NGSS Scientific Practices in an Elementary Science Methods Course: Preservice Teachers Doing Science

Print Friendly, PDF & Email

Morrison, J. NGSS Scientific Practices in an Elementary Science Methods Course: Preservice Teachers Doing Science. Innovations in Science Teacher Education, 6(3). Retrieved from

by Judith Morrison, Washington State University Tri-Cities


To engage elementary preservice teachers enrolled in a science methods course in authentically doing science, I developed an assignment focused on the NGSS scientific practices. Unless preservice teachers engage in some type of authentic science, they will never understand the scientific practices and will be ill-equipped to communicate these practices to their future students or engage future students in authentic science. The two main objectives for this assignment were for the PSTs to gain a more realistic understanding of how science is done and gain confidence in conducting investigations incorporating the scientific practices to implement in their future classrooms. To obtain evidence about how these objectives were met, I posed the following questions: What do PSTs learn about using the practices of science from this experience, and what do they predict they will implement in their future teaching relevant to authentic investigations using the scientific practices? Quotes from preservice teachers demonstrating their (a) learning relevant to doing science, (b) their struggles doing this type of investigation, and (c) predictions of how they might incorporate the scientific practices in their future teaching are included. The assignment and the challenges encountered implementing this assignment in a science methods course are also described.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership


Chalmers, C., Carter, M., Cooper, T., & Nason, R. (2017). Implementing “big ideas” to advance the teaching and learning of science, technology, engineering, and mathematics (STEM). International Journal of Science and Mathematics Education, 15(Suppl. 1), S25–S43.

Darling-Hammond, L. (2008). Introduction: Teaching and learning for understanding. In L. Darling-Hammond, B. Barron, P. D. Pearson, A. H. Schoenfeld, E. K. Stage, T. D. Zimerman, G. N. Cervetti, & J. L. Tilson (Eds.), Powerful learning: What we know about teaching for understanding (pp. 1–9). Josey Bass.

Duschl, R. A., & Bybee, R. W. (2014). Planning and carrying out investigations: An entry to learning and to teacher professional development around NGSS science and engineering practices. International Journal of STEM Education, 1, Article 12.

English, L. D. (2017). Advancing elementary and middle school STEM education. International Journal of Science and Mathematics Education, 15(Suppl. 1), S5–S24.

Grossman, P., Pupik Dean, C. G., Kavanagh, S. S., & Herrmann, Z. (2019). Preparing teachers for project-based teaching. Phi Delta Kappan, 100(7), 43–48.

Kloser, M. (2017). The nature of the teachers’ role in supporting student investigations in middle and high school science classrooms: Creating and participating in a community of practice [Commissioned paper]. National Academies of Sciences, Engineering, and Medicine’s Committee on Science Investigations and Engineering Design for Grades 6-12.

Krajik, J., McNeill, K. L., & Reiser, B. J. (2008). Learning-goals-driven design model: Developing curriculum materials that align with national standards and incorporate project-based pedagogy. Science Education, 92(1), 1–32.

Lesh, R., & Zawojewski, J. (2007). Problem solving and modeling. In F. K. Lester, Jr., (Ed.), Second handbook on research on mathematics teaching and learning (Vol. 2, pp. 763–804). Information Age Publishing.

Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2019). On thinking and STEM education. Journal for STEM Education Research, 2(1), 1–13.

Llewellyn, D. (2001). Inquire within: Implementing inquiry-based science standards. Corwin Press.

Morrison, J. A. (2008). Individual inquiry investigations in an elementary science methods course. Journal of Science Teacher Education, 19(2), 117–134.

National Academies of Sciences, Engineering, and Medicine. (2019). Science and engineering for grades 6–12: Investigation and design at the center. National Academies Press.

NGSS Lead States. (2013). Next generation science standards: For states, by states. National Academies Press.

National Research Council. (2012).Framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.

Tsybulsky, D., & Muchnik-Rozanov, Y. (2019). The development of student-teachers’ professional identity while team-teaching science classes using a project-based learning approach: A multi-level analysis. Teaching and Teacher Education, 79, 48–59.

Tsybulsky, D., & Oz, A. (2019). From frustration to insights: Experiences, attitudes, and pedagogical practices of preservice science teachers implementing PBL in elementary school. Journal of Science Teacher Education, 30(3), 259–279.

A Scientist, Teacher Educator and Teacher Collaborative: Innovative Professional Learning Design focused on Climate Change and Lessons Learned from K-12 Classrooms

Print Friendly, PDF & Email

Stapleton, M.K., & Sezen-Barrie, A. (2017). A scientist, teacher educator and teacher collaborative: Innovative professional learning design focused on climate change and lessons learned from K-12 classrooms. Innovations in Science Teacher Education, 2(4). Retrieved from

by Mary K. Stapleton, Towson University; & Asli Sezen-Barrie, Towson University


The new Next Generation Science Standards (NGSS) call for a dramatic shift in science teaching and learning, with a focus on students engaging in science practices as they make sense of natural phenomena. In addition, the NGSS have a significant and explicit focus on climate change. The adoption of these new standards in many states across the nation have created a critical need for on-going professional learning as inservice science educators begin to implement three-dimensional instruction in their classrooms. This paper describes an innovative professional learning workshop on climate change for secondary science teachers, designed by teacher educators and scientists. The workshop was designed to improve teachers’ capacity to deliver effective three-dimensional climate change instruction in their classrooms. We present the structure and goals of the workshop, describe how theories of effective professional learning drove the design of the workshop, and address the affordances and challenges of implementing this type of professional learning experience.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership


Allen, C. D., & Penuel, W. R. (2015). Studying teachers’ sensemaking to investigate teachers’ responses to professional development focused on new standards. Journal of Teacher Education, 66, 136-149.

Banilower, E., Smith, P.S., Weiss, I.R., Malzahn, K.A., Campbell, K.M., & Weiss, A.M. (2013). Report of the 2012 national survey of science and mathematics education. Chapel Hill, NC: Horizon Research Inc. 1-309.

Bell, R.L., Smetana, L. & Binns, I.  (2005). Simplifying inquiry instruction.  The Science Teacher, 72, 30-33.

Campbell, T., C. Schwarz, & Windschitl, M. (2016). What we call misconceptions may be necessary stepping-stones on a path toward making sense of the world. The Science Teacher, 83, 69–74.

Field, C., Barros, V., Dokken, D., Mach, K., Mastrandrea, M., Bilir, T., et al. (2014). IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK/New York, NY.

Furtak, E., Morrison, D., & Kroog, H. (2014). Investigating the link between learning progressions and classroom assessment. Science Education, 98, 640-673.

Gess-Newsome, J. & Lederman, N.G. (Eds). (1999). Examining pedagogical content knowledge: The construct and its implications. Netherlands: Kluwer Academic Publishers.

Hanuscin, D., Lipsitz, K., Cisterna-Alburquerque, D., Arnone, K. A., van Garderen, D., de Araujo, Z., & Lee, E. J. (2016). Developing Coherent Conceptual Storylines: Two Elementary Challenges. Journal of Science Teacher Education, 27, 393-414.

Hestness, E., McDonald, R. C., Breslyn, W., McGinnis, J. R., & Mouza, C. (2014). Science teacher professional development in climate change education informed by the Next Generation Science Standards. Journal of Geoscience Education, 62, 319-329.

Hollins, E. R. (2015). Rethinking field experiences in preservice teacher preparation: Meeting new challenges for accountability. Routledge: New York.

Janssen, F., Westbroek, H., & Van Driel, J. (2013). How to make innovations practical. Teachers College Record, 115, 070378.

Krajcik, J. (2015). Three-dimensional instruction: using a new type of teaching in the science classroom.  The Science Teacher, 82(8), 50-52.

Marking a Strong Argument. (n.d.). Retrieved from

McNeill, K.L & Krajcik, J.S. (2012). Supporting grade 5-8 students in constructing explanations in science: the claim, evidence and reasoning framework for talk and writing. Boston, MA: Pearson.

National Research Council. (2012). A framework for K–12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: National Academies Press.

NGSS Lead States. (2013). Next generation science standards:  For states, by states. Washington, DC: The National Academies Press.

Passmore, C.M., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34, 1535-1554.

Reiser, B.J. 2013. What professional development strategies are needed for successful implementation of the Next Generation Science Standards?  Invitational Research Symposium on Science Assessment.  Retrieved from

Reiser, B. J. (2014). Designing coherent storylines aligned with NGSS for the K-12 classroom. In National Science Education Leadership Association Meeting (April). Boston, MA.

Reiser, B.J., Michaels, S., Moon, J. Bell, T., Dyer, E., Edwards, K., McGill, T.A.W., Novak, M., Park, A. (2016).  Scaling up three-dimensional science learning through teacher-led study groups across a state.  National Association for Research in Science Teaching Conference, Baltimore, MD.

Roth, W. M., Reis, G., & Hsu, D. P. L. (2008). Authentic science revisited: In praise of diversity, heterogeneity, hybridity. Boston, MA: Sense Publishers.

Sezen-Barrie, A., Shea, N., & Borman, J. H. (2017). Probing into the sources of ignorance: science teachers’ practices of constructing arguments or rebuttals to denialism of climate change. Environmental Education Research.

Shea, N. A., Mouza, C., & Drewes, A. (2016). Climate Change Professional Development: Design, Implementation, and Initial Outcomes on Teacher Learning, Practice, and Student Beliefs. Journal of Science Teacher Education, 27, 235-258.

Shepardson, D. P., Niyogi, D., Roychoudhury, A., & Hirsch, A. (2012). Conceptualizing climate change in the context of a climate system: implications for climate and environmental education. Environmental Education Research, 18, 323-352.

Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15, 4-14.

Skeptical Science, (n.d).  Retrieved from

Sondergeld, T. A., Milner, A. R., & Rop, C. (2014). Evaluating teachers’ self-perceptions of their knowledge and practice after participating in an environmental education professional development program. Teacher Development, 18, 281-302.

Stapleton, M.K., Wolfson, J., Sezen-Barrie, A., & Ellis, R. (2017).  Looking Backward, Looking Forward.  Science Scope, 42(2), 45-53.

Sullivan, S. M. B., Ledley, T. S., Lynds, S. E., & Gold, A. U. (2014). Navigating climate science in the classroom: Teacher preparation, perceptions and practices. Journal of Geoscience Education, 62, 550-559.

Wilson, S.M. (2013). Professional Development for Science Teachers. Science, 340, 310-313.

Windschitl, M. A., & Stroupe, D. (2017). The Three-Story Challenge: Implications of the Next Generation Science Standards for Teacher Preparation. Journal of Teacher Education, 68, 251-261.

Yuan, S. (1995). Postglacial History of Vegetation and River Channel Geomorphology in a Coastal Plain Floodplain.  Diss. The Johns Hopkins University.