounter during this process and methods to address those possible hurdles. We found that the process involved in wonder-infused pedagogy provided possibilities for future teachers to reconnect and rekindle a joyful relationship with authentic science practice.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Akerson, V., Morrison. J, & McDuffie, A. (2006). One course is not enough: Preservice elementary teachers’ retention of improved views of nature of science. Journal of Research in Science Teaching, 43, 194–213.

Atkins, L., & Salter, I. (2015). Engaging future teachers in having wonderful ideas. In C. Sandifer and E. Brewe (Eds.). Recruiting and Educating Future Physics Teachers: Case Studies and Effective Practices (pp. 199-213). College Park, MD: American Physical Society.

Bianchi, L. (2014). The keys to wonder-rich science learning. In K. Egan, A. Cant, & G. Judson (Eds.). Wonder-Full education: The centrality of wonder in teaching, and learning across the curriculum (pp. 190–203). New York, NY: Routledge.

Brand, B., & Wilkins, J. (2007). Using self-efficacy as a construct for evaluating science and mathematics methods courses. Journal of Science Teacher Education, 18, 299–317. Retrieved from https://doi.org/10.1007/s10972-007-9038-7

Bybee, R. (2015). The BSCS 5E instructional model: Creating teachable moments. Arlington, VA: NSTA Press.

Bybee, R. (2002). Learning Science and the Science of Learning. Arlington, VA: National Science Teacher Association Press.

Carson, R. (1965). The sense of wonder. New York, NY: Harper and Row.

Cobb, E. (1977). The ecology of imagination in childhood. New York, NY. Columbia University Press.

Cox, B. (2011). Wonders of the universe. London, England: Harper Collins.

Egan, K. (2005). An imaginative approach to teaching. San Francisco, CA: Jossey-Bass.

Einstein, A. (1931). Living philosophies. New York, NY: Simon & Schuster.

Gilbert, A. (2009). Utilizing science philosophy statements to facilitate K-3 teacher candidate’s development of inquiry-based science practice. Early Childhood Education Journal, 36(5), 431-438.

Gilbert, A. (2013). Using the notion of ‘wonder’ to develop positive conceptions of science with future primary teachers. Science Education International, 24(1), 6-32. Retrieved from: http://www.icaseonline.net/sei/march2013/p1.pdf

Gilbert, A. & Byers, C. (2017). Wonder as a tool to engage preservice elementary teachers in science learning and teaching. Science Education. 101(6), 907-928. Retrieved from https://doi.org/10.1002/sce.21300

Hadzigeorgiou, Y. (2012). Fostering a sense of wonder in the science classroom. Research in Science Education, 42(5), 985–1005. Retrieved from https://doi.org/10.1007/s11165-011-9225-6

Hadzigeorgiou, Y. (2016). Imaginative science education: The central role of imagination in science education. Cham, Switzerland: Springer International.

Kenny, J. (2012). University-school partnerships: Preservice and in-service teachers working together to teach primary science.  Australian Journal of Teacher Education, 37(3), 57-82.

Llewellyn, D. (2002). Inquire Within: Implementing Inquiry Based Science Standards. California, USA: Corwin Press.

Mangiaracina, M. (2017). When is melting not really melting? Building explanations through exploration using an engaging toy. Science and Children, 55(4), 61-66.

NGSS Lead States. (2013). Next Generation Science Standards: For states, by states. Washington DC: National Academies Press.

Piersol, (2014). Our hearts leap up: Awakening wonder within the classroom. In K. Egan, A. Cant, & G. Judson (Eds.). Wonder-Full education: The centrality of wonder in teaching, and learning across the curriculum (pp. 3-21). New York, NY: Routledge.

Schinkel, A. (2017). The educational importance of deep wonder. Journal of Philosophy of Education, 51(2), 538–553. Retrieved from https://doi.org/10.1111/1467-9752.12233

Trotman, D. (2014). Wow! What if? So what?: Education and the imagination of wonder: Fascination, possibilities and opportunities missed. In K. Egan, A. Cant, & G. Judson (Eds.). Wonder-Full education: The centrality of wonder in teaching, and learning across the curriculum (pp. 22-39). New York, NY: Routledge.

Tytler, R. (2007). Re-imagining Science Education Engaging students in science for Australia’s future. Camberwell, VIC: Australian Council for Educational Research.

Van Aalderen-Smeets, S., Walma Van Der Molen, J., & Asma, L. (2011). Primary teachers’ attitudes toward science: A new theoretical framework. Science Education, 96, 158–182. Retrieved from https://doi.org/10.1002/sce.20467

Whitin, P., & Whitin, D. (1997). Inquiry at the window: Pursuing the wonders of learners. London: Heinemen.

Introducing the NGSS in Preservice Teacher Education

Citation
Print Friendly, PDF & Email

Hill, T., Davis, J., Presley, M., & Hanuscin, D. (2020). Introducing the NGSS in preservice teacher education. Innovations in Science Teacher Education, 5(1). Retrieved from https://innovations.theaste.org/introducing-the-ngss-in-preservice-teacher-education/

by Tiffany Hill, Emporia State University; Jeni Davis, Salisbury University; Morgan Presley, Ozarks Technical Community College; & Deborah Hanuscin, Western Washington University

Abstract

While research has offered recommendations for supporting inservice teachers in learning to implement the NGSS, the literature provides fewer insights into supporting preservice teachers in this endeavor. In this article, we address this gap by sharing our collective wisdom generated through designing and implementing learning experiences in our methods courses. Through personal vignettes and sharing of instructional plans with the science teacher education community, we hope to contribute to the professional knowledge base and better understand what is both critical and possible for preservice teachers to learn about the NGSS.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Abell, S. K., Appleton, K., & Hanuscin, D. L. (2010) Designing and teaching the elementary science methods course. New York, NY: Routledge.

Bybee, R.W. (1997). Improving İnstruction. In Achieving scientific literacy: From purposes to practice. Portsmouth, NH: Heinemann.

Davis, E.A., Petish, D., Smithey, J. (2006). Challenges new science teachers face. Review of Educational Research, 76, 607-651.

Donnelly, L. A., & Sadler, T. D. (2009). High school science teachers’ views of standards and accountability. Science Education, 93, 1050-1075.

Duncan, R. G., & Cavera, V. L. (2015). DCIs, SEPs, and CCs, oh my! Understanding the three dimensions of the NGSS. Science and Children, 53(2), 16-20.

Donnelly, L. A., & Sadler, T. D. (2009). High school science teachers’ views of standards and accountability. Science Education, 93, 1050-1075.

Duschl, R. A. (2012). The second dimension–crosscutting concepts. Science and Children, 49(6), 34-38.

Feiman-Nemser, S. (2001). From preparation to practice: Designing a continuum to strengthen and sustain teaching. Teachers College Record, 103, 1013-1055.

Fisher, D. & Frey, N. (2008). Better learning through structured teaching: A framework for the gradual release of responsibility, Association for Supervision and Curriculum Development: Alexandria, VA.  

Hanuscin, D., Arnone, K.A., & Bautista, N. (2016a). Bridging the ‘next generation’ gap: Teacher educators implementing the NGSS. Innovations in Science Teacher Education, 1(1). Retrieved from https://innovations.theaste.org/bridging-the-next-generation-gap-teacher-educators-enacting-the-ngss/

Lee, E., Cite, S., & Hanuscin, D. (2014). Mystery powders: Taking the “mystery” out of argumentation. Science & Children, 52(1), 46-52.

Hanuscin, D. Cisterna, D. & Lipsitz, K. (2018). Elementary teachers’ pedagogical content knowledge for teaching the structure and properties of matter. Journal of Science Teacher Education, 29, 665-692. DOI 10.1080/1046560X.2018.1488486

Hanuscin, D. & Zangori, L. (2016b) Developing practical knowledge of the Next Generation Science Standards in elementary science teacher education. Journal of Science Teacher Education, 27, 799-818.

King, K., Hanuscin, D., & Cisterna, D. (In Press). What properties matter? Exploring essential properties of matter. Science & Children.

National Governors Association Center for Best Practices, Council of Chief State School Officers. (2010). Common core state standards. National Governors Association Center for Best Practices, Council of Chief State School Officers: Washington D.C.

National Research Council. 2012. A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

Little, J. W. (1990). The persistence of privacy: Autonomy and initiative in teachers’ professional relations. Teachers College Record, 91, 509-536.

Lynch, M. (1997). Scientific practice and ordinary action: Ethnomethodology and social studies of science. Cambridge, UK: Cambridge University Press.

National Research Council. (2012). A Framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press. https://doi.org/10.17226/13165.

Nollmeyer, G. E., & Bangert, A. (2015). Assessing K-5 elementary teachers understanding and readiness to teach the new framework for science education. The Researcher, 27(2), 7-13.

Putnam, R. T., & Borko, H. (2000). What do new views of knowledge and thinking have to say about research on teacher learning. Educational Researcher, 29(1), 4-15.

Reiser, B. J. (2013). What professional development strategies are needed for successful implementation of the Next Generation Science Standards? Invitational Research Symposium on Assessment, K-12 Center at ETS. Retrieved from http://www.k12center.org/rsc/pdf/reiser.pdf

Ricketts, A. (2014). Preservice elementary teachers’ ideas about scientific practices. Science & Education, 23, 2119-2135.

Smith, J., & Nadelson, L. (2017). Finding alignment: The perceptions and integration of the next generation science standards practices by elementary teachers. School Science and Mathematics, 117, 194-203.

van Drie., J. H., Bijaard, D., & Verloop, N. (2001). Professional development and reform in science education: The role of teachers’ practice and knowledge. Journal of Research in Science Teaching, 38, 137-158.

Windschitl, M., Schwarz, C., & Passmore, C. (2014). Supporting the implementation of the next generation science standards (NGSS) through research: Preservice teacher education. Retrieved from https://narst.org/ngsspapers/preservice.cfm

Winkler, A. (2002). Division in the ranks: Standardized testing draws lines between new and veteran teachers. Phi Delta Kappan, 84, 219-225.

 

Introducing ‘Making’ to Elementary and Secondary Preservice Science Teachers Across Two University Settings

Citation
Print Friendly, PDF & Email

Rodriguez, S. R., Fletcher, S. S., & Harron, J. R. (2019). Introducing ‘making’ to elementary and secondary preservice science teachers across two university settings. Innovations in Science Teacher Education, 4(4). Retrieved from https://innovations.theaste.org/introducing-making-to-elementary-and-secondary-preservice-science-teachers-across-two-university-settings/

by Shelly R. Rodriguez, The University of Texas, Austin; Steven S. Fletcher, St. Edwards University; & Jason R. Harron, The University of Texas, Austin

Abstract

‘Making’ describes a process of iterative fabrication that draws on a DIY mindset, is collaborative, and allows for student expression through the creation of meaningful products. While making and its associated practices have made their way into many K-12 settings, teacher preparation programs are still working to integrate making and maker activities into their courses. This paper describes an end-of-semester maker project designed to introduce preservice science teachers to making as an educational movement. The project was implemented in two different higher education contexts, a public university secondary STEM introduction to teaching course and a private university elementary science methods course. The purpose of this article is to share this work by articulating the fundamental elements of the project, describing how it was enacted in each of the two settings, reviewing insights gained, and discussing possibilities for future iterations. The project’s instructional strategies, materials, and insights will be useful for those interested in bringing making into science teacher preparation.

Keywords: constructionism; making; preservice; project-based; science education

Introduction

Over the past decade, there has been a surge of interest in how the field of education can benefit from the tools, processes, and practices of making (e.g., Clapp, Ross, Ryan, & Tishman, 2016; Fields, Kafai, Nakajima, Goode, & Margolis, 2018; Halverson & Sheridan, 2014; Stager & Martinez, 2013). Drawing from a “do it yourself” (DIY) mindset, classroom-based making can be defined as an iterative process of fabrication that allows students to express themselves through the creation of personally meaningful products that are publicly shared (Rodriguez, Harron, & DeGraff, 2018). Like traditional science and engineering practices, making involves the building of models, theories, and systems (NSTA, 2013). However, in contrast to these practices, making explicitly emphasizes the development of personal agency and student empowerment through creative, hands-on learning experiences that are both exciting and motivating (Clapp et al., 2016; Maker Education Initiative, n.d.). A shift towards maker-centered learning provides an opportunity to rethink how we prepare science educators with the aim of bringing more student-driven and personally meaningful experiences to their instructional practice.

Comparable to project-based learning (PBL) and other inquiry-based teaching practices, classroom making involves learning by doing. Maker-centered learning shares many elements found in High Quality Project Based Learning (HQPBL, 2018) which suggests that projects should include intellectual challenge and accomplishment, authenticity, collaboration, project management, the creation of a public product, and reflection. These elements overlap significantly with features of classroom-based making (Rodriguez, Harron, Fletcher, & Spock, 2018). However, maker-centered learning draws specifically on the theoretical underpinnings of constructionism (Papert, 1991), where learners gain knowledge as they actively design and build tangible digital or physical objects. Furthermore, maker-centered learning places emphasis on the originality and personal meaning of creations, the productive use of tools and materials in fabrication, the process of iterative design, and the development of a maker mindset that is growth-oriented and failure positive (Martin, 2015). Thus, in maker-centered learning, the skills of construction and design are acquired alongside the content.

There are several examples of the tools and materials associated with making being used as a way to help students explore the natural world (Bevan, 2017; Peppler, Halverson, & Kafai, 2016). For example, the use of copper tape, LEDs, and coin cell batteries have provided an avenue for science teachers to introduce circuits through the creation of interactive pop-up books and user-friendly paper circuit templates (Qi & Buechley, 2010, 2014). Sewable circuits, which use conductive thread, have been shown to improve student interest in science (Tofel-Grehl et al., 2017) and can be used in conjunction with embedded electronics, such as the Arduino-based Lilypad, to introduce computer science through the creation of e-textiles (Fields et al., 2018). However, not all making is digital. Making also includes traditional work such as welding, sewing, wood working, and other techniques that exist outside of the computational world.

The National Science Foundation (NSF) has acknowledged the potential of making to foster innovation, increase student retention, and broaden participation in science, technology, engineering, and mathematics (STEM) (National Science Foundation, 2017). However, more must be done to prepare future science educators to implement these practices in their classrooms. A national survey found that only half of undergraduate teacher preparation programs in the United States provided an opportunity to learn about maker-education and the associated technologies, and that only 17% had a makerspace available to their preservice teachers (Cohen, 2017). As such, many future educators are not exposed to formal training or professional development related to making. Since science teachers often uptake and implement the inquiry-based practices with which they have personal experience (Windschitl, 2003), a lack of exposure to maker-centered pedagogies may leave future educators unaware of the potential benefits of these innovations for their students.

This paper describes an end-of-semester project designed to introduce students to making as an educational movement. The project was implemented in two different settings. One was an introductory course offered as part of a secondary STEM teacher preparation program at a large public research university. The other was a science methods course designed for preservice elementary teachers offered at a private university. The purpose of this article is to share our work by articulating the fundamental elements of the project, describing the project as enacted in these two settings, reviewing insights gained, and discussing possibilities for future iterations.

The Maker Project

The maker project described in this paper was introduced four years ago in a secondary STEM teacher preparation course for a number of reasons. The first was to expose novice teachers to the practice of using open-ended projects with high levels of personal agency to uncover student ideas. The second was to spark creativity in the preservice teachers and engage them in the act of authentic problem solving. The final reason was to provide an opportunity for preservice teachers to interact with up-to-date educational tools that they may encounter in schools. Two years later, an elementary science methods course housed in a private university adopted this activity for similar reasons, with the additional hope of increasing preservice teacher self-efficacy around science content and tool use – a noted deficiency in the literature (Menon & Sadler, 2016; Rice & Roychoudhury, 2003; Yoon, et al., 2006).

The following section outlines strategies used to implement the project in the two different science teacher preparation settings. The fundamental elements of the project in both settings include: a) an introduction to making; b) a station activity to expose students to new technologies and materials; c) an open-ended construction task; d) extended out of class time to create a personally meaningful artifact; e) the public presentation of work to classmates, instructors, and guests; and f) reflections for the classroom. Table 1 provides description of each setting and an overview of how the project features were enacted.

Table 1 (Click on image to enlarge)
Project Features in Each Context

Context Specific Implementation

Implementation in an introductory secondary STEM teacher preparation course

The introductory secondary STEM teacher preparation course is a 90-minute, one credit hour class in a large R1 university in central Texas. It meets once a week with approximately 25 students in each of five sections. The class is considered a recruitment course and is designed to give STEM majors the chance to try out teaching. In this class, students observe and teach a series of STEM lessons in local elementary schools. Those choosing to continue with the program will go on to teach in middle and high school settings and ultimately earn their teaching certification in a secondary STEM field. In the Fall of 2018, 53% of the students in the course were female and 47% male. 64% were underclassmen, 36% were either juniors, seniors, or post baccalaureate students, and 59% had either applied for or were receiving financial aid. 46% were science majors, 16% were math majors, 11% were computer science and engineering majors, 4% were degree holders, and the remaining students were assigned to other majors or undecided.

In class. The maker project in this course began with a project introduction day occurring approximately three weeks from the end of the semester. To start, students were introduced to the concept of making through a video created by Make: magazine and presented with a prompt, “What is making?”, to think about as they watch the video (Maker Media, 2016). The video describes making as a DIY human endeavor that involves creating things that tell a personal story. After the video screening, students engaged in a Think-Pair-Share activity where they discussed the initial prompt in small groups and shared ideas in a whole class discussion, often describing making as personal, innovative, open-ended, and challenging (See Figure 1).

Figure 1 (Click on image to enlarge). Student ideas about making.

Next, the criteria for the final maker project was provided. The specific prompt for this project asked students to reflect on their teaching experience and to make an artifact that illustrated the story of their growth over the semester. Students were shown examples of what others had created in previous semesters. Some past projects featured traditional construction and craft materials such as woodworking and papier-mâché while others included digital tools such as 3D printing, block-based coding, and Arduinos. Students were also shown examples of maker projects as enacted in STEM classrooms such as activities that have K-12 pupils creating museum exhibits to learn about properties of water, using paper circuits to create illuminated food webs, and creating interactive cell models using a Makey Makey.

After reviewing project examples, time was spent introducing the class to several digital technologies through a stations activity. Though digital technologies were not given preference for the project, this activity was an opportunity to have students explore some of the digital tools that encourage invention in the classroom. The class was broken into groups and each group was given ten minutes to explore various digital tools and resources including Scratch, Instructables, Makey Makey, and Circuit Playground (See Appendix A). Preservice teachers farther along in the teacher preparation program facilitated the stations and helped current students explore the new technologies. A handout of useful websites and a place to make notes at each station was also provided (See Appendix B). Students rotated stations such that by the end of the activity they had briefly explored each of the technologies. The final part of the project introduction day was a reflective table talk that occurred after the station activity. At this time, students talked with their classmates and discussed ideas for their final maker project. They were encouraged to connect their project to something they cared about or a specific interest.

Out of class. Students were given two weeks to independently complete their maker projects. Students were free to incorporate traditional skills such as crafts, sewing, knitting, wood working, or metal working in their creation. They were also free to use the digital tools explored in class, or to combine digital and traditional tools to make something new. There was no additional class time provided however, the instructor and TA were available to help students outside of class. Students were encouraged to upcycle, or creatively reuse materials they already had, in creating their projects. Additionally, students were provided with a list of campus locations where they had free access to fabrication tools such as 3D printers, laser cutters, and sewing machines. The students had access to a workroom with traditional school supplies and a suite of recycled materials. Students could also check out digital tools from the program inventory. All of these items were available to them at no cost.

Presentation and reflection. On the last day of class, students presented their creations via a gallery walk format with half of the class presenting at one time and the other half circulating and serving as the audience. Students in the course produced a wide array of personally significant artifacts each of which told a story about their specific experience. Other preservice teachers, staff, and instructors from the program were invited to the presentations giving each student the opportunity to exhibit their work to a large audience. At the end of the presentation session, students completed a short reflection on making, classroom applications, and the project experience. Complete instructional materials for this maker project can be found at https://tinyurl.com/maker-final-project.

Implementation in an elementary science methods course

Elementary Science Methods (ESM) is a required course for all students seeking EC-6 teacher certification at a private liberal arts institution in central Texas. ESM is a 75-minute class that meets twice each week on the university campus in a general science lab. It is offered in the fall semester only and typically enrolls 24 students.  Students are predominantly in their final year of the preparation program before student teaching and ESM is one of two science classes required for their graduation from the institution. In the Fall of 2018, there were 23 total students in the ESM course. Twenty-two (96%) of the students in the course were female and one (4%) was male. Two (8%) of the students were sophomores and twenty-one (92%) were either juniors or seniors. Fourteen students (61%) were elementary teaching majors, eight (35%) were special education teacher majors, and the remaining student (4%) was preparing to become a bilingual elementary teacher.

Inspired by the project described above, the ESM maker final project was added to the syllabus three years ago to address specific issues observed from previous semesters of work with elementary science teachers in this context. First, many of the students in prior iterations of ESM had low self-efficacy about their ability to learn and teach science. Thus, one goal for implementing a maker project was to boost student confidence by engaging in a creative activity with a concrete product related to a science concept. Two additional goals relate to the original project from the secondary program: To introduce students to current knowledge around emerging trends in technology and science and to stimulate discussion around the value and challenges of authentic inquiry as a means for student learning and engagement. Since the act of making requires a personal commitment to the production of a product, the instructor hoped that this activity would enliven student curiosity and demonstrate the value of open-ended projects for their own elementary classrooms.

In class. As with the secondary STEM maker project, this project was framed as a culminating experience introduced near the end of the semester. Similarly, the first day of the lesson began with a video introduction to making. The lesson also included a rotating station activity with a supporting handout. Due to resource availability and focus on elementary school outcomes, the instructor modified the content of the stations. For this iteration, a paper circuits station and a bristlebot station were substituted for the Circuit Playground and Scratch stations. Emphasis was placed on exploration and play at each station and developing a sense of wonder around the materials or ideas. At the end of the class, groups shared what they noticed about the various activities in small groups and the instructor introduced the project options to the class. Students were given a choice to either: a) create a product that documented learning to use a tool or product that would demonstrate its possible usefulness in elementary science, or b) investigate an aspect of making, write a summary of the research, and create a visual product highlighting what they learned.

The second day of the lesson began with a recap of the project criteria. The criteria for this project, while open-ended to allow for authentic, personally meaningful work, included specific elements that related to state standards for elementary science, attention to safety, a projected calendar and a pre-assessment of how project goals and outcomes related to available tools, equipment, and resources to complete the work (see Appendix C). Students were given time to consider potential project options and discuss their ideas with their peers and instructor.

Out of class. Students were provided three weeks to complete the project before the culminating presentation. This timeframe included the Thanksgiving holiday and many students worked on their product at home.  During the last week of classes, the students were given an additional class day to share their projects in an unfinished state for feedback, to revise and refine their ideas, and to borrow tools from the supply cabinet for completion.

Presentation and reflection. During the final exam period, student products were set up and shared with peers and instructor in a maker exhibition. As in the secondary setting, the project presentations took place science fair style with half of the students presenting and half serving as the audience at any one time. Students also completed a written reflection discussing challenges, reiterating connections to science standards, and reflecting on lessons learned from the experience.

Insights from Project Implementation

While there was no formal data collection included as part of this project, student products and reflections from each setting provide initial insights. Figure 2 provides an overview of general insights as well as those specific to each context.

Figure 2 (Click on image to enlarge). An overview of maker project insights.

General Insights

The two contexts for maker project implementation differed significantly. However, insights emerged that were common to both settings. First, in both contexts, the preservice teachers developed a wide range of products including both high- and low-tech creations (see Appendix D). Figure 3 shows: a) a DIY water filtration system; b) an interactive neuron model; c) a series of origami swans; d) soldered paper circuit holiday cards e); a fluidized air bed; and f) an interactive model of a new “teacher” with makey makey fruit controls and related story.

Figure 3 (Click on image to enlarge). A range of student-generated maker projects.

The work produced for this project was personally connected to the interests and motivations of the makers and rooted in the students’ own lives. Second, reflections from preservice teachers in both courses indicate that, through this project, many students experienced the importance of persistence and adaptability when encountering challenges. The open-ended nature of the project turned out to be one of its most important elements as it challenged students develop an original idea and then persist and adapt to bring their idea to life. Third, in both contexts, many preservice teachers described a sense of accomplishment and enjoyment stemming from the creation and presentation of their work. Finally, students in both courses made connections between their maker experience and the process of teaching and learning. Table 2 shows comments from student reflections related to these themes.

Table 2 (Click on image to enlarge)
Student Comments From Both Maker Project Settings

Additionally, in both settings, the project encouraged some students to take making further. In the secondary setting, multiple students went on to join the maker micro-credentialing program offered by the teacher preparation program. In the elementary setting, several students completed independent projects in the area of making. For example, two students collected data, worked with university faculty and teachers at local makerspaces, and presented their findings on supporting special needs students in making at a local maker education conference.

Insights from an Introductory Secondary STEM Teacher Preparation Course

Written reflections indicate that many members of the secondary STEM teacher preparation course developed a deeper understanding of the nature of making. As an example, one student wrote that “I thought that making was all about electronics and coding but there is so much more…it generates your own creativity and interests.” Another student wrote, “Making is about putting one’s experiences and passions into a project. Making adds a sense of ownership and differentiation.” This was a first exposure to making for most students and their reflections indicate that the project helped them develop a personal conception of what it means to make.

Second, this project helped model the creation of a safe space for exploration and failure for these students. The class mantra during this project was “You can’t get it wrong” and student reflections illustrated their connection with this part of a maker mindset. For example, one student commented, “Making is about growing as an explorer. Making is not being afraid to fail! At the beginning I thought making was trivial but I now see the importance of hands on learning as a chance to really fail.”  Another student said, “During creating, I asked myself ‘Am I doing it right?’ ‘Is this fine?’ and when I was presenting I realized ‘this is totally fine, there is no right or wrong’.” This positive message about failure is not one that STEM undergraduates at large public universities often hear. Thus, for this group, the project provided an essential model for rewarding effort over the commonly prioritized final product.

Insights from an Elementary Science Methods Course

The elementary preservice teachers in the three-hour course showed increased confidence with a wide array of maker tools and equipment such as soldering irons, electronics, and woodworking equipment. The open-ended nature of the assignment allowed students in this course to make a range of high-level products, from a 2D model of a neural cell that used different colored LED’s to show how a neural impulse moves, to holiday cards, to a fluidized airbed. Reflections indicate that many students felt increased confidence with equipment related to their projects. One student commented, “I never thought I’d be able to solder, but after connecting the LED’s to the paper circuit holiday cards, I can do it!  Thanks for giving me the chance to learn this. I want to try making jewelry next.”

The students in the ESM course also made specific connections to teaching science in the elementary context. Student reflections show that they honed in on ideas of agency and engagement as central features of making that would motivate them to do projects of this kind with their future pupils. For example, one student said, “I am totally going to use making in my science classroom because it makes students take responsibility for their own learning and gives them ownership of their work.” Another student wrote, through making “you can make science fun and creative for students allowing them to take control of creating whatever they can dream of.” These reflections illustrate the potential of this project to influence the classroom instruction of these future teachers.

Finally, one unique outcome was that many members of the elementary group experienced making as an opportunity to create with friends and family. The project implementation in this setting coincided with the Thanksgiving holiday, giving many students the opportunity to work with parents or friends. For example, one student shared the specifics of her maker journey with permission.  When the project was introduced, she considered making something for her father as a holiday gift. She initially wanted to learn how to create fly-fishing flies based on her father’s love of fishing. However, the costs of buying materials were prohibitive. A chance visit to a website that showed a video demonstrating the non-Newtonian nature of a fluidized airbed then excited her to consider making her own model to demonstrate this fascinating phenomenon.  After checking that the proper equipment to make a small model was available in her family garage, she traveled home for Thanksgiving with initial instructions.  She worked with her father over the break to bring her creation to life. Like many maker projects, the initial results required refinement. Challenges included compressor issues as well as using the wrong substrate for the bed material. However, she persisted and was able to present her model at the maker exhibition with pride. The student’s build is documented in this video. It highlights her energy and enthusiasm for the work. She recently shared with Steve that she will be refining her initial attempt again, having secured a bigger compressor and better substrate.

While making is a journey that differs for each maker, many of the students in the ESM class included a significant other in their building process. This was an unexpected outcome and may have led to more collaborative and ambitious creations. This insight highlights the potential of making as a community-building endeavor.

Project Management

It should be noted that some students were challenged by the technical details and time required to produce a working product so it is important to provide extended time and to include out of class support. This might include additional office hours and partnering with more advanced students to provide technical support. Consider working with campus engineering, art, or instructional technology departments to find others willing to help with advice on construction and tool use. In addition, instructors should consult with appropriate university departments concerning risk management strategies to ensure student safety. Requiring students who plan to use equipment with potential risk in their projects (woodworking or metalworking equipment for example) to complete safety training is highly recommended. The Occupational Safety and Health Administration provides guidelines for safe hand and power tool use (OSHA, 2002).

Regular check-ins with students are also useful. Instructors implementing this type of activity might encourage students to complete weekly reflections and upload photos to document the evolution of their process. Including documentation practices of this kind models the use of electronic platforms, such as Blackboard or Canvas, now common in many school districts, as portfolio systems that can be used to capture and share the ongoing work of their K-12 pupils.

Discussion

The culminating maker project was an open-ended assignment where students were invited to: a) make an artifact related to STEM teaching; b) present their product publicly; c) reflect on their work; and d) consider classroom applications. In the process of creation and making, the students explored new digital, craft, and construction technologies and created a product of personal significance. Through making, students in the class experienced fundamental aspects of creativity, agency, persistence, and reflection.  These attributes are essential elements of 21st century learning and are traits that early-career K-12 science teachers are expected to model and train their own pupils to embody.  Furthermore, when students integrate scientific practices, disciplinary core ideas, and crosscutting concepts in the authentic products they create, then maker-centered instruction can facilitate NGSS three-dimensional learning principles in a personally meaningful way (National Research Council, n.d.).

This open-ended maker project is adaptable to varied contexts thus, the expertise and goals of the instructor or facilitator will likely shape the student experience. For example, in this project, students reflected on their growth as educators but with a different set of criteria in each setting. For the secondary students who were majoring in a STEM field, self-efficacy around science content was not an issue. Because the course was only one-credit hour, creativity and effort producing an open-ended product was emphasized. Additionally, the TA for this course was well-versed in maker-related electronics and provided extra support to students attempting novel projects with these tools. In the Elementary Science Methods course, the instructor focused on connections to science standards and building confidence in the use of basic tools, with which he had extensive experience. Thus, this project can be used to achieve a wide array of outcomes and instructors should be thoughtful about their project aims from the start, paying special attention to providing a wide range of practice, play, and examples from the maker world. Connecting to local makers, artisans, and craftsman can expand the project’s reach.

Furthermore, in both courses, equitable teaching and learning are addressed during other activities. However, because making is often situated in a privileged and gendered paradigm (Vossoughi, Hooper, & Escudé, 2016), future iterations of this activity could include an element that explicitly examines how students can negotiate the opportunities and challenges of the activity in diverse classroom settings. Explicit reflections on equity and readings on these issues as they relate to maker education would be productive additions for future iterations.

Conclusion

Tenacity in the face of adversity is a common trait among successful teachers who must evaluate and adapt their teaching to new situations on a daily basis, and who undoubtedly fail many times but use those failures to learn and grow. In the same way, this culminating maker project was scary, messy, exciting, and inspiring. While student projects rarely turned out as planned, student reflections suggest that the experience helped them to value and embrace this ill structured process. As future teachers, this maker experience may be critical in helping our newest practitioners envision a classroom space where students are personally connected to content, have ownership of their learning, are given the freedom to explore and create without fear, and are encouraged to persist in the face of challenges. In this way, including a project that addresses elements of making and fosters a maker mindset can be a valuable step toward preparing preservice teachers to bring innovative and inspirational practices to science education.

Acknowledgement

This article was developed in connection with the UTeach Maker program at The University of Texas at Austin. UTeach Maker is funded in part by a Robert Noyce Teacher Scholarship grant from the National Science Foundation (1557155). Opinions expressed in this submission are those of the authors and do not necessarily reflect the views of The National Science Foundation.

References

Bevan, B. (2017). The promise and the promises of making in science education. Studies in Science Education, 53(1), 75-103. doi:10.1080/03057267.2016.1275380

Clapp, E. P., Ross, J., Ryan, J. O., & Tishman, S. (2016). Maker-centered learning: Empowering young people to shape their worlds. San Francisco, CA: Jossey-Bass

Cohen, J. (2017). Maker principles and technologies in teacher education: A national survey. Journal of Technology in Teacher Education, 25(1), 5-30. Retrieved from https://www.learntechlib.org/p/172304

Fields, D. A., Kafai, Y., Nakajima, T., Goode, J., & Margolis, J. (2018). Putting making into high school computer science classrooms: Promoting equity in teaching and learning with electronic textiles in exploring computer science, Equity & Excellence in Education, 51(1), 21-35. doi:10.1080/10665684.2018.1436998

Halverson, E. R., & Sheridan, K. M. (2014). The maker movement in education. Harvard Educational Review, 84, 495-504. doi:10.17763/haer.84.4.34j1g68140382063

High Quality Project Based Learning (HQPBL) (2018). A framework for high quality project based learning. Retrieved from https://hqpbl.org/wp-content/uploads/2018/03/FrameworkforHQPBL.pdf

Make. (March 30, 2016). What is a maker? [Video file]. Retrieved from https://www.youtube.com/watch?v=rUoZwuSDikY

Maker Education Initiative (n.d.). Approach. Retrieved from http://makered.org/about-us/approach/

Martin, L. (2015). The promise of the maker movement for education. Journal of Pre-College Engineering Education Research, 5(1), 30-39. doi:10.7771/2157-9288.1099

Menon, D., & Sadler, T. D. (2016).  Preservice elementary teachers’ science self-efficacy beliefs and science content knowledge.  Journal of Science Teacher Education, 27, 649-673.  doi:10.1007/s10972-016-9479-y

National Research Council (NRC). (n.d.). Three Dimensional Learning. Retrieved from https://www.nextgenscience.org/three-dimensions

National Science Foundation (NSF). (2017). The National Science Foundation and making. Retrieved from https://www.nsf.gov/news/news_summ.jsp?cntn_id=131770

National Science Teacher Association (NSTA). (2013). Science and engineering practices. Arlington, VA: Achieve, Inc. Retrieved from http://static.nsta.org/ngss/MatrixOfScienceAndEngineeringPractices.pdf

Papert, S. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.), Constructionism (pp. 1-11). Norwood, NJ: Ablex Publishing Corporation.

Peppler, K., Halverson, E., & Kafai, Y. B. (2016). Chapter 1: Introduction to this volume. In K. Peppler, E. Halverson, & Y. B. Kafai (Eds.), Makeology: Makerspaces as learning environments (Vol. 1, pp. 1-11). New York, NY: Routledge.

Rice, D. C., & Roychoudhury, A. (2003). Preparing more confident preservice elementary science teachers: One elementary science methods teacher’s self-study. Journal of Science Teacher Education, 14, 97–126. doi:10.1023/A:1023658028085

Rodriguez, S., Harron, J., Fletcher, S., & Spock, H. (2018). Elements of making: A framework to support making in the science classroom. The Science Teacher, 85(2), 24-30.

Rodriguez, S. R., Harron, J. R., & DeGraff, M. W. (2018). UTeach Maker: A micro-credentialing program for preservice teachers. Journal of Digital Learning in Teacher Education, 34(1), 6-17. doi:10.1080/21532974.2017.1387830

Qi, J., & Buechley, L. (2010, January). Electronic popables: Exploring paper-based computing through an interactive pop-up book. In Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction (pp. 121-128). ACM.

Qi, J., & Buechley, L. (2014, April). Sketching in circuits: Designing and building electronics on paper. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1713-1722). ACM.

Stager, G., and Martinez, S. L. (2013). Invent to learn: Making, tinkering, and engineering in the classroom. Torrance, CA: Constructing Modern Knowledge Press.

Tofel-Grehl, C., Fields, D., Searle, K., Maahs-Fladung, C., Feldon, D., Gu, G., & Sun, C. (2017). Electrifying engagement in middle school science class: Improving student interest through e-textiles. Journal of Science Education and Technology26, 406-417.

Vossoughi, S., Hooper, P. K., & Escudé, M. (2016). Making through the lens of culture and power: Toward transformative visions for educational equity. Harvard Educational Review86, 206-232. doi:10.17763/0017-8055.86.2.206

Windschitl, M. (2003). Inquiry projects in science teacher education: What can investigative experiences reveal about teacher thinking and eventual classroom practice?. Science education, 87(1), 112-143. doi:10.1002/sce.10044

Yoon, S., Pedretti, E., Pedretti, L., Hewitt, J., Perris, K., & Van Oostveen, R. (2006). Exploring the use of cases and case methods in influencing elementary preservice science teachers’ self-efficacy beliefs. Journal of Science Teacher Education, 17, 15–35. doi:10.1007/s10972-005-9005-0

 

Piloting an Adaptive Learning Platform with Elementary/Middle Science Methods

Citation
Print Friendly, PDF & Email

Vick M.E. (2019). Piloting an adaptive learning platform with elementary/middle science methods. Innovations in Science Teacher Education, 4(4). Retrieved from https://innovations.theaste.org/piloting-an-adaptive-learning-platform-with-elementary-middle-science-methods/

by Matthew E. Vick, University of Wisconsin-Whitewater

Abstract

Adaptive learning allows students to learn in customized, non-linear pathways. Students demonstrate prior knowledge and thus focus their learning on challenging content. They are continually assessed with low stakes questions allowing for identification of content mastery levels. A science methods course for preservice teachers piloted the use of adaptive learning. Design and implementation are described. Instructors need to realistically consider the time required to redesign a course in an adaptive learning system and to develop varied and numerous assessment questions. Overall, students had positive feelings toward the use of adaptive learning. Their mastery levels were not as high as anticipated by the instructor. The student outcomes on their summative assessment did not show high levels of transfer of the key content.

Keywords: Adaptive Learning, Science Methods, Pedagogy, Course Design

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Anderson, P. (n.d.).  Bozeman Science. Retrieved from http://www.bozemanscience.com/next-generation-science-standards/

Bybee, R. (2002). Learning science and the science of learning.  Arlington, VA: NSTA Press.

Chen, B, Bastedo, K., Kirkley, D., Stull, C., & Tojo, J. (2017, August). Designing personalized adaptive learning courses at the University of Central Florida.  Educause Learning Initiative. Retrieved from https://library.educause.edu/resources/2017/8/designing-personalized-adaptive-learning-courses-at-the-university-of-central-florida

Dziuban, C. Howlin, C., Johnson, C., & Moskal, P. (2017, December, 18). An adaptive learning partnership.  EDUCAUSE Review. Retrieved from https://er.educause.edu/articles/2017/12/an-adaptive-learning-partnership

Dziuban, C.D., Moskal, P.D., Cassisi, J., & Fawcett, A.  (2016, September). Adaptive learning in psychology: Wayfinding in the digital age. Online Learning, 3, 74-96.

Dziuban, C.D., Moskla, P.D., & Hartman, J. (2016, September 30). Adapting to learn, learning to adapt.  Research bulletin. Louisville, CO: ECAR.

Educause Learning Initiative (ELI). (2017, January). 7 Things You Should Know About Adaptive Learning. Retrieved from https://library.educause.edu/resources/2017/1/7-things-you-should-know-about-adaptive-learning

Eisenkraft, A. (2003). Expanding the 5E model. The Science Teacher 70(6), 39-72.

Feldman, M. (2013, December 17). What faculty should know about adaptive learning. e-Literate blog. Retrieved from https://mfeldstein.com/faculty-know-adaptive-learning/

Haysom, J., & Bowen, M. (2010). Predict, observe, explain: Activities enhancing scientific understanding. Arlington, VA: NSTA Press.

Howlin, C., & Lunch, D. (2014). A framework for the delivery of personalized adaptive content.  In 2014 International Conference on Web and Open Access to Learning (ICWOAL): 1-5. Retreieved from http://realizeitlearning.com/papers/FrameworkPersonalizedAdaptiveContent.pdf

Konicek-Moran, R., & Keeley, P. (2015). Teaching for conceptual understanding in science.  Arlington, VA:  NSTA Press.

NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

Ogle, D.M. 1986.  K-W-L:  A teaching model that develops active reading of expository text. The Reading Teacher, 39, 564-570.

Posner, G.J., Strike, K.A., Hewson, P.W., & Gertzog, W.A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66, 211-227.

Richhart, R., Church, M., & Morrison, K. (2011). Making thinking visible: how to promote engagement, understanding, and independence for all learners. San Francisco, CA: Jossey-Bass.

Sloan, A. & Anderson, L. (2018, June 18). Adaptive learning unplugged: Why instructors matter more than ever. EDUCASE Review. Retrieved from https://er.educause.edu/articles/2018/6/adaptive-learning-unplugged-why-instructors-matter-more-than-ever

Wiggins, G. P.,  & McTighe, J. (2005). Understanding by design, 2nd edition. Alexandria, VA:  ASCD.

 

Lessons Learned from Going Global: Infusing Classroom-based Global Collaboration (CBGC) into STEM Preservice Teacher Preparation

Citation
Print Friendly, PDF & Email

York, M. K., Hite, R., & Donaldson, K. (2019). Lessons learned from going global: Infusing classroom-based global collaboration (CBGC) into STEM preservice teacher preparation. Retrieved from https://innovations.theaste.org/lessons-learned-from-going-global-infusing-classroom-based-global-collaboration-cbgc-into-stem-preservice-teacher-preparation/

by M. Kate York, The University of Texas at Dallas; Rebecca Hite, Texas Tech University; & Katie Donaldson, The University of Texas at Dallas

Abstract

There are many affordances of integrating classroom-based global collaboration (CBGC) experiences into the K-12 STEM classroom, yet few opportunities for STEM preservice teachers (PST) to participate in these strategies during their teacher preparation program (TPP). We describe the experiences of 12 STEM PSTs enrolled in a CBGC-enhanced course in a TPP. PSTs participated in one limited communication CBGC (using mathematics content to make origami for a global audience), two sustained engaged CBGCs (with STEM PSTs and in-service graduate students at universities in Belarus and South Korea), and an individual capstone CBGC-infused project-based learning (PBL) project. Participating STEM PSTs reported positive outcomes for themselves as teachers in their 21st century skills development and increased pedagogical content knowledge. Participants also discussed potential benefits for their students in cultural understanding and open-mindedness. Implementation of each of these CBGCs in the STEM PST course, as well as STEM PST instructors’ reactions and thoughts, are discussed.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

ACER Research Conference, Melbourne. Retrieved from http://research.acer.edu.au/cgi/viewcontent.cgi?article=1003&context=research_conference_2003

Aydarova, E., & Marquardt, S. K. (2016). The global imperative for teacher education: Opportunities for comparative and international education. FIRE: Forum for International Research in Education, 3(1), 23-40.

Boss, S. (2016, November 8). How are you helping your students become global citizens [Web log post]. Retrieved from https://www.edutopia.org/blog/how-are-you-helping-your-students-become-global-citizens-suzie-boss

Brown, G. S. (2014, March 21). “It’s a Small World:” 9 little-known facts. ABC News. Retrieved from http://abcnews.go.com/Travel/disneys-small-world-facts/story?id=22990670

Clement, M. C., & Outlaw, M. E. (2002). Student teaching abroad: Learning about teaching, culture, and self. Kappa Delta Pi Record, 38, 180-183.

Cogan, J. J., & Grossman, D. L. (2010). Characteristics of globally minded teachers: A twenty-first century view. In T. Kirkwood-Tucker (Ed.), Visions in global education: The globalization of curriculum and pedagogy in teacher education and schools (pp. 240-255). New York, NY: Peter Lang.

Collins, M. (2015, May). The pros and cons of globalization. Forbes. Retrieved from https://www.forbes.com/sites/mikecollins/2015/05/06/the-pros-and-cons-of-globalization/#230354a5ccce      

Cummins, J., & Sayers, D. (1997). Brave new schools: Challenging cultural illiteracy through global learning networks. New York, NY: St. Martin’s Press.

Dede, C. (2009). Comparing frameworks for 21st century skills. Retrieved from http://sttechnology.pbworks.com/

Derman-Sparks, L. (1995). How well are we nurturing racial and ethnic diversity. In Levine, R. Lowe, B. Peterson, & R. Tenorio (Eds.), Rethinking schools: An agenda for change (pp. 17-22). New York, NY: The New Press.

Fang, Y., & Gopinathan, S. (2009). Teachers and teaching in Eastern and Western schools: A critical review of cross-cultural comparative studies. In L. J. Saha & G. Dworkin (Eds.), International handbook of research on teachers and teaching (pp. 557–572). New York, NY: Springer.

Geer, R. (2000). Drivers for successful student learning through collaborative interactivity in internet-based courses. Paper presented at the Society for Information Technology and Teacher Education International Conference, San Diego, CA.

Gibson, K. L., Rimmington, G. M., & Landwehr-Brown, M. (2008). Developing global awareness and responsible world citizenship with global learning. Roeper Review, 30(1), 11-23.

Hattie, J. (2003). Teachers make a difference: What is the research evidence. Paper presented at the Building Teacher Quality: What Does the Research Tell Us

Higley, M. (2013). Benefits of synchronous and asynchronous e-Learning. E-learning Industry, 23, 42.

Holm, M. (2011). Project-based instruction: A review of the literature on effectiveness in prekindergarten through 12th grade classrooms. Rivier Academic Journal, 7(2), 1-13.

Hrastinski, S. (2008). Asynchronous and synchronous e-learning. Educause Quarterly, 31(4), 51-55.

iEARN. (n.d.a).  Origami Project.  Retrieved from https://iearn.org/cc/space-2/group-129

iEARN. (n.d.b).  Project for Future Teachers – Knowing Our Students; Knowing Ourselves. Retrieved from https://iearn.org/cc/space-10/group-77

International Society for Technology in Education (ISTE). (2008). ISTE standards for teachers. Retrieved from http://www.iste.org/standards/standards/standards-for-teachers

Kambutu, J., & Nganga, L. W. (2008). In these uncertain times: Educators build cultural awareness through planned international experiences. Teaching and Teacher Education, 24, 939-951.

Kerlin, S. C. (2009). Global learning communities: Science classrooms without walls (Doctoral dissertation). Retrieved from ProQuest Dissertations and Theses. (3380932)

Klein, J. D. (2017). The global education guidebook: Humanizing K-12 classrooms worldwide through equitable partnerships. Bloomington, IN: Solution Tree.

Krajcik, J. S., & Czerniak, C. M. (2014). Teaching science in elementary and middle school: A project-based approach. New York, NY: Routledge.

Langer, E. (2012, March 7). Disney composer penned “It’s a Small World.” The Washington Post. Retrieved from https://www.washingtonpost.com/local/obituaries/disney-composer-penned-its-a-small-world/2012/03/06/gIQAik3txR_story.html?utm_term=.cf6c574f0d5f

Larmer, J., & Mergendoller, J. R. (2010). Seven essentials for project-based learning. Educational Leadership, 68(1), 34-37.

Lindsay, J., & Davis, V. (2013). Flattening classrooms, engaging minds: Move to global collaboration one step at a time. New York, NY: Pearson.

Lyon, G. E. (1999). Where I’m from: Where poems come from. Spring, TX: Absey & Company.

Markham, T. (2011). Project-based learning: A bridge just far enough. Teacher Librarian, 39(2), 38-42.

Meyer, X., & Crawford, B. A. (2011). Teaching science as a cultural way of knowing: Merging authentic inquiry, nature of science, and multicultural strategies. Cultural Studies of Science Education, 6, 525-547.

National Center for Education Statistics (NCES). (2016). Racial/ethnic enrollment in public schools. Retrieved from https://nces.ed.gov/programs/coe/indicator_cge.asp

National Science Teachers Association (NSTA). (2009). International science education andthe National Science Teachers Association. Retrieved from http://www.nsta.org/about/positions/international.aspx

Nugent, J., Smith, W., Cook, L., & Bell, M. (2015). 21st century citizen science: From global awareness to global contribution. The Science Teacher, 82(8), 34-38.

Partnership for 21st  Century Learning – A Network of Battelle for Kids (P21). (2019). Retrieved from http://www.battelleforkids.org/networks/p21/frameworks-resources

PBLWorks. (2012). What should global PBL look like?  Retrieved from http://www.bie.org/blog/what_should_global_pbl_look_likePence, H. M., & Macgillivray, I. K. (2008). The impact of an international field experience on preservice teachers. Teaching and Teacher Education, 24(1), 14-25.

Reimers, F. M. (2009). Leading for global competency. Educational Leadership, 67(1). Retrieved from http://www.ascd.org/publications/educational-leadership/sept09/vol67/num01/Leading-for-Global-Competency.aspx

Richards, J. (2012, March 13). It’s an annoying song (after all). The Atlantic. Retrieved from https://www.theatlantic.com/entertainment/archive/2012/03/its-an-annoying-song-after-all/254429/

Riel, M. (1994). Cross-classroom collaboration in global Learning Circles. The Sociological Review, 42, 219–242.

Sherman, R. B., & Sherman, R. M. (1963). It’s a small world (Theme from the Disneyland and Walt Disney World attraction, “It’s a small world”). Wonderland Music Co., Inc.

Soland, J., Hamilton, L. S., & Stecher, B. M. (2013). Measuring 21st century competencies: Guidance for educators. Retrieved from Asia Society website: https://asiasociety.org/files/gcen-measuring21cskills.pdf

Thomas, J. W. (2000). A review of research on project-based learning. Retrieved from http://www.bobpearlman.org/BestPractices/PBL_Research.pdf

United States Census Bureau. (2016). School enrollment in the United States: 2015. Retrieved from https://www.census.gov/data/tables/2017/demo/school-enrollment/2017-cps.html

Uro, G., & Barrio, A. (2013). English language learners in America’s great city schools: Demographics, achievement, and staffing. Retrieved from   http://files.eric.ed.gov/fulltext/ED543305.pdf

Walters, L. M., Garii, B., & Walters, T. (2009). Learning globally, teaching locally: Incorporating international exchange and intercultural learning into pre-service teacher training. Intercultural Education, 20(sup1), S151-S158.

World Savvy. (2018). What is Global Competence?  Retrieved from http://www.worldsavvy.org/global-competence/

York, M. K. (2017). Going global: Exploring the behavioral intent of STEM pre-service teachers in a global collaboration focused teacher preparation course (Doctoral dissertation). Retrieved from https://ttu-ir.tdl.org/handle/2346/73486

Zong, G. (2009). Global perspectives in teacher education research and practice. In T. Kirkwood-Tucker (Ed.), Visions in global education: The globalization of curriculum and pedagogy in teacher education and schools (pp. 71-89). New York, NY: Peter Lang.

 

Scaffolding Preservice Science Teacher Learning of Effective English Learner Instruction: A Principle-Based Lesson Cycle

Citation
Print Friendly, PDF & Email

Roberts, S.A., & Bianchini, J.A. (2019). Scaffolding preservice science teacher learning of effective english learner instruction: A principle-based lesson cycle. Innovations in Science Teacher Education, 4(3). Retrieved from https://innovations.theaste.org/scaffolding-preservice-science-teacher-learning-of-effective-english-learner-instruction-a-principle-based-lesson-cycle/

by Sarah A. Roberts, University of California, Santa Barbara; & Julie A. Bianchini, University of California, Santa Barbara

Abstract

This paper examines a lesson development, implementation, revision, and reflection cycle used to support preservice secondary science teachers in learning to teach English learners (ELs) effectively. We begin with a discussion of our framework for teaching reform-based science to ELs – four principles of effective EL instruction and three levels of language – that shaped both our science methods course, more generally, and the lesson cycle, in particular. We then present a model lesson implemented in the methods course that highlighted these principles and levels for our preservice teachers. Next, we describe how preservice teachers used their participation in and analysis of this model lesson as a starting point to develop their own lessons, engaging in a process of development, implementation, revision, and reflection around our EL principles and language levels. We close with a description of our course innovation, viewed through the lens of the preservice teachers. We attempt to provide practical insight into how other science teacher educators can better support their preservice teachers in effectively teaching ELs.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Aguirre, J. M. & Bunch, G. C. (2012). What’s language got to do with it?: Identifying language demands in mathematics instruction for English language learners. In S. Celedón-Pattichis & N. Ramirez (Eds.), Beyond good teaching: Advancing mathematics education for ELLs. (pp. 183-194). Reston, VA: National Council of Teachers of Mathematics.

Bleicher, R. E., Tobin, K. G., & McRobbie, C. J. (2003). Opportunities to talk science in a high school chemistry classroom. Research in Science Education, 33, 319-339. doi:10.1023/A:1025480311414

Bravo, M. A., Mosqueda, E., Solís, J. L., & Stoddart, T. (2014). Possibilities and limits of integrating science and diversity education in preservice elementary teacher preparation. Journal of Science Teacher Education, 25, 601-619. doi:10.1007/s10972-013-9374-8

Buck, G., Mast, C., Ehlers, N., & Franklin, E. (2005). Preparing teachers to create a mainstream science classroom conducive to the needs of English-language learners: A feminist action research project. Journal of Research in Science Teaching, 42, 1013–1031. doi:10.1002/tea.20085

Bunch, G. C. (2014). The language of ideas and the language of display: Reconceptualizing academic language in linguistically diverse classrooms. International Multilingual Research Journal, 8(1), 70-86. https://doi.org/10.1080/19313152.2014.852431

Calabrese Barton, A., & Tan, E. (2018). Teacher learning and practices toward equitably consequential science education. In H. Kang (Chair), Pre-service science teacher education symposium: Re-framing problems of practice in preparing new science teachers for equity in the NGSS era. Symposium conducted at the meeting of the National Association for Research in Science Teaching, Atlanta, GA.

Cohen, E. G., & Lotan, R. (2014). Designing groupwork: Strategies for the heterogeneous classroom (3rd ed.). New York, NY: Teachers College.

Dutro, S., & Moran, C. (2003). Rethinking English language instruction: An architectural approach. In G. Garcia (Ed.), English learners: Reaching the highest level of English literacy (pp. 227-258). Newark, DE: International Reading Association.

Fang, Z. (2005). Scientific literacy: A systemic functional linguistics perspective. Science Education, 89, 335–347. doi:10.1002/sce.20050

Goldenberg, C. (2008). Teaching English language learners: What the research does – and does not – say. American Educator, 32, 8-23, 42-44.

Iddings, A. C. D. (2005). Linguistic access and participation: English language learners in an English-dominant community of practice. Bilingual Research Journal, 29, 165-183. http://dx.doi.org/10.1080/15235882.2005.10162829

Johnson, C. C., Bolshakova, V. L. J., & Waldron, T. (2016). When good intentions and reality meet: Large-scale reform of science teaching in urban schools with predominantly Latino ELL students. Urban Education, 51, 476-513. doi:10.1177/0042085914543114

Khisty, L. L., & Chval, K. B. (2002). Pedagogic discourse and equity in mathematics: When teachers’ talk matters. Mathematics Education Research Journal, 14, 154-168. doi:10.1007/BF03217360

Lee, O., & Buxton, C. A. (2013). Teacher professional development to improve science and literacy achievement of English language learners. Theory Into Practice, 52, 110-117. http://dx.doi.org/10.1080/00405841.2013.770328

Lee, O., Deaktor, R., Enders, C., & Lambert, J. (2008). Impact of a multiyear professional development intervention on science achievement of culturally and linguistically diverse elementary students. Journal of Research in Science Teaching45, 726-747. doi:10.1002/tea.20231

Lee, O., Quinn, H., & Valdés, G. (2013). Science and language for English language learners in relation to Next Generation Science Standards and with implications for Common Core State Standards for English Language Arts and Mathematics. Educational Researcher, 42, 223-233. doi:10.3102/0013189X13480524

Lyon, E. G., Tolbert, S., Stoddart, P., Solis, J., & Bunch, G. C. (2016). Secondary science teaching for English learners: Developing supportive and responsive learning contexts for sense-making and language development. New York, NY: Rowman & Littlefield.

Moll, L. C., Amanti, C., Neff, D., & Gonzalez, N. (1992). Funds of knowledge for teaching: Using a qualitative approach to connect homes and schools. Theory into Practice, 31, 132-141. http://dx.doi.org/10.1080/00405849209543534

Moschkovich, J. (2002). A situated and sociocultural perspective on bilingual mathematics learners. Mathematical Thinking and Learning, 4, 189-212. http://dx.doi.org/10.1207/S15327833MTL04023_5

Moschkovich, J. (2007). Using two languages when learning mathematics. Educational Studies in Mathematics, 64, 121-144. doi:10.1007/s10649-005-9005-1

National Clearinghouse for English Language Acquisition. (2009). How has the limited English proficient student population changed in recent years? Washington, DC: NCELA. Retrieved from http://www.ncela.us/files/rcd/BE021773/How_Has_The_Limited_English.pdf

NGSS Lead States. (2013). Next generation science standards: For states, by states. Retrieved from http://www.nextgenscience.org/next-generation-science-standards

National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, D.C.: National Academies Press.

National School Reform Faculty. (2014). ATLAS: Learning from student work. Retrieved from https://www.nsrfharmony.org/system/files/protocols/atlas_lfsw_0.pdf

Planas, N., & Gorgorió, N. (2004). Are different students expected to learn norms differently in the mathematics classroom? Mathematics Education Research Journal, 16, 19-40. doi:10.1007/BF03217389

Quinn, H., Lee, O., & Valdés, G. (2012). Language demands and opportunities in relation to next generation science standards for English language learners: What teachers need to know. Retrieved from http://ell.stanford.edu/publication/language-demands-and-opportunities-relation-next-generation-science-standards-ells

Richardson Bruna, K., Vann, R., & Escudero, M. P. (2007). What’s language got to do with it?: A case study of academic language instruction in a high school “English learner science” class. Journal of English for Academic Purposes, 6(1), 36-54.

Roberts, S. A., Bianchini, J. A., Lee, J. S., Hough, S., & Carpenter, S. (2017). Developing an adaptive disposition for supporting English language learners in science: A capstone science methods course. In A. Oliveira & M. Weinburgh (Eds.), Science Teacher Preparation in Content-Based Second Language Acquisition (pp. 79-96). Columbus, OH: Association of Science Teacher Educators.

Rosebery, A. S., & Warren, B. (Eds.). (2008). Teaching science to English language learners: Building on students’ strengths. Arlington, VA: NSTA Press.

Schleppegrell, M. J. (2004). The language of schooling: A functional linguistics perspective. Mahwah, NJ: Lawrence Erlbaum Associates.

Tekkumru‐Kisa, M., Stein, M. K., & Schunn, C. (2015). A framework for analyzing cognitive demand and content‐practices integration: Task analysis guide in science. Journal of Research in Science Teaching52, 659-685. doi:10.1002/tea.21208

Tobin, K. G., & Kahle, J. B. (1990). Windows into science classrooms: Problems associated with higher-level cognitive learning. Bristol, PA: The Falmer Press, Taylor & Francis Group.

Understanding Language. (2013). Six key principles for ELL instruction. Retrieved from Stanford University, Graduate School of Education, Understanding Language website http://ell.stanford.edu/content/six-key-principles-ell-instruction

Warnock, A., Berkowitz, A., Blank, B., Cano, A., Caplan, B., Covitt, B., . . . Whitmer, A. (2012). School water pathways. Retrieved from http://www.pathwaysproject.kbs.msu.edu/?page_id=49

Windschitl, M., Thompson, J., & Braaten, M. (2018). Ambitious science teaching. Cambridge, MA: Harvard University.

Zwiers, J., O’Hara, S., & Pritchard, R. (2014). Essential practices for developing academic language and disciplinary literacy. Portland, ME: Stenhouse Publishers.

 

The Great Ice Investigation: Preparing Pre-Service Elementary Teachers for a Sensemaking Approach of Science Instruction

Citation
Print Friendly, PDF & Email

McFadden, J.R. (2019). The great ice investigation: Preparing preservice elementary teachers for a sensemaking approach of science instruction. Innovations in Science Teacher Education, 4(3). Retrieved from https://innovations.theaste.org/the-great-ice-investigation-preparing-pre-service-elementary-teachers-for-a-sensemaking-approach-of-science-instruction/

by Justin R. McFadden, University of Louisville

Abstract

The current article describes a sequence of lessons, readings, and resources aimed to prepare elementary preservice teachers for science instruction wherein student sensemaking, rather than vocabulary memorization, is prioritized. Within the article, I describe how the prompts, questions, and logistics of the The Great Ice Investigation drive my students’ in-class and out-of-class learning to start out every science methods course I teach. The readings and resources detailed that compliment the Great Ice Investigation should benefit both preservice as well as in-service elementary teachers just beginning to align their instruction with the Next Generation Science Standards. The lessons, readings, and resources described should be of value to science teacher educators looking to modify and improve how they prepare their students for next generation science instruction.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Tretter, T. & McFadden, J. (2018). Modeling structure and properties of matter: People as particles. Science and Children, 56(4), 67-73.Tretter, T. & McFadden, J. (2018). Modeling Structure and Properties of Matter: People as Particles. Science and Children, 56(4), 67-73.

Bybee, R. W. (2013). Using the 5E Model to Implement the NGSS: Translating the NGSS for classroom instruction. NSTA Press, National Science Teachers Association.

Bybee, R. W. (2014). The BSCS 5E instructional model: Personal reflections and contemporary implications. Science and Children, 51(8), 10-13.

Duncan R., Krajcik, J., & Rivet, A. (2016). Disciplinary Core Ideas: Reshaping Teaching and Learning. NTSA Press, National Science Teachers Association. ISBN: 978-1-938946-41-7.

Duncan, R. G., & Cavera, V. L. (2015). DCIs, SEPs, and CCs, oh my!: Understanding the three dimensions of the NGSS. The Science Teacher, 82(7), 67.

Harlen, W. (2015). Teaching Science for Understanding in Elementary and Middle Schools. Heinemann: Portsmouth, NH. ISBN: 978-0-325-06159-7.

Metz, K. (2008). Narrowing the gulf between the practices of science and the elementary school classroom. Elementary School Journal, 109, 138–161.

Moscovici, H., & Nelson, T. H. (1998). Shifting from activitymania to inquiry. Science and Children, 35(4), 14.

National Research Council. (2012) A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

NGSS Lead States. 2013. Next Generation Science Standards: For states, by states. Washington, DC: National Academies Press. www.nextgenscience.org/ next-generation-science-standards.

Penuel, W., Van Horne, K. & Bell, P. (2016). Steps to designing a three-dimensional assessment. Downloaded from: http://stemteachingtools.org/assets/landscapes/STEM-Teaching-Tool-29-Steps-to-Designing-3D-Assessments.pdf

Reiser, B., Brody, L., Novak, M., Tipton, K., Adams, L. (2017).  Asking questions. In Schwarz, C. V., Passmore, C., & Reiser, B. J. (Eds.), Helping students make sense of the world using next generation science and engineering practices. (p. 87-108). NSTA Press.

Van Zee, E. H., & Roberts, D. (2001). Using pedagogical inquiries as a basis for learning to teach: Prospective teachers’ reflections upon positive science learning experiences. Science Education, 85(6), 733-757.

 

 

Learning About Science Practices: Concurrent Reflection on Classroom Investigations and Scientific Works

Citation
Print Friendly, PDF & Email

Basir, M.A. (2019). Learning about science practices: Concurrent reflection on classroom investigations and scientific works. Innovations is Science Teacher Education, 4(2). Retrieved from https://innovations.theaste.org/learning-about-science-practices-concurrent-reflection-on-classroom-investigations-and-scientific-works/

by Mo A. Basir, University of Central Missouri

Abstract

The NRC (2012) emphasizes eight science practices as a constitutive part of science teaching and learning. Pre-service teachers should be able to perform those practices at least in an introductory-level science investigation. Additionally, they also need to be able to elicit and interpret those science practices in the work of students. Through the integration of doing science and reading about how scientists do science, this article provides a practical teaching approach encouraging critical thinking about science practices. The instructional approach emphasizes on performing science practices, explicitly thinking about how students and scientists do science, and reflecting on similarities and differences between how students and scientists perform science practices. The article provides examples and tools for the proposed instructional approach.

Introduction

What if science teachers had a scientist friend who invited them to go with her on a scientific expedition? Wouldn’t it be interesting and exciting? What would they learn during the trip? After returning from the scientific adventure, what could they tell their students about their firsthand experiences? Don’t you think that what they would learn during the field trip could help them make science exciting and accessible to students? Even though such a thrilling experience may not occur for every educator, books about the lives and activities of scientists can take science teachers on a similar trip. Texts about scientists and their research can describe how a scientist becomes engaged with a topic of her/his study, wonders about a set of complicated questions, and devotes her/his life to these issues. This article is intended to illustrate how we could integrate these kinds of texts into inquiry-oriented lessons and how they can increase the effectiveness of the science methods or introductory science courses.

Learning about real scientific and engineering projects can help students develop an understanding of what scientists do. In science textbooks, most of the time students encounter exciting and well-established scientific facts and concepts generated by the science community, but rarely read and learn about how scientists work or generate new knowledge in science (Driver, Leach, & Millar, 1996). Helping students learn scientific practices, science teachers/educators often utilizes inquiry-oriented lessons. The National Research Council (NRC) has defined K-12 science classrooms as places in which students perform science and engineering practices while utilizing crosscutting concepts and disciplinary core ideas (2012). One of the conventional approaches to meet such expectations is to develop a series of model lessons that involve and engage students in some science investigations.

Some years ago, I started a methods course beginning with these ideas and collected data investigating any changes in classroom discourses (Basir, 2014). Results of that qualitative study revealed no significant change in classroom discourse regarding science and engineering practices. Analysis of the results revealed a list of common patterns and challenges about student learning in the courses. My students had vague ideas about what it means to develop and use a model, make a hypothesis, and construct a science argument. Analysis of their reflections also revealed that the keywords associated with the eight science practices (see Appendix I) were not traceable in their written discourses about their science investigations; they had difficulties recognizing those eight practices in their science inquiry. Trying to resolve these challenges was my motive to revise this methods course. In the following, I first describe how the wisdom of practice in science education helped me develop an idea to change the course and how that idea transformed into an instructional strategy. Then, I use examples to illustrate results of this instructional strategy. The presented instructional approach aids students using NGSS framework accurately when they reflect on their science practices and consequently learn science practices more effectively. Hopefully, this could have a positive effect on their science teaching.

Framework

The apprenticeship model (getting engaged in science inquiry while being coached by a master teacher) has been emphasized as a practical and useful approach for learning and teaching science since decades ago (e.g., NRC, 2000). NRC (2000) defined science inquiry by introducing a set of abilities for a process of science inquiry and NRC (2012) has placed more emphasis on those abilities and call them the eight science practices (see Appendix I for the comparison between the set of abilities and the eight science practices). The eight science practices as defined by NRC (2012) and those abilities for science inquiry as defined by NRC (2000) are very similar. However, as Osborne (2014) asked, in what sense the notion of inquiry as defined by NRC (2000) differs from the science practices defined by NRC (2012). One reason, among others, is about the call for more transparency on the articulation of what classroom science inquiry is or what students need to experience during an inquiry-oriented lesson (Osborne, 2014). Aiming to develop such transparency in methods courses for prospective teachers, we may need to consider some complementary instruction to the apprenticeship model. This means that while teachers and students follow the apprenticeship model of teaching and learning, they need to become more conscious about and cognizant of science practices. As a complement to the apprenticeship model of instruction, to some extent, many instructional methods can help students learn science investigations by learning about history and/or nature of science (Burgin & Sadler, 2016; Erduran & Dagher, 2014; McComas, Clough, & Almazroa, 2002; Schwartz, Lederman, & Crawford, 2004), refining their investigative skills (e.g., Hackling & Garnett, 1992; Foulds & Rowe, 1996), conducting context-based science investigation using local newspapers or local environmental issues (e.g., Barab & Luehmann, 2003; Kuhn & Müller, 2014 ), and becoming cognizant of what/how they do science (e.g., Smith & Scharmann,2008).

In the context of higher education, active learning as an instructional approach provides multiple opportunities for students to initially do activities during class and subsequently analyze, synthesize, evaluate, and reflect on what they did during those activities (Bonwell & Eison, 1991). This latter aspect of active learning, critical thinking, plays a significant role in the effectiveness of teaching (Cherney, 2008; Bleske-Rechek, 2002; Smith & Cardaciotto, 2011) and usually is a missing component in the mentioned context. Unlike the regular introductory university-level science courses, in the context of science teacher preparation, it is a common practice to ask students to write a reflection about what/how they do activities. What has been less emphasized in this context is to provide a framework and benchmark helping students to systematically reflect on their science investigation (Ellis, Carette, Anseel, & Lievens, 2014).

The stories or case studies about how actual scientists do science can function as a benchmark for students who do classroom science investigations. Comparing an authentic science study with a student-level science project can make students aware of possible deficiencies and missing components in their classroom inquiry. Presumably inspired by medical science, case study teaching approaches have been utilized for teaching science (Herried, 2015; Tichenor 2013) and showing promising effects on student learning (Bonney, 2015; Tichenor, 2013). Specifically, science educators have developed many case studies for how to teach science—many of these cases related to science methods are available at National Center for Case Study Teaching in Science (NCCSTS; http://sciencecases.lib.buffalo.edu/cs/).

In this paper, I describe how particular kinds of case studies, the stories of contemporary scientists and their projects, can be used as a complementary teaching component to inquiry-oriented instruction. The objective is to provide an environment in which students could see the “sameness and difference” (Marton, 2006) between what they do and what scientists do. They could use the stories about actual science investigations as a benchmark for reflecting on what they do in the science classroom.

Concurrent Reflections as an Instructional Strategy

Drawing on the reviewed literature, I developed a three-phase instructional approach (Figure 1). In each phase of the instruction, students are assigned with specific task and concurrently reflect on that task. In the first phase, students have multiple opportunities to do science investigations, compare and contrast how they did across the small groups, recognize and interpret the eight science practices in their work, and document their reflection about how they do science on the offered template (Figure 2). This activity helps students conceptualize the eight practices implicitly embedded in those inquiry-oriented lessons. In the second phase, students read and reflect on a case study (i.e., a book about a scientist and her/his project). By reading about scientists and scientific projects, students have the opportunities to discern first-hand instances of the eight science practices. In the third phase, students compare those first-hand investigations done by real scientists, as benchmarks, with what they do in inquiry-oriented lessons and accordingly critically reflect on how to improve their science practices.

Figure 1 (Click on image to enlarge). Illustrates the suggested learning cycle.

Figure 2 (Click on image to enlarge). Template for comparing instances of science practices (SP) in different contexts.

Discussing the Suggested Learning Strategy by an Example

In the following, a three-session lesson (about 4.5 hours) based on this instructional approach is presented. Currently, this lesson is included in one of my science courses (how to do straightforward scientific research). The course is a general education course open to all majors, and secondary and middle-level pre-service teachers are required to take the course. In my previous institution, a similar lesson was included in a science course required for prospective elementary teachers.

Phase One: Doing and Reflecting on Science Practices

In this phase of the learning cycle, students conduct a science investigation and are asked to match the eight science practices with different components of their science inquiry. Students are required to document their interpretations in the provided template (Figure 2). Students are given a worksheet for investigating electromagnet. The very first question in the worksheet is about drawing an electromagnet. This question aims to check how much they know about electromagnets. Figure 3 shows five student responses to the mentioned question. These are typical responses at the beginning of this investigation. Most students know little about electromagnets. After receiving these responses, I put students in small groups and made sure that each group had at least one student who drew a relatively correct preliminary model of an electromagnet. Due to space limitation, only four of the eight science practices have been discussed in the following.

Figure 3 (Click on image to enlarge). Illustrates how students drew the model of an electromagnet as their initial idea.

Asking Questions. Students, as a group of four, were given different size batteries, nails, wire, and paper clips. They were supposed to make an electromagnet and then they were given a focus question: how you can change the power of the electromagnet. Some groups had difficulty building and/or using their electromagnet due to issues such as a lousy battery, open circuit, not enough loop, trying to pick up a too heavy metal object by the electromagnet. With minor help from me, they were able to build the electromagnet. Some groups developed yes-no questions (i.e., does the number of loops affect the electromagnet?). I helped them revise their question by adding a “how” to the beginning of their question. Typical questions that students came up with which focused the small group investigations were: How does the voltage of the battery affect the power of the electromagnet? How does the amount of wire around the nail affect the strength of the electromagnet? How does the insulation of the wire affect the power of the electromagnet?

Developing and Using Models. Scientists utilize scientific models and discourses to explain the observed phenomena. However, students usually use vernacular discourses instead of using science/scientific models for explaining a phenomenon. Students needed to develop a hypothesis related to the questions they asked. Here are two typical hypotheses that student groups came up with: 1) making the loops tighter and the wire would have a stronger effect on the nail and in turn, the electromagnet would become more robust, or 2) a bigger battery would make the electromagnet stronger. When (at reflection time) students were asked to think and explicitly mention any models they used, they sometimes talked about the picture of the electromagnet that they drew as a model of the electromagnet (Figure 2). Nonetheless, they typically didn’t see the role of their mental model in the hypotheses they made. With explicit discussion, I helped them to rethink why they generated those hypotheses (i.e., bigger battery or more loops, more powerful magnet). I expected them to mention some of the simple electromagnetic rules learned in science courses; however, most of the hypotheses stem from their vernacular discourses rather than science/scientific discourses. Through discussion with small groups and the whole classroom, I invited them to think about the background knowledge they utilized for making those hypotheses. We discussed the possible relationship between their hypotheses and the vernacular discourses such as “bigger is more powerful,” “more is more powerful,” or “the closer the distance, the stronger interaction”—These vernacular discourses are like general statements that people regularly use to make sense of the world around them. If we use a bigger battery and more wire, then we will have a stronger magnet.” Later, as they collected data, they realized that the vernacular ideas did not always work, a 9-volt battery may not provide as much power as a 1.5-volt D battery.

Constructing Explanations. The relation between different variables and their effects on the strength of an electromagnet is a straightforward part of the investigation. However, most of the groups were not able to explain why the number of wire loops affects the power of the electromagnet, or why uninsulated wire does not work. One of the common misconceptions students hold is the thought that uninsulated wire lets electricity go inside the nail and makes the nail magnetic by touch. I did not tell them why that idea was not correct and then motivated them to explicitly write their thought in the template (Figure 4).

Engaging in Argument from Evidence. We had different kinds of batteries, so one of the groups focused on the relationship between voltage and the electromagnet power. Through investigation, they realized that a 9-volt battery did not necessarily increase the strength of the electromagnet in comparison with a D battery. Another group focused on the relation of the number of cells and the electromagnet power. I encouraged them to discuss and compare the results of their studies and find out the relation of batteries and the power of the electromagnet. However, neither group had students with enough science background on electromagnetism to develop better hypotheses.

Phase Two: Reading and Reflecting on How Scientists Perform Science Practices

As mentioned before, we can use many different kinds of texts about scientists and their projects for this instructional approach. Table 1 suggests some book series appropriate for the proposed strategy. For instance, “Sower series” can help students to learn about historical figures in science and their investigation or “scientist in the filed” is about contemporary scientists and their projects. Stronger than Steel (Heos & Comins, 2013) from the scientist in the field series is discussed to illustrate how we can use these books in the classroom in the following.

Table 1 (Click on image to enlarge)
Suggested Textbooks Describing Scientists’ Biography and Their Projects


The summary of the book. Stronger than Steel is about Randy Lewis, his team, and his long-term research project about spider silk. Randy’s early research questioned the structure of the spider silk: how spider silk could be so strong and at the same time so flexible. By applying the well-established models and methods for the analysis of the matter, Randy and his team were able to develop an explanation for why spider silk is both strong flexible at the same time. They found out that the particular spider silk they analyzed was made of two proteins; a combination of these two proteins is responsible for super flexibility and strength of the spider silk. Building on genetic theory, the research team examined spider DNA. It took them about three years to isolate two genes associated with the proteins responsible for the strength and flexibility of the spider silk. Familiar with the transgenic models, in the late 1990s, Randy’s team designed bacteria producing the main ingredient of the spider silk, the two proteins mentioned before. In the next step, they injected those specific spider genes into goat embryos and achieved incredible results. Some of the transgenic goats were able to produce the spider silk proteins, but of course not like Spiderman. The transgenic goats are very similar to regular goats, but their body produces extra spider silk proteins in their milk. Randy’s team milked the transgenic goats, processed the milk, separated the spider silk proteins, and finally spun the spider silk fibers from the mixture of those two proteins. Currently, they are working to find alternative organisms that could produce spider silk more efficiently than transgenic spider goats. They are working on two other organisms: silkworms, which are masters in making silk and alfalfa, which is a plant that produces much protein.

As can be seen in this summary, the book has many examples of eight science practices from the first-hand science projects (i.e., the research questions about making spider silk, the theory-driven hypothesis explaining the possibility of using transgenic methods and making silk from goats). We can use different reading strategies in this phase of the instruction. I often have students submit answers to a set of guided questions as they read the books. The objective here is to motivate students to match and interpret the eight science practices in the work of the scientists as described in the case study. Table 2 illustrates some of the reflections that students submitted on the reflection template (Figure 2) after reading the book.

Table 2 (Click on image to enlarge)
Instances of Science Practices as Interpreted by Students

Phase Three: Comparing and Reflecting on How Scientists and Students Perform Science Practices

In this phase of the learning cycle, students had small-group activity comparing the instances of the science practices in the case study with the instances of science practices in their electromagnet investigation. We also had a whole-classroom discussion coordinated by me.

Asking questions. Randy utilized transgenic and genetic models to do the investigation. Students were asked to think about the research questions that led Randy’s work. Here are the typical responses students came up with: Why is spider silk is so strong and flexible at the same time? What spiders’ genes are related to spiders’ ability to produce silk? Can other organisms produce spider silk? How can other creatures produce spider silk? We discussed how the questions in Randy’s project are model-based and theory-laden. Then students examined their electromagnet questions and tried to transform them into model-based and theory-laden questions.

Figure 4 depicts how student questions changed and improved after the mentioned discussion. We discussed that if we used the magnetic field model to describe what was happening around a magnet, then we could have asked how to increase the magnetic field at the tip of the nail. By discussing the formula related to the magnetic field and the amount of electric current, students were able to ask a question about the relation of electric current and power of electromagnet instead the relation of voltage of batteries and the power of electromagnet.

Figure 4 (Click on image to enlarge). Illustrates the changes in student groups, A and B, before and after of the case study.

Developing and Using Models. Based on the transgenic model, Randy’s team hypothesized that if they put those two genes in a goat embryo the goat body is going to produce those two proteins and possibly the goat milk is going to contain those two proteins. I led the whole classroom discussion focusing on how students’ hypotheses, similar to the transgenic goat project, should be based on science/scientific knowledge. I emphasized that they need to replace their vernacular discourses, described above, with simple electromagnetic models. In this phase, students were either asked to do some library research to review electromagnetic laws and formulas, or given a handout including rules and formulas related to electromagnets (the version of the worksheet designed for the elementary pre-service teachers is less demanding). Students had an opportunity to revise their vernacular ideas about electromagnets. For instance, they discussed the formula (B=μ0I/2πr) that illustrates factors affecting the magnetic field around a straight wire with electric current. They saw that the magnetic field around the wire is inversely related to the distance from the wire. We discussed how this formula is connected to the vernacular idea that the less distance from the electromagnet, the more powerful electromagnet. They also examined the formula related to the magnetic field in the center of a loop (B=μ0I/2R), which shows that the power of an electromagnet increases when the electric current increases in a circuit. With this formula, they can better explain why doubling the number of batteries increases the strength of the electromagnet or develop a hypothesis as to why D-batteries make a more powerful electromagnet than 9-volt batteries. For instance, one of the small groups initially claimed, “If we use a bigger battery and more wire, then we will have a stronger magnet.” After going through the complete lesson, they revised their claim, “If there is a stronger current, then the magnet force will increase.”

Constructing Explanations. As a part of the structured reflection on the case study, students were supposed to recognize scientific explanations that Randy’s team developed. Here are some of the scientific explanations we discussed in our class: Randy’s team used the biomaterial models to understand the structure of spider silk. They figured out why spider silk is so strong and at the same time so flexible. They described how two essential proteins make the spider silk, one makes the silk stronger than steel, and another make it as elastic as rubber. Using the genetic models, they had the understanding that specific genes carry the information for the production of particular proteins. So, after a two-year examination of the spider genes, eventually, they pinpointed the two specific genes and developed an explanation of how/why those two genes are responsible for making those proteins. These discussed scientific explanations provided a rich context and a benchmark for students to improve their explanations about electromagnet. The model-based explanations in Randy’s project encouraged students to use simple electric and magnetic laws and tools for developing explanations about the electromagnet investigation. For instance, looking at the hypothesis that group A and B made (Figure 4), we could see that both initial hypotheses look like a claim with no explanation (i.e., the more wire on the nail, the more powerful the electromagnet). However, after the discussion about Randy’s project, both groups added some model-based explanations to their claims. In the revised version of their work, by measuring the electric current, group A figured out that why a 6-volt battery created a stronger magnetic field than a 9-volt battery. Group B used the formula for electric resistance to explain why electric current would increase in the coil. They also used a multimeter and Tesla meter for measuring electric current and magnetic field for collecting supporting data.

As part of their homework, students were asked to reflect on how their explanation was changed during this lesson. Some of them emphasized the role of scientific background knowledge and the tools they used in the second round of the investigation. One of them said:

In the second explanation, we had more background knowledge about the subject, so we were better able to develop a hypothesis that was backed by a scientific theory. This led to more accurate results. We also used tools that measured the exact amount of electric current and the exact magnetic strength in the second experiment.

It is important to mention that student-teacher discussion essentially facilitated the use of background knowledge in the second round of the investigation. One of the students mentioned:

One of the explanations comes from the knowledge that we brought (which is none, or little knowledge of magnetism). The other explanation utilizes the outside knowledge that Dr. Mo presented us with. The equation that explained what makes a magnet stronger. We were then able to adjust the explanation to be more accurate.

Engaging in Argument from Evidence. Some of the discussed points from the case study that are related to engaging in argument from evidence are typically either mentioned in student reflection or suggested by me. Randy’s team used the genetic theory arguing for the relation between alfalfa, silkworms, and goats. Then they collected empirical data and developed evidence for that argument. Randy’s team developed a strong argument from evidence to convince the funding agencies for exploring the alternative methods for production of spider silk. Randy is also engaged in the debate from evidence to support the claim that transgenic research is beneficial to our society. He argues that although this kind of investigation could be misused (i.e., designer babies or spread of transgenic animals in natural environments), the beneficial aspects of transgenic research are immense.

In comparison with Randy’s work, we discussed how science goes beyond the walls of the science labs and how science, society, and technology are mutually related—one of the eight aspects of NOS based on NGSS is “science is a human endeavor.” Regarding this relationship in the context of the electromagnet investigation, through whole-class discussion, we came up with some library research questions: how a Maglev works or how electromagnetic field/wave possibly could have some possible sides effects on the human brain.

Furthermore, Randy’s work provided an environment for us to have a discussion related to the coordination of theory and evidence, which is another aspect of NOS based on NGSS: “science models, laws, mechanisms, and theories explain natural phenomena.” In return, the discussion helped students use scientific knowledge and tools for developing hypotheses. In the first round of investigation, students asked questions and developed explanations with little attention to scientific knowledge, a required component for asking scientific question and explanation. In the second round, they used scientific laws, units, and sensors to develop their hypotheses (compare before- and after-condition of the hypotheses in figure 3). The discussion about Randy’s work helped them to be conscious about the coordination of scientific background knowledge and making hypothesis and explanation. As shown in Table 3, in response to a question on the group assignment, group A mentioned:

When we read about Randy’s investigation, we understood that sometimes it is necessary to draw from the knowledge that already exists on the topic. For example, Randy knew that bacteria could be used to produce penicillin. In our electromagnet investigation, once Dr. … showed us the slides, we knew that electrical current influenced the strength of the magnet. With this knowledge, we created a better hypothesis of what was happening.

Table 3 (Click on image to enlarge)
Instances of Student Response to a Reflective Group Assignment at the End of the Lesson

Discussion and Conclusion

This article seeks ways to improve pre-service teacher learning about NGSS’ eight science practices. This learning objective can be accomplished in the suggested learning cycle (Figure 1). As discussed, in the first phase, when students work on their science investigation, what naturally comes out of students’ work are vernacular discourses, based on their mental models used in their daily life practices, rather than science models and discourses. As Windschitl, Thompson, and Braaten (2008) put it, one of the fundamental problems with student science investigation is the modeless inquiry (i.e., students conduct investigations without utilizing scientific models). Here students managed to investigate variables that affect the power of an electromagnet such as the kind of battery, number of loops, size of the nail, and diameter of the loops. At this stage, however, they were not able to utilize science models to explain “why” those variables affect the strength of the electromagnet.

In the second phase, due to the authenticity of the scientific project described in the case study, it was easy for students to recognize instances of the eight science practices in that project. Through reflection, students realized that the scientific investigation in the case study was vastly built on scientific models and theories.

In the third phase, through the negotiation process between the students and teacher and by comparing their work with Randy’s work, a majority of the students became cognizant of the fact that the electromagnetic models were almost absent in their initial electromagnet investigation. Randy’s project functioned as a benchmark assisting pre-service teachers to compare their work with the benchmark and revise their science practices. Additionally, the comparison between classroom science and actual scientists’ work provided an environment for discussion about some aspects of NOS such as the relation of science-society-technology, and the coordination of theory-evidence. In return, those discussions helped students improve their electromagnet investigation.

As a limitation of the presented strategy, it can be asked, what would happen if the case study was eliminated? Students would go through the electromagnet investigation, then I would give students the background knowledge about electromagnet, and then students would do the investigation for the second time. Probably, due to doing a similar investigation two times, we should expect some improvement in the quality of their investigation. However, the case study functioned as a benchmark and guidance. During the discussion about Randy’s work, students became cognizant of the critical role of background knowledge, modeling, and scientific lab technology for doing science. Importantly, they realized that for making hypotheses, observation and collecting data is not enough; they need to bring scientific knowledge to the table to develop a hypothesis. Accordingly, it seems that the case study provided a productive environment for students to do science investigation and learn about the eight science practices.

As Hmelo-Silver (2006) stated, scaffolding improves student learning when it comes to how and why to do the tasks. The discussed structured reflection can help students learn how and why they conduct science investigations and encourage them to critically think and talk about science practices (nature of science practices). Going through multiple inquiry-oriented lessons provides an environment for students to do the NGSS eight science practices described. To develop a thorough understanding of those practices, however, students need to repeatedly think critically to discern instances of science practices from what they do, compare them with a benchmark, and find out a way to improve their science practices. By going through the concurrent reflection embedded in all three phases of the suggested instructional strategy, prospective teachers experienced the fact that classroom science investigations should go beyond a “fun activity” (Jimenez-Aleixandre, Rodriguez, & Duschl, 2000) and the vernacular discourses that they know, and must be based on scientific knowledge, models, and technology, and explicitly relate to society.

Acknowledgment

I would like to show my gratitude to James Cipielewski and Linda Pavonetti for sharing their wisdom with me during the initial phase of this project.

Supplemental Files

Appendix-1.png

References

Basir, M.A. (2014). Pre-service Teacher Discourses: Vernacular Versus Formal Science Learning Discourses. Paper presented at NARST 2014.

Barab, S. A., & Luehmann, A. L. (2003). Building sustainable science curriculum: Acknowledging and accommodating local adaptation. Science Education, 87(4), 454-467.

Bleske-Rechek, A. L. (2002). Obedience, conformity, and social roles: Active learning in a large introductory psychology class. Teaching of Psychology, 28(4), 260-262.

Bonney, K. M. (2015). Case study teaching method improves student performance and perceptions of learning gains. Journal of microbiology & biology education, 16(1), 21.

Bonwell, C.C., and Eison, J.A. (1991). Active learning: Creating excitement in the classroom. Washington, DC: Jossey-Bass.

Burgin, S. R., & Sadler, T. D. (2016). Learning nature of science concepts through a research apprenticeship program: A comparative study of three approaches. Journal of Research in Science Teaching53, 31-59.

Cherney, I. D. (2008). The effects of active learning on students’ memories for course content. Active Learning in Higher Education9, 152-171.

Driver, R., Leach, J., & Millar, R. (1996). Young people’s images of science. London: McGraw-Hill International.

Ellis, S., Carette, B., Anseel, F., & Lievens, F. (2014). Systematic reflection: Implications for learning from failures and successes. Current Directions in Psychological Science, 23(1), 67-72.

Erduran, S., & Dagher, Z. R. (2014). Reconceptualizing nature of science for science education. In Reconceptualizing the Nature of Science for Science Education (pp. 1-18). Springer Netherlands.

Foulds, W., & Rowe, J. (1996). The enhancement of science process skills in primary teacher education students. Australian Journal of Teacher Education21(1), 2.

Hackling, M., & Garnett, P. (1992). Expert—Novice differences in science investigation skills. Research in Science Education22, 170-177.

Heos, B., & Comins, A. (2013). Stronger than Steel. Boston, MA: Houghton Mifflin Book for Children.

Herreid, C. F. (2015). Testing with case studies. Journal of College Science Teaching, 44(4), 66-70.

Jimenez-Aleixandre, M., Rodriguez, A., & Duschl, R. A. (2000). ‘‘Doing the lesson’’ or ‘‘doing science’’: Argument in high school genetics. Science Education, 84, 287–312.

Kuhn, J., & Müller, A. (2014). Context-based science education by newspaper story problems: A study on motivation and learning effects. Perspectives in Science2(1-4), 5-21.

Marton, F. (2006). Sameness and difference in transfer. The Journal of the Learning Sciences, 15, 499-535.

McComas, W. F., Clough, M. P., & Almazroa, H. (2002). The role and character of the nature of science in science education. In McComas, W.F., The nature of science in science education (pp. 3-39). New York, NY: Springer.

National Research Council. (2000). Inquiry and the national science education standards. Washington, D.C.: National Academy Press.

National Research Council. (2007). Taking Science to School: Learning and Teaching Science in Grades K-8. Duschl, H.A. Schweingruber, and A.W. Shouse. Washington, DC: The National Academies Press.

National Research Council. (2012). A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas. Committee on a Conceptual Framework for New K-12 Science Education Standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies.

Schwartz, R. S., Lederman, N. G., & Crawford, B. A. (2004). Developing views of nature of science in an authentic context: An explicit approach to bridging the gap between nature of science and scientific inquiry. Science education88, 610-645.

Smith, C. V., & Cardaciotto, L. (2011). Is Active Learning Like Broccoli? Student Perceptions of Active Learning in Large Lecture Classes. Journal of the Scholarship of Teaching and Learning, 11(1), 53-61.

Smith, M. U., & Scharmann, L. (2008). A multi-year program developing an explicit reflective pedagogy for teaching pre-service teachers the nature of science by ostention. Science & Education17, 219-248.

Tichenor, L. L. (2013). Assessing Learning Outcomes of the Case Study Teaching Method. In R. E. Yager, Exemplary College Science Teaching (pp. 91-106). Arlington, VA: NSTA Press.

Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science education, 92, 941-967.

Partnering for Engineering Teacher Education

Citation
Print Friendly, PDF & Email

Smetana, L.K., Nelson, C., Whitehouse, P., & Koin, K. (2019). Partnering for engineering teacher education. Innovations in Science Teacher Education, 4(2).     Retrieved from https://innovations.theaste.org/partnering-for-engineering-teacher-education/

by Lara K. Smetana, Loyola University Chicago; Cynthia Nelson, Loyola University Chicago; Patricia Whitehouse, William C. Goudy Technology Academy; & Kim Koin, Chicago Children's Museum

Abstract

The aim of this article is to describe a specific approach to preparing elementary teacher candidates to teach engineering through a field-based undergraduate course that incorporates various engineering experiences. First, candidates visit a children’s museum to engage in engineering challenges and reflect on their experiences as learners as well as teachers. The majority of course sessions occur on-site in a neighborhood elementary school with a dedicated engineering lab space and teacher, where candidates help facilitate small group work to develop their own understandings about engineering and instructional practices specific to science and engineering. Candidates also have the option to attend the elementary school’s Family STEM Night which serves as another example of how informal engineering experiences can complement formal school-day experiences as well as how teachers and schools work with families to support children’s learning. Overall, candidates have shown increased confidence in engineering education as demonstrated by quantitative data collected through a survey instrument measuring teacher beliefs regarding teaching engineering self-efficacy. The survey data was complemented by qualitative data collected through candidates’ written reflections and interviews. This approach to introducing elementary teacher candidates to engineering highlights the value of a) capitalizing on partnerships, b) immersing candidates as learners in various educational settings with expert educators, c) providing opportunities to observe, enact, and analyze the enactment of high-leverage instructional practices, and d) incorporating opportunities for independent and collaborative reflection.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Birmingham, D., Smetana, L.K., & Coleman, E.R. (2017). “From the beginning, I felt empowered”: Incorporating an ecological approach to learning in elementary science teacher education. Research in Science Education. https://doi.org/10.1007/s11165-017-9664-9

Bevan, B., Gutwill, J., Petrich, M., & Wilkinson, K. (2015). Learning through STEM-rich tinkering: Findings from a jointly negotiated research project taken up in practice. Science Education, 99, 98-120.

Cantrell, P., Young, S., & Moore, A. (2003). Factors affecting science teaching efficacy of pre service teachers. Journal of Science Teacher Education, 14, 177-192.

deFigueiredo, A. D. (2008). Toward an epistemology of engineering. Retrieved from https://ssrn.com/abstract=1314224

Fenichel, M., & Schweingruber, R. A. (2010). Surrounded by science: Learning science in informal environments. Washington, DC: National Academies Press

Forzani, F. M. (2014). Understanding ‘‘Core practices’’ and ‘‘practice-based’’ teacher education learning from the past. Journal of Teacher Education, 65, 357–368

Goldman S. & Zielezinski M.B. (2016) Teaching with design thinking: Developing new vision and approaches to twenty-first century learning. In A.L. & M.J. (Eds) Connecting science and engineering education practices in meaningful ways. Switzerland: Springer.

Grossman, P., Compton, C., Igra, D., Ronfeldt, M., Shahan, E., & Williamson, P. W. (2009). Teaching practice: A cross-professional perspective. Teachers College Record, 111, 2055-2100.

Jones, M. G. & Carter, G. (2007). Science teacher attitudes and beliefs. In S. K. Abell & N. G. Lederman (Eds.), Handbook of research on science education (pp. 1067-1104). Mahwah, New Jersey: Lawrence Erlbaum Associates.

Lampert, M., Franke, M. L., Kazemi, E., Ghousseini, H., Turrou, A. C., Beasley, H., & Crowe, K. (2013). Keeping it complex: Using rehearsals to support novice teacher learning of ambitious teaching. Journal of Teacher Education, 64, 226-243.

Lottero-Perdue, Pamela (2017). Engineering design into science classrooms. In Teaching science to every child: Using culture as a starting point (pp.207-268). New York: Routledge.

Michaels, S., & O’Conner, C. (2012). Talk science primer. Cambridge, MA: TERC.

Moore, T. J., Glancy, A. W., Tank, K. M., Kersten, J. A., Smith, K. A., & Stohlmann, M. S. (2014). A framework for quality K-12 engineering education: Research and development. Journal of Pre-College Engineering Education Research, 4(1), 1-13.

Engineering is Elementary [EiE]. (2011). Engineering is elementary curriculum units. Retrieved from https://www.eie.org/eie-curriculum

National Academy of Engineering (NAE) and National Research Council (NRC). (2009). Engineering in K-12 education: Understanding the status and improving the prospects. Washington, DC: The National Academies Press.

National Research Council. (2012). A Framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Committee on a conceptual framework for new K-12 science education standards. Washington, DC: The National Academies Press.

NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.

Osisioma, I. & Moscovici, H. (2008). Profiling the beliefs of the forgotten teachers: An analysis of intern teachers’ frameworks for urban science teaching. Journal of Science Teacher Education, 19, 285–311.

Rosebery, A. & Ballenger, C. (2008). Creating a foundation through student conversation. In A. Rosebery and B. Warren (Eds.), Teaching science to English language learners, pp. 1-12. Arlington, VA: NSTA Press.

Slivovsky, K., Koin, K., & Bortoli, N. (2017). Tinkering lab overview. Lecture. Chicago, IL.

Smetana, L.K., Birmingham, D., Rouleau, H., Carlson, J., & Phillips, S. (2017). Cultural institutions as partners in initial elementary science teacher preparation. Innovations in Science Teacher Education, 2(2). Retrieved from https://innovations.theaste.org/cultural-institutions-as-partners-in-initial-elementary-science-teacher-preparation/

Smetana, L.K., Chadde, J., Goldfiend, W., & Nelson, C. (2012). Family style engineering. Science & Children, 50(4), 67-71.

Smetana, L.K. & Nelson, C. (2018). Exploring elementary teacher candidates’ understandings and self-efficacy around engineering education. Paper presented at the annual meeting of the American Educational Research Association, New York, NY.

Yoon, S.Y., Evans, M.G. & Strobel, J. (2014). Validation of the teaching engineering self-efficacy scale for K-12 teachers: A structural equation modeling approach. Journal of Engineering Education, 103, 463-485.

Zeichner, K. (2012). The turn once again toward practice-based teacher education. Journal of Teacher Education, 63, 376-382