On the Purpose and Promise of Technology in the Science Classroom

Citation
Print Friendly, PDF & Email

Ellis, J. A. (2021). On the Purpose and Promise of Technology in the Science Classroom. Innovations in Science Teacher Education, 6(4).  Retrieved from https://innovations.theaste.org/on-the-purpose-and-promise-of-technology-in-the-science-classroom/

by Joshua A. Ellis, Florida International University

Over the past 18 months, teachers, parents, and students across the world have been thinking about the role of technology in education more than ever before. The rapid shift to digitize and virtualize all aspects of learning in response to the global pandemic has illustrated both the opportunities and the limitations of leveraging technology within (and beyond) the K–12 classroom. Many science educators are accustomed to thinking about the role of technology in their classrooms because the practices and products associated with science and technology are often inseparable, advancing each other in a symbiotic relationship (Ihde, 2009). Over 30 years ago, the American Association for the Advancement of Science (AAAS) defined technology not as a product but as a technical and social process that involves “the application of knowledge, tools, and skills to solve practical problems and extend human capabilities” (Johnson, 1989, p. 1) and exhorted educators to provide students with opportunities to experience technology in their K–12 classrooms. Science educators and policymakers responded to this call by codifying the role of technology within the K–12 science classroom through standards documents such as the Benchmarks for Scientific Literacy (AAAS, 1993), the National Science Education Standards (National Research Council, 1996), and today’s Next Generation Science Standards (NGSS Lead States, 2013). As a former K–12 science teacher and a current science teacher educator, I remind my pre- and in-service teachers that “One cannot truly experience science without experiencing its technological dimension” (Oliveira et al., 2019, p. 149).

However, not all science teacher educators and researchers share this perspective. Across our K–12 school districts and teacher preparation programs, technology is too often relegated to a minor role when supporting preservice and inservice science educators. Technology has received less emphasis than the other disciplines represented in the STEM acronym (Akerson et al., 2018), and some researchers have chosen to ignore the role of technology completely (Herschbach, 2011). This neglect has led to the conceptual dilution, misapplication, and trivialization of educational technology in the classroom (Bull et al., 2019), resulting in the popularization of generic instructional technologies and approaches that may replace traditional pen-and-paper activities but fail to amplify or transform the student learning experience (Hughes et al., 2006). In some K–12 schools, a focus on technology may be found in specific learning environments such as shop classes or makerspaces, and a science teacher at one of these schools might believe that they are thereby absolved of the responsibility of educating their students about the role of technology. However, I believe that this would be a mistake. Obviously, not all K–12 schools have access to facilities like shop classes or makerspaces, and those that do usually offer associated learning experiences as electives. Moreover, the majority of eighth-grade students report learning about technology and engineering within the context of their science classroom (National Assessment of Educational Progress, 2018). This is especially true for groups of students that have been historically excluded from careers in science, technology, engineering, and mathematics: 55% of Black female students and 61% of Hispanic female students in the eighth grade report that they have never taken a technology or engineering course, whereas the same is true for only 41% of their White male peers (Change the Equation, 2016). If we as science teacher educators wish to increase opportunities for all students to not only succeed in science but also develop the skills and practices that will prepare them to explore a career in science or the STEM fields, we need to stop neglecting the role of technology in our discipline and start crafting experiences that leverage the symbiotic relationship between science and technology in ways that support student learning.

Thankfully, there are many science teacher educators from the Association of Science Teacher Education (ASTE) and the Society for Information Technology and Teacher Education (SITE) that have taken up this charge. Over the past 10 years, I have been privileged to learn with these scholars and explore these topics in ways that have directly impacted not only how I engage with technology in scientific contexts, but also how my pre- and inservice teachers integrate technology into their science teaching in ways that amplify and transform how their students experience science. If you wish to join the conversation, there are many great avenues for doing so. At the ASTE International Conference, you will find innovative and thought-provoking presentations in the Educational Technology conference thread. Additionally, you can participate in the Technology Forum, which supports both the ASTE membership and the board in articulating how to thoughtfully integrate technology in science teacher education. At the SITE conference, the Science Education Special Interest Group serves a similar function, facilitating cross-organization conversations about the relationship between science and technology and their roles respective to one another. It is my sincere hope that you will consider joining us in exploring the purpose of technology in the science classroom and the promise that it holds for our students and educators.

References

Akerson, V. L., Burgess, A., Gerber, A., Guo, M., Khan, T. A., & Newman, S. (2018). Disentangling the meaning of STEM: Implications for science education and science teacher education. Journal of Science Teacher Education29(1), 1- 8. https://doi.org/10.1080/1046560X.2018.1435063 

Bull, G., Hodges, C., Mouza, C., Kinshuk, Grant, M., Archambault, L., Borup, J., Ferdig, R. E., & Schmidt-Crawford, D. A. (2019). Conceptual dilution. Contemporary Issues in Technology and Teacher Education19(2), 117–128. https://citejournal.org/volume-19/issue-2-19/editorial/editorial-conceptual-dilution/ 

Change the Equation. (2016). Left to chance: U.S. middle schoolers lack in-depth experience with technology and engineering. Vital Signs: Reports on the Condition of STEM Learning in the U.S. https://eric.ed.gov/?id=ED568383 

Herschbach, D. R. (2011). The STEM initiative: Constraints and challenges. Journal of STEM Teacher Education, 48(1), 96–122. doi.org/10.30707/JSTE48.1Herschbach 

Hughes, J., Thomas, R., & Scharber, C. (2006). Assessing technology integration: The RAT—replacement, amplification, and transformation-framework. In C. M. Crawford, R. Carlsen, K. McFerrin, J. Price, R. Weber & D. A. Willis (Eds.), Proceedings of SITE 2006-Society for Information Technology & Teacher Education International Conference (pp. 1616-1620). Association for the Advancement of Computing in Education. https://www.learntechlib.org/primary/p/22293/ 

Ihde, D. (2009). Postphenomenology and technoscience: The Peking University lectures. State University of New York Press. 

Johnson, J. R. (1989). Technology: Report of the Project 2061 Phase I Technology Panel. American Association for the Advancement of Science. https://eric.ed.gov/?id=ED309058 

National Assessment of Educational Progress. (2018). Technology and engineering literacy. https://nces.ed.gov/nationsreportcard/tel/ 

National Research Council. (1996). National science education standards. National Academies Press. https://doi.org/10.17226/4962 

NGSS Lead States. (2013). Next generation science standards: For states, by states. National Academies Press. https://doi.org/10.17226/18290 

Oliveira, A., Feyzi Behnagh, R., Ni, L., Mohsinah, A. A., Burgess, K. J., & Guo, L. (2019). Emerging technologies as pedagogical tools for teaching and learning science: A literature review. Human Behavior and Emerging Technologies1(2), 149-160. https://doi.org/10.1002/hbe2.141 

American Association for the Advancement of Science. (1993). Benchmarks for science literacy. Oxford University Press. 

 

Virtual Tools and Protocols to Support Collaborative Reflection During Lesson Study

Citation
Print Friendly, PDF & Email

Gorth, R. E., Bergner, J. A., Weaver, S. D., & Follmer, D. J. (2021).Virtual Tools and Protocols to Support Collaborative Reflection During Lesson Study. Innovations in Science Teacher Education, 6(4). Retrieved from https://innovations.theaste.org/virtual-tools-and-protocols-to-support-collaborative-reflection-during-lesson-study/

by Randall E. Groth, Salisbury University; Jennifer A. Bergner, Salisbury University; Starlin D. Weaver, Salisbury University; & D. Jake Follmer, West Virginia University

Abstract

Lesson study provides opportunities for teachers to collaboratively design, implement, and analyze instruction. Research illustrates its efficacy as a site for teacher learning. The setting for this article is a lesson study project involving preservice teachers, inservice teachers, and university faculty members. We supported collaborative reflection on practice among these individuals by using asynchronous and synchronous online tools and meeting protocols. Asynchronous online lesson-video review and tagging helped participants prepare to debrief about lessons they had implemented. Midway through one of our lesson study cycles, the COVID-19 pandemic occurred, eliminating opportunities to meet face-to-face for lesson debriefing sessions. In response, we developed and field-tested two protocols for online synchronous lesson study debriefing meetings. The protocols prompted conversations related to pedagogy, content, and content-specific pedagogy. After the debriefing sessions, lesson study group members reported improvements in their knowledge growth, self-efficacy, and expectations for student learning. We describe our use of online virtual tools and protocols to contribute to the literature on ways to support collaborative reflection on practice.

Introduction

Differences in students’ science and mathematics achievement across countries have sparked interest in examining corresponding differences in teacher education models (Stigler & Hiebert, 2009). One model that has drawn a great deal of attention is lesson study (Lewis & Hurd, 2011). Lesson study is a cyclical process carried out in small groups. The group begins by identifying student learning goals and then collaboratively designs a lesson to address them. After the lesson, the group gathers for a debriefing session to discuss the strengths and weaknesses of the lesson. In some cases, but not all, debriefing leads to the redesign and reteaching of the lesson (Fujii, 2014). Debriefing provides an opportunity to collaboratively reflect upon issues such as student thinking, assessment mechanisms, and teaching tools (Groth, 2011). For many years, this process of continuous improvement of practice has provided a vital support structure for teacher learning in Japan (Watanabe, 2002).

Over the past 2 decades, lesson study has become increasingly prevalent in the United States (Lewis, 2016). Momentum for its use has been bolstered by research indicating that lesson study can foster knowledge of content, pedagogy, and content-specific pedagogy (Cajkler et al., 2014; Fischman & Wasserman, 2017; Huang & Shimizu, 2016; Lewis et al., 2009; Sibbald, 2009; Xu & Pedder, 2015). One of the most powerful features of lesson study is the opportunities it creates for reflection-on-action (Schön, 1987). Practicing reflection-on-action can help newer teachers eventually begin to make the types of in-the-moment adjustments to practice that requires (Saucerman et al., 2017; Schön, 1987). Lesson study provides opportunities to generate, test, and progressively refine ideas for improving teaching (Ricks, 2011). When inservice and preservice teachers collaborate during lesson study, a synergistic relationship between professional development for experienced teachers and clinical experiences for teacher candidates can take shape (Groth et al., 2020).

Despite the benefits of having inservice and preservice teachers work together in lesson study groups, forming such communities of practice can be challenging. Logistical considerations such as coordinating schedules for all participants are often nontrivial. Such problems are exacerbated by the fact that teachers in the United States generally do not have collegial work built into their everyday schedules to as great an extent as teachers in countries such as Japan, where lesson study has flourished (Stigler & Hiebert, 2009). Additionally, preservice teachers often do not initially notice important aspects of students’ thinking when observing lessons (Jacobs et al., 2010). So, simply observing a collaboratively planned lesson as it is implemented may not be sufficient for them to reflect productively on its key elements.

Technology-based strategies can help address some of the obstacles to having preservice and inservice teachers collaborate in lesson study groups. Synchronous and asynchronous online discussions can help address the logistical challenges of assembling groups at the same time in the same place. Lesson videos can also provide opportunities for drawing attention to key lesson events that may be missed during an initial observation (Star & Strickland, 2008). Such online discussions and analyses of lesson videos provide opportunities for collaborative reflection-on-action, which is at the core of the lesson study approach. In this article, we explain how we leveraged these technological tools to support and enhance reflection by preservice and inservice teachers as they critically analyzed their own work during a cycle of lesson study.

 

Context for Lesson Study

This article describes work that took place in two lesson study groups that worked in parallel to one another. In each group, preservice and inservice teachers collaboratively designed, implemented, and analyzed lessons that integrated science and mathematics. There were two preservice science teachers and two preservice mathematics teachers in each group. The lessons they created supported teaching of the Next Generation Science Standards (NGSS; NGSS Lead States, 2013). Group 1 worked with an inservice middle school science teacher. They created a lesson about Punnett squares and the probabilities associated with potential outcomes shown in their cells (NGSS MS-LS3: “Heredity: Inheritance and Variation of Traits”). Group 2 worked with an inservice middle school mathematics teacher. They focused on a lesson requiring students to reason proportionally in scientific contexts such as examining ratios related to body length measurements and microscopic images (NGSS Crosscutting Concept of “Scale, Proportion, and Quantity”).

We used two technology-based strategies to support reflection in each group: asynchronous lesson-video analyses and synchronous debriefing sessions. Group members were prompted to analyze their lesson videos asynchronously in preparation for debriefing sessions. Debriefing sessions were then to occur during face-to-face meetings of each group. However, after each group’s lesson was implemented, the COVID-19 pandemic caused cancellations of in-person meetings. Given the situation, we devised and implemented protocols for online synchronous debriefing sessions. The placement of the asynchronous and synchronous activities within the overall lesson study cycle is shown in Figure 1. Next, we describe the nature of the synchronous and asynchronous activities and how they supported collaborative reflection.

 

Figure 1

Placement of Synchronous and Asynchronous Activities Within a Lesson Study Cycle

Asynchronous Lesson-Video Analyses

In each lesson study group, each group member implemented a portion of their collaboratively planned lesson as their entire group observed in person. They video recorded each lesson as it was taught. Each video was then uploaded to a password-protected platform (www.vimeo.com) for group members to review. We took this step because having educators analyze videos of their own lessons can foster critical self-reflection and more careful attention to student thinking (Hamel & Viau-Guay, 2019). Video review of lessons is a powerful and rapidly growing teacher education practice (Arias et al., 2020; Barth-Cohen et al., 2018, Hawkins & Park Rogers, 2016; Tripp & Rich, 2012).

We provided group members with a link and password to access their lesson video and asked them to start by reviewing it on their own. As they viewed it, they clicked on the lesson videos to add time-coded notes about the different events they believed to be significant. We asked them to add notes on what they would want to do again if teaching this lesson and also what they would want to change. Each individual did this for the portion of the lesson they taught as well as the other portions.

Figure 2 shows the interface that supported asynchronous video analyses. The play button appears in the lower left corner. As viewers played the video, they could move the pointer anywhere on the screen and click to make a comment. Figure 2 shows comments that were made about how it would have been helpful to have a word wall for students at the 20:28 mark of Group 1’s lesson. Remarks made by a preservice teacher in the group appear at the top of the pane on the right side of the figure. Another preservice teacher and the inservice teacher for the group responded to the initial comment to form a conversation thread. All of the conversation threads for the video could be viewed by scrolling through the pane on the far right or by using the vertical white hash marks at the bottom of the video screen. Each hash mark indicated a point at which viewers made comments on the video.

 

Figure 2
Online Interface Used to Support Asynchronous Analysis of Videos

As comments about the video were posted, the university faculty members who would later facilitate synchronous debriefing sessions (the first and second authors of this article) monitored the posts and offered some of their own thoughts on the lesson. We took this approach because research illustrates that knowledgeable others can add value to the lesson study process by introducing perspectives the group otherwise may not consider (Fernandez, 2002). We also monitored the discussions to check that all group members were participating and sent reminders to those who still needed to contribute. Having contributions from all group members on an array of strengths and weaknesses of each lesson helped set the stage for each group’s debriefing session.

Synchronous Debriefing Sessions

Our overarching goal for debriefing sessions was to engage participants in discourse focused on analyzing their thinking related to designing, implementing, and reflecting on each lesson. Facilitators can foster this type of discourse by asking educators to consider the impact of their teaching decisions on student learning (Santagata & Angelici, 2010). Conversations that foster discourse about lesson videos in this manner can be structured in many different ways. Next, we describe two slightly different structures we used to facilitate such debriefing sessions in a synchronous online environment.

The facilitation protocols for each debriefing session are shown in Table 1. Although debriefing sessions were conducted virtually, neither protocol strictly requires a video-conferencing platform to implement. Group 1’s debriefing session had a mix of small-group/pair and large-group interactions. Group 2’s debriefing session kept the entire group together for the duration. The debriefing sessions occurred 3–4 weeks after lesson implementation in order to allow sufficient time for group members to complete their asynchronous lesson review and tagging. Each session lasted approximately an hour and was conducted via video conferencing (www.zoom.com). Participants’ video tags were used to catalyze discussion in each debriefing session because the tags made participants’ thinking about the lesson readily visible for analysis, reflection, and critique.

 

Table 1

Two Facilitation Protocols for Lesson Study Debriefing Sessions

 

The two debriefing sessions differed in how they structured participants’ interactions. Group 1 broke into smaller groups to review all of the video tags and compile their observations about what they would and would not change when teaching the lesson again. They then reassembled for a large group discussion to share their notes and observations. Group 1’s session culminated with a discussion of an exit-ticket writing prompt about the main changes they would make to support student learning when implementing the lesson again. In Group 2, the facilitator initiated the conversation by pointing out specific lesson-video tags pertaining to content, pedagogy, and content-specific pedagogy and inviting participants to respond. The Group 2 facilitator sustained conversation throughout the session by continuing to invite comment on specific tags. Along the way, Group 2 participants were invited to share thoughts on what they would keep and what they would change when implementing the lesson again.

Each debriefing session protocol leveraged the capabilities of the Zoom conferencing platform in unique ways. In Group 1, Zoom breakout rooms were used to form smaller groups at the outset. The Group 1 facilitator visited each breakout room to provide help as the smaller groups reviewed video tags. Group 1 also made use of the Zoom whole-group chat feature at the conclusion of their session to have participants summarize key changes to make when implementing the lesson again. Group 2 members used the whole-group chat feature to share observations throughout the session as others were speaking. The Group 2 facilitator also used Zoom’s screen-sharing capabilities to play segments of video that had been tagged by group members. Key video segments were played for the group to stimulate their recall of lesson events and the tags they had assigned. Both debriefing sessions were video recorded in Zoom to allow for later analysis. Although the motivation for holding sessions on Zoom was to work around COVID-19 meeting restrictions, the capabilities can be equally valuable post-pandemic in helping facilitators overcome challenges associated with assembling preservice and inservice teachers all in one place at the same time and also in providing structure to their reflection processes.

 

Debriefing Session Discourse Themes

After the debriefing sessions occurred, we reflected upon the video recordings. In previous work, we found that debriefing session conversations foster conversations about content, pedagogy, and content-specific pedagogy (Groth et al., 2020), so we sought to determine the extent to which our synchronous online debriefing sessions had done so. To begin the process, the recordings were uploaded to the same Vimeo platform we used for storing the groups’ lessons and having them tag important events (Figure 2). Next, the third author of the paper, who was not involved with either lesson study group, viewed the videos and inserted tags to identify instances of discussion about content, pedagogy, and content-specific pedagogy. A tag was inserted whenever a new conversation related to one of the three categories began. These tags essentially helped us debrief about our debriefing sessions.

As we took inventory of tags and discussed them, we found that the two debriefing sessions differed in their emphases. Table 2 contains a summary of the number of times each type of tag was inserted. Group 1’s conversations leaned more heavily toward general pedagogy. Group 2’s session contained examples of how debriefing sessions can foster conversations about content. Each group discussed content-specific pedagogy. Next, we provide examples to illustrate how each theme entered the debriefing sessions.

 

Table 2

Frequencies of Conversation Tags Related to Content, Pedagogy, and Content-Specific Pedagogy for Each Debriefing Session

Note. Analysis of Group 1’s debriefing session resulted in a total of 23 conversation tags; analysis of Group 2’s debriefing session resulted in a total of 38 conversation tags.

 

Discussions About Content

Group 2’s discussions about content focused on ideas related to ratio and proportion. One of their lesson activities was to have students compare body lengths. In reviewing the lesson, they noticed that students at times made simple comparisons, such as saying that one person’s head was longer than another’s. The group wanted students to transition to comparisons that incorporated ratios, such as looking at the length of one’s head versus one’s overall height. The former comparison was correct, yet not helpful, in addressing the lesson goal of using proportional reasoning to make comparisons in scientific contexts. This debriefing session interaction provided a distinction useful for assessing and guiding students’ work on the lesson activities, namely, that of correct versus helpful comparisons.

Group 2 also discussed appropriate measurement techniques for the problems they had assigned. During their debriefing session, the inservice mentor teacher for the group explained she wanted students to see that some of the problems in their lesson could be approached with nonstandard units, saying, “Really, the ratio is just a comparison of, depending on what body parts you’re comparing them to…you don’t always have to have a standard unit of measure, so I was just trying to pull that into the conversation.” The university faculty member for Group 2 expanded on this thought by talking about the difference between additive and multiplicative approaches, noting that the lesson goal was for students to examine ratios of measurements to one another, regardless of the units used, rather than to subtract the smaller measurement from the larger. Later in the discussion, the group considered the number of femurs needed to measure out one’s height as an example of a ratio they wanted students to understand. This portion of the debriefing session helped clarify the mathematical reasoning goals for the lesson and hence provided a basis for later conversations about the types of pedagogy and content-specific pedagogy that would help students achieve the goals when implementing the lesson in the future.

 

Discussions About Pedagogy

Both lesson study groups talked about the extent to which their lessons captured students’ attention. Group 1 noticed that most students seemed to be focused and paying attention, but they also discussed how to get all students engaged from the start. One suggestion was to “use an attention-grabbing personal example or an example from well-known Hollywood stars right up front during the lesson.” They conjectured that students would be more motivated to delve into Punnett squares if they were used to predict traits of offspring from actual people rather than abstract entities. As they viewed their lesson video, Group 1 also identified points at which they could have paused to get all students’ attention back before moving on. Like Group 1, Group 2 discussed the opening example for their lesson. It involved having students say what they noticed and wondered about a picture showing a boy’s face with several measurements marked. The group agreed that the opening helped catch students’ attention and helped students understand their later work with ratios. Hence, Group 1 decided to alter the “opening hook” for their lesson, and Group 2 decided to retain theirs in its current form when implementing the lesson again.

Another pedagogical focus for both groups was examining their questioning. Group 1 noticed that their short, general questions such as “What?” and “Why?” did not get much student response. They became conscious of the need to create more specific questions rather than relying mostly on general ones. Group 1 was also surprised that students did not seem to notice some of the key points from a video about Punnett squares, so they decided to give students focus questions before the video when teaching the lesson next time. Specifically, they decided to use the prompt, “In this video, you will be introduced to something called a Punnett Square; write down 3 thoughts or pieces of information that you got from the video and be prepared to share.” The preservice teachers in Group 2 noticed they had trouble spontaneously devising questions to engage students during the lesson. The mentor teacher from Group 2 suggested writing some of these questions in advance and embedding them in the lesson plan.

During Group 1’s debriefing session, they considered strategies that could be used to help students learn vocabulary. They thought that building a word wall, anchor chart, or word bank could help make vocabulary more visible. Doing so might increase the chance that students would use relevant disciplinary vocabulary in their conversations with one another. The group decided to put the vocabulary for the day on a word wall as each word was introduced during the next implementation of their lesson. Students could then record the new words in their notes in a word bank. The vocabulary in the word bank would then be ready for students to use again during future lessons on Punnett Squares. These strategies could help students become more familiar with the relevant vocabulary for the lesson and increase their usage of it.

At several points during Group 2’s debriefing session, there were conversations about how to make parts of the lesson more efficient. These conversations were motivated by their observations that students ran out of time to do all of the planned lesson activities and to complete the exit ticket thoroughly at the end. The inservice mentor teacher for the group suggested putting name cards on the classroom tables ahead of time so students would immediately know where to sit and get started more quickly. Some of the activities for the lesson required students to recall who had taken measurements and what they had measured. Noticing that students took longer than expected to recall this information, one of the preservice teachers in the group suggested having students label things with their names as they worked. Others suggested using colored pencils to help code the information about the person measuring and the object measured.

Another pedagogical consideration voiced during Group 2’s debriefing session pertained to teacher modeling. Specifically, the group talked about how to improve their demonstration of the measuring techniques students were to use. During the lesson, they had shown students still pictures of one of the preservice teachers in the group taking measurements. Group 2 decided they could improve this portion of the lesson by creating a 30 s demo video to use instead during their next implementation of the lesson. They believed a video would reduce student confusion about how they were to measure and reduce the number of student questions about how to get started measuring.

 

Discussions About Content-Specific Pedagogy

Group 1’s content-specific pedagogy discussions focused on striking an optimal balance between the mathematics and science objectives for their lesson. One of the preservice teachers in the group observed, “Time was too short on Punnett squares and pedigrees—maybe we should just stick with Punnett squares and then explore the mathematics of them to make a stronger connection between mathematics and science.” Others agreed that the lesson seemed rushed because it contained too much content to address. For example, one of the preservice teachers who taught Punnett square content during the lesson suggested pausing to help students interpret the probabilities and percentages involved. The group talked about how it would be valuable for students to understand that probability gives a grounded estimate of an outcome’s occurrence, but the frequency with which the event occurs may vary slightly from that estimate. Allowing students time to do probability simulations and analyze the data could help illustrate that point. The group felt that mathematical ideas of this nature were largely left unexplored during the lesson, and they thought that going deeper into the mathematics content during the next implementation of the lesson would help students develop a better understanding of the scientific content as well.

Group 2’s content-specific pedagogy discussions centered on their observations of students’ proportional reasoning and teaching strategies they could use to help it develop. This led to a discussion about how U.S. students, in general, tend to struggle with proportional reasoning. The university faculty member for the group suggested explicitly prompting students to write how many times longer one measurement is than another rather than letting students just report how many units longer one object is than another. For example, students who say that a six-unit-long object is two units longer than a four-foot-long object could be prompted to think about how many times larger the first object is than the second. One of the preservice teachers built on this suggestion by saying students could be asked to think about how many head-lengths make up their overall height. Doing so would provide a natural transition to thinking about how many times larger overall height is compared to head height. Others suggested looking at the relationship between arm length and foot length in the same manner. The group decided to start the lesson with these types of prompts the next time they taught it to help students begin to reason proportionally.

 

Perceptions of the Lesson Study Experience

We administered a three-part survey to collect data on our groups’ perceptions of the lesson study experience. The first part of the survey gathered their descriptions of the topic, focus, and goals of the lesson study cycles. The second part asked participants to rate the degree of change in their knowledge and beliefs as a result of participating in lesson study. This part consisted of items developed by Akiba et al. (2019). We modified some of the items slightly because they were initially developed for lesson study in a mathematics education context and referred to a specific set of state standards. The modified items contained language applicable to STEM more broadly and learning standards for our state. Together, the items in the second part of the survey assessed participants’ perceptions of their knowledge growth (e.g., “I know more about how to develop a student-centered lesson”), self-efficacy (e.g., “I believe I can teach my students more effectively if I continue to engage in lesson study”), and expectations for student learning (e.g., “I learned the value of giving a challenging problem in order to show what my students are capable of”). In the final part of the survey, we asked participants to describe ways in which the use of online tools (such as Zoom) facilitated or hindered their ability to engage in effective debriefing. We also asked them to describe the strengths of the lesson study cycle and the improvements that were needed.

The survey was administered 3–4 weeks after the debriefing sessions. Based on the need to link individuals’ responses over time to address the ongoing evaluation of our lesson study project, the surveys were not anonymous. For the purposes of the present work, all data were summarized in aggregate rather than being associated with specific individuals’ names. Table 3 contains key findings and representative qualitative feedback. Responses to Part I of the survey provided evidence that participants shared clear and consistent goals (e.g., “to engage students through [an] integrated math and science lesson”) and lesson foci (e.g., “Compare different body parts to show proportionality and [determine] the change in scale without magnification”). Participants’ ratings of their growth in knowledge, self-efficacy, and expectations for student learning were strong at the conclusion of the lesson study cycle (Part II); mean scores exceeded the agree (5) response option and, in the case of self-efficacy and expectations for student learning, approached the maximum score value on the response scale.

 

Table 3

Summary Findings: Participants’ Reflections on Lesson Study

a Reflects a focus of Group 2’s lesson study cycle.

b Items were administered using a 6-point scale ranging from strongly disagree (1) to strongly agree (6).

Participants also provided meaningful reflections on the effectiveness of online facilitation of debriefing as well as the lesson study cycle as a whole. Specifically, participants appreciated the ability to work through lesson planning and initial implementation collaboratively (e.g., “Being able to go through the cycle of implementing our lesson was an interesting and [effective] teaching experience to see the effectiveness of the lesson and how to best apply it to each and every student”). They also commented on the logistics, structure, and organization of lesson study (e.g., “Picking the groups ahead of time and having very clear directions”). The majority of participants (87.50%) indicated positive views of online facilitation of lesson study debriefing, suggesting that Zoom provided a viable means to support this part of the process. Participants’ suggestions for changes and improvements centered on doing an additional cycle to build efficacy in lesson delivery, improving the compilation and dissemination of meeting notes and accomplishments, and developing better connections between science and mathematics content in lesson plans.

The survey also allowed us to assess participants’ attainment of key teacher learning outcomes. Teachers answered questions on a 6-point scale to rate their growth in learning expectations for students, knowledge, and self-efficacy. At the conclusion of the lesson study cycle, each group reported developing higher expectations for student learning (Group 1: M = 5.75, SD = 0.50; Group 2: M = 5.33, SD = 0.47). Groups also reported growth in knowledge (Group 1: M = 4.89, SD = 0.73; Group 2: M = 5.42, SD = 0.47) and self-efficacy (Group 1: M = 5.38, SD = 0.52; Group 2: M = 5.94, SD = 0.13). Given the small sample size, it is difficult to draw definitive conclusions about growth in teacher learning. However, these preliminary findings suggest potentially promising effects on key learning outcomes for participants after engaging in the types of discourse and critical self-reflection supported by the online tools and protocols we used.

 

Conclusion

Although some of the approaches we have described were designed out of necessity because of COVID-19, they are useful for more than just overcoming barriers imposed by a pandemic. In the United States, the persistent barrier of lack of time built into school days to engage in collaborative reflection can be partially overcome using the asynchronous and synchronous strategies we have described. These strategies sparked collective discourse about pedagogy, content, and content-specific pedagogy, and teachers reported improvements in their knowledge, self-efficacy, and expectations for student learning during the project. In our case, lesson study supported interdisciplinary discussions between science and mathematics teachers. However, the approaches we have described are broad and general enough to help science teachers collaborate with those in other disciplines as well. Although lesson study is perhaps most widespread in science and mathematics, teachers in several other disciplines have also found value in it (Xu & Pedder, 2015).

The work we report here was done with small groups and focuses mainly on the reflective portions of one lesson study cycle, so it represents a starting point for further investigation rather than a set of definitive conclusions. We invite others to experiment with our protocols and tools over multiple lesson study cycles and refine them as they observe their impact on teachers’ learning. Just as teachers’ practice is continually improved by engaging in multiple cycles of lesson study, tools and protocols like the ones we propose can be refined through multiple iterations of use. As such refinement occurs, the field can progressively develop increasingly more powerful approaches to fostering teachers’ learning.

Acknowledgement

This article is based upon work supported by the National Science Foundation under Grant Number DUE- 1852139. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

Akiba, M., Murata, A., Howard, C. C., & Wilkinson, B. (2019). Lesson study design features for supporting collaborative teacher learning. Teaching and Teacher Education, 77, 352–365. https://doi.org/10.1016/j.tate.2018.10.012

Arias, A., Criswell, B., Ellis, J. A., Escalada, L., Forsythe, M., Johnson, H., Mahar, D., Palmeri, A., Parker, M., & Riccio, J. (2020). The framework for analyzing video in science teacher education and examples of its broad applicability. Innovations in Science Teacher Education, 5(4). https://innovations.theaste.org/the-framework-for-analyzing-video-in-science-teacher-education-and-examples-of-its-broad-applicability/

Barth-Cohen, L. A., Little, A. J. & Abrahamson, D. (2018). Building reflective practices in a pre-service math and science teacher education course that focuses on qualitative video analysis. Journal of Science Teacher Education, 29(2), 83–101. https://doi.org/10.1080/1046560X.2018.1423837

Cajkler, W., Wood, P., Norton, J., & Pedder, D. (2014). Lesson study as a vehicle for collaborative teacher learning in a secondary school. Professional Development in Education, 40(4), 511–529. https://doi.org/10.1080/19415257.2013.866975

Fernandez, C. (2002). Learning from Japanese approaches to professional development: The case of lesson study. Journal of Teacher Education, 53(5), 393–405. https://doi.org/10.1177/002248702237394

Fischman, D., & Wasserman, K. (2017). Developing assessment through lesson study. Mathematics Teaching in the Middle School, 22(6), 344–351. https://doi.org/10.5951/mathteacmiddscho.22.6.0344

Fujii, T. (2014). Implementing Japanese lesson study in foreign countries: Misconceptions revealed. Mathematics Teacher Education and Development, 16(1), 65–83. https://mted.merga.net.au/index.php/mted/article/view/206

Groth, R. E. (2011). Improving teaching through lesson study debriefing. Mathematics Teacher, 104(6), 446–451. https://doi.org/10.5951/MT.104.6.0446

Groth, R. E., Bergner, J. A., Weaver, S. D., & Welsh, G. S. (2020). Using Japanese lesson study to merge inservice professional development and preservice clinical experiences. The Clearing House, 93(2), 93–99. https://doi.org/10.1080/00098655.2020.1729082

Hamel, C., & Viau-Guay, A. (2019). Using video to support teachers’ reflective practice: A literature review. Cogent Education, 6(1), Article 1673689. https://doi.org/10.1080/2331186X.2019.1673689

Hawkins, S., & Park Rogers, M. (2016). Tools for reflection: Video-based reflection within a preservice community of practice. Journal of Science Teacher Education, 27(4), 415–437. https://doi.org/10.1007/s10972-016-9468-1

Huang, R., & Shimizu, Y. (2016). Improving teaching, developing teachers and teacher educators, and linking theory and practice through lesson study in mathematics: An international perspective. ZDM: Mathematics Education, 48(4), 393–409. https://doi.org/10.1007/s11858-016-0795-7

Jacobs, V. R., Lamb, L. L. C., & Philipp, R. A. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169–202. https://www.jstor.org/stable/20720130

Lewis, J. M. (2016). Learning to lead, leading to learn: How facilitators learn to lead lesson study. ZDM: Mathematics Education, 48(4), 527–540. https://doi.org/10.1007/s11858-015-0753-9

Lewis, C. C., & Hurd, J. (2011). Lesson study step by step: How teacher learning communities improve instruction. Heinemann.

Lewis, C. C., Perry, R. R., & Hurd, J. (2009). Improving mathematics instruction through lesson study: A theoretical model and North American case. Journal of Mathematics Teacher Education, 12(4), 285–304. https://doi.org/10.1007/s10857-009-9102-7

NGSS Lead States. (2013). Next generation science standards: For states, by states. National Academies Press. https://doi.org/10.17226/18290

Ricks, T. E. (2011). Process reflection during Japanese lesson study experiences by prospective secondary mathematics teachers. Journal of Mathematics Teacher Education, 14(4), 251–267. https://doi.org/10.1007/s10857-010-9155-7

Santagata, R., & Angelici, G. (2010). Studying the impact of the lesson analysis framework on preservice teachers’ abilities to reflect on videos of classroom teaching. Journal of Teacher Education, 61(4), 339–349. https://doi.org/10.1177/0022487110369555

Saucerman, J., Ruis, A. R., & Shaffer, D. W. (2017). Automating the detection of reflection-on-action. Journal of Learning Analytics, 4(2), 212–239. https://doi.org/10.18608/jla.2017.42.15

Schön, D. A. (1987). Educating the reflective practitioner: Toward a new design for teaching and learning in the professions. Jossey-Bass.

Sibbald, T. (2009). The relationship between lesson study and self-efficacy. School Science and Mathematics, 109(8), 450–460. https://doi.org/10.1111/j.1949-8594.2009.tb18292.x

Star, J. R., & Strickland, S. K. (2008). Learning to observe: Using video to improve preservice teachers’ ability to notice. Journal of Mathematics Teacher Education, 11(2), 107–125. https://doi.org/10.1007/s10857-007-9063-7

Stigler, J. W., & Hiebert, J. (2009). Closing the teaching gap. Phi Delta Kappan, 91(3), 32–37. https://doi.org/10.1177/003172170909100307

Tripp, T. R., & Rich, P. J. (2012). The influence of video analysis on the process of teacher change. Teaching and Teacher Education, 28(5), 728–739. https://doi.org/10.1016/j.tate.2012.01.011

Watanabe, T. (2002). Learning from Japanese lesson study. Educational Leadership, 59(6), 36–39.

Xu, H., & Pedder, D. (2015). Lesson study: An international review of the research. In P. Dudley (Ed.), Lesson study: Professional learning for our time (pp. 29–58). Routledge. https://doi.org/10.4324/9780203795538-2

Introducing Preservice Science Teachers to Computer Science Concepts and Instruction Using Pseudocode

Citation
Print Friendly, PDF & Email

Brauer, K., Kruse, J., & Lauer, D. (2020). Introducing preservice science teachers to computer science concepts and instruction using pseudocode. Innovations in Science Teacher Education, 5(2). Retrieved from https://innovations.theaste.org/introducing-preservice-science-teachers-to-computer-science-concepts-and-instruction-using-pseudocode/

by Kayla Brauer, Drake University; Jerrid Kruse, Drake University; & David Lauer, Drake University

Abstract

Preservice science teachers are often asked to teach STEM content. While coding is one of the more popular aspects of the technology portion of STEM, many preservice science teachers are not prepared to authentically engage students in this content due to their lack of experience with coding. In an effort to remedy this situation, this article outlines an activity we developed to introduce preservice science teachers to computer science concepts such as pseudocode, looping, algorithms, conditional statements, problem decomposition, and debugging. The activity and discussion also support preservice teachers in developing pedagogical acumen for engaging K-12 students with computer science concepts. Examples of preservice science teachers’ work illustrate their engagement and struggles with the ideas and anecdotes provide insight into how the preservice science teachers practiced teaching computer science concepts with 6th grade science students. Explicit connections to the Next Generation Science Standards are made to illustrate how computer science lessons within a STEM course might be used to meet Engineering, Technology, and Application of Science standards within the NGSS.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

American Association for the Advancement of Science. (2000). Project 2061, Science for all Americans.

Ballen, S. (2007, December 26). Whac-a-mole [Video file]. Retrieved from https://www.youtube.com/watch?v=K-jaOfIHGko

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Paper presented at the American Educational Research Association. Canada: British Columbia.

Kafai, Y. B., & Burke, Q. (2013). Computer programming goes back to school. Phi Delta Kappan, 95(1), 61.

Kotsopoulos, D., Floyd, L., Khan, S., Namukasa, I. K., Somanath, S., Weber, J., & Yiu, C. (2017). A pedagogical framework for computational thinking. Digital Experiences in Mathematics Education, 3, 154-171.

Kruse, J., Edgerly, H., Easter, J., & Wilcox, J. (2017). Myths about the nature of technology and engineering. The Science Teacher84(5), 39.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.

Papert, S., & Harel, I. (1991). Constructionism: Ablex publishing corporation.

Roggio, B. (2014, Dec 27). Pseudocode examples. Retrieved from https://www.unf.edu/~broggio/cop2221/2221pseu.htm

Rubinstein, A., & Chor, B. (2014). Computational thinking in life science education. PLoS computational biology, 10(11), e1003897.

Vygotsky, L. S. (1978). Mind in society. Cambridge: Harvard University Press.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127-147.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: pedagogical approaches to embedding 21st century problem solving in K-12 classrooms. TechTrends, 60, 565-568.

Introducing ‘Making’ to Elementary and Secondary Preservice Science Teachers Across Two University Settings

Citation
Print Friendly, PDF & Email

Rodriguez, S. R., Fletcher, S. S., & Harron, J. R. (2019). Introducing ‘making’ to elementary and secondary preservice science teachers across two university settings. Innovations in Science Teacher Education, 4(4). Retrieved from https://innovations.theaste.org/introducing-making-to-elementary-and-secondary-preservice-science-teachers-across-two-university-settings/

by Shelly R. Rodriguez, The University of Texas, Austin; Steven S. Fletcher, St. Edwards University; & Jason R. Harron, The University of Texas, Austin

Abstract

‘Making’ describes a process of iterative fabrication that draws on a DIY mindset, is collaborative, and allows for student expression through the creation of meaningful products. While making and its associated practices have made their way into many K-12 settings, teacher preparation programs are still working to integrate making and maker activities into their courses. This paper describes an end-of-semester maker project designed to introduce preservice science teachers to making as an educational movement. The project was implemented in two different higher education contexts, a public university secondary STEM introduction to teaching course and a private university elementary science methods course. The purpose of this article is to share this work by articulating the fundamental elements of the project, describing how it was enacted in each of the two settings, reviewing insights gained, and discussing possibilities for future iterations. The project’s instructional strategies, materials, and insights will be useful for those interested in bringing making into science teacher preparation.

Keywords: constructionism; making; preservice; project-based; science education

Introduction

Over the past decade, there has been a surge of interest in how the field of education can benefit from the tools, processes, and practices of making (e.g., Clapp, Ross, Ryan, & Tishman, 2016; Fields, Kafai, Nakajima, Goode, & Margolis, 2018; Halverson & Sheridan, 2014; Stager & Martinez, 2013). Drawing from a “do it yourself” (DIY) mindset, classroom-based making can be defined as an iterative process of fabrication that allows students to express themselves through the creation of personally meaningful products that are publicly shared (Rodriguez, Harron, & DeGraff, 2018). Like traditional science and engineering practices, making involves the building of models, theories, and systems (NSTA, 2013). However, in contrast to these practices, making explicitly emphasizes the development of personal agency and student empowerment through creative, hands-on learning experiences that are both exciting and motivating (Clapp et al., 2016; Maker Education Initiative, n.d.). A shift towards maker-centered learning provides an opportunity to rethink how we prepare science educators with the aim of bringing more student-driven and personally meaningful experiences to their instructional practice.

Comparable to project-based learning (PBL) and other inquiry-based teaching practices, classroom making involves learning by doing. Maker-centered learning shares many elements found in High Quality Project Based Learning (HQPBL, 2018) which suggests that projects should include intellectual challenge and accomplishment, authenticity, collaboration, project management, the creation of a public product, and reflection. These elements overlap significantly with features of classroom-based making (Rodriguez, Harron, Fletcher, & Spock, 2018). However, maker-centered learning draws specifically on the theoretical underpinnings of constructionism (Papert, 1991), where learners gain knowledge as they actively design and build tangible digital or physical objects. Furthermore, maker-centered learning places emphasis on the originality and personal meaning of creations, the productive use of tools and materials in fabrication, the process of iterative design, and the development of a maker mindset that is growth-oriented and failure positive (Martin, 2015). Thus, in maker-centered learning, the skills of construction and design are acquired alongside the content.

There are several examples of the tools and materials associated with making being used as a way to help students explore the natural world (Bevan, 2017; Peppler, Halverson, & Kafai, 2016). For example, the use of copper tape, LEDs, and coin cell batteries have provided an avenue for science teachers to introduce circuits through the creation of interactive pop-up books and user-friendly paper circuit templates (Qi & Buechley, 2010, 2014). Sewable circuits, which use conductive thread, have been shown to improve student interest in science (Tofel-Grehl et al., 2017) and can be used in conjunction with embedded electronics, such as the Arduino-based Lilypad, to introduce computer science through the creation of e-textiles (Fields et al., 2018). However, not all making is digital. Making also includes traditional work such as welding, sewing, wood working, and other techniques that exist outside of the computational world.

The National Science Foundation (NSF) has acknowledged the potential of making to foster innovation, increase student retention, and broaden participation in science, technology, engineering, and mathematics (STEM) (National Science Foundation, 2017). However, more must be done to prepare future science educators to implement these practices in their classrooms. A national survey found that only half of undergraduate teacher preparation programs in the United States provided an opportunity to learn about maker-education and the associated technologies, and that only 17% had a makerspace available to their preservice teachers (Cohen, 2017). As such, many future educators are not exposed to formal training or professional development related to making. Since science teachers often uptake and implement the inquiry-based practices with which they have personal experience (Windschitl, 2003), a lack of exposure to maker-centered pedagogies may leave future educators unaware of the potential benefits of these innovations for their students.

This paper describes an end-of-semester project designed to introduce students to making as an educational movement. The project was implemented in two different settings. One was an introductory course offered as part of a secondary STEM teacher preparation program at a large public research university. The other was a science methods course designed for preservice elementary teachers offered at a private university. The purpose of this article is to share our work by articulating the fundamental elements of the project, describing the project as enacted in these two settings, reviewing insights gained, and discussing possibilities for future iterations.

The Maker Project

The maker project described in this paper was introduced four years ago in a secondary STEM teacher preparation course for a number of reasons. The first was to expose novice teachers to the practice of using open-ended projects with high levels of personal agency to uncover student ideas. The second was to spark creativity in the preservice teachers and engage them in the act of authentic problem solving. The final reason was to provide an opportunity for preservice teachers to interact with up-to-date educational tools that they may encounter in schools. Two years later, an elementary science methods course housed in a private university adopted this activity for similar reasons, with the additional hope of increasing preservice teacher self-efficacy around science content and tool use – a noted deficiency in the literature (Menon & Sadler, 2016; Rice & Roychoudhury, 2003; Yoon, et al., 2006).

The following section outlines strategies used to implement the project in the two different science teacher preparation settings. The fundamental elements of the project in both settings include: a) an introduction to making; b) a station activity to expose students to new technologies and materials; c) an open-ended construction task; d) extended out of class time to create a personally meaningful artifact; e) the public presentation of work to classmates, instructors, and guests; and f) reflections for the classroom. Table 1 provides description of each setting and an overview of how the project features were enacted.

Table 1 (Click on image to enlarge)
Project Features in Each Context

Context Specific Implementation

Implementation in an introductory secondary STEM teacher preparation course

The introductory secondary STEM teacher preparation course is a 90-minute, one credit hour class in a large R1 university in central Texas. It meets once a week with approximately 25 students in each of five sections. The class is considered a recruitment course and is designed to give STEM majors the chance to try out teaching. In this class, students observe and teach a series of STEM lessons in local elementary schools. Those choosing to continue with the program will go on to teach in middle and high school settings and ultimately earn their teaching certification in a secondary STEM field. In the Fall of 2018, 53% of the students in the course were female and 47% male. 64% were underclassmen, 36% were either juniors, seniors, or post baccalaureate students, and 59% had either applied for or were receiving financial aid. 46% were science majors, 16% were math majors, 11% were computer science and engineering majors, 4% were degree holders, and the remaining students were assigned to other majors or undecided.

In class. The maker project in this course began with a project introduction day occurring approximately three weeks from the end of the semester. To start, students were introduced to the concept of making through a video created by Make: magazine and presented with a prompt, “What is making?”, to think about as they watch the video (Maker Media, 2016). The video describes making as a DIY human endeavor that involves creating things that tell a personal story. After the video screening, students engaged in a Think-Pair-Share activity where they discussed the initial prompt in small groups and shared ideas in a whole class discussion, often describing making as personal, innovative, open-ended, and challenging (See Figure 1).

Figure 1 (Click on image to enlarge). Student ideas about making.

Next, the criteria for the final maker project was provided. The specific prompt for this project asked students to reflect on their teaching experience and to make an artifact that illustrated the story of their growth over the semester. Students were shown examples of what others had created in previous semesters. Some past projects featured traditional construction and craft materials such as woodworking and papier-mâché while others included digital tools such as 3D printing, block-based coding, and Arduinos. Students were also shown examples of maker projects as enacted in STEM classrooms such as activities that have K-12 pupils creating museum exhibits to learn about properties of water, using paper circuits to create illuminated food webs, and creating interactive cell models using a Makey Makey.

After reviewing project examples, time was spent introducing the class to several digital technologies through a stations activity. Though digital technologies were not given preference for the project, this activity was an opportunity to have students explore some of the digital tools that encourage invention in the classroom. The class was broken into groups and each group was given ten minutes to explore various digital tools and resources including Scratch, Instructables, Makey Makey, and Circuit Playground (See Appendix A). Preservice teachers farther along in the teacher preparation program facilitated the stations and helped current students explore the new technologies. A handout of useful websites and a place to make notes at each station was also provided (See Appendix B). Students rotated stations such that by the end of the activity they had briefly explored each of the technologies. The final part of the project introduction day was a reflective table talk that occurred after the station activity. At this time, students talked with their classmates and discussed ideas for their final maker project. They were encouraged to connect their project to something they cared about or a specific interest.

Out of class. Students were given two weeks to independently complete their maker projects. Students were free to incorporate traditional skills such as crafts, sewing, knitting, wood working, or metal working in their creation. They were also free to use the digital tools explored in class, or to combine digital and traditional tools to make something new. There was no additional class time provided however, the instructor and TA were available to help students outside of class. Students were encouraged to upcycle, or creatively reuse materials they already had, in creating their projects. Additionally, students were provided with a list of campus locations where they had free access to fabrication tools such as 3D printers, laser cutters, and sewing machines. The students had access to a workroom with traditional school supplies and a suite of recycled materials. Students could also check out digital tools from the program inventory. All of these items were available to them at no cost.

Presentation and reflection. On the last day of class, students presented their creations via a gallery walk format with half of the class presenting at one time and the other half circulating and serving as the audience. Students in the course produced a wide array of personally significant artifacts each of which told a story about their specific experience. Other preservice teachers, staff, and instructors from the program were invited to the presentations giving each student the opportunity to exhibit their work to a large audience. At the end of the presentation session, students completed a short reflection on making, classroom applications, and the project experience. Complete instructional materials for this maker project can be found at https://tinyurl.com/maker-final-project.

Implementation in an elementary science methods course

Elementary Science Methods (ESM) is a required course for all students seeking EC-6 teacher certification at a private liberal arts institution in central Texas. ESM is a 75-minute class that meets twice each week on the university campus in a general science lab. It is offered in the fall semester only and typically enrolls 24 students.  Students are predominantly in their final year of the preparation program before student teaching and ESM is one of two science classes required for their graduation from the institution. In the Fall of 2018, there were 23 total students in the ESM course. Twenty-two (96%) of the students in the course were female and one (4%) was male. Two (8%) of the students were sophomores and twenty-one (92%) were either juniors or seniors. Fourteen students (61%) were elementary teaching majors, eight (35%) were special education teacher majors, and the remaining student (4%) was preparing to become a bilingual elementary teacher.

Inspired by the project described above, the ESM maker final project was added to the syllabus three years ago to address specific issues observed from previous semesters of work with elementary science teachers in this context. First, many of the students in prior iterations of ESM had low self-efficacy about their ability to learn and teach science. Thus, one goal for implementing a maker project was to boost student confidence by engaging in a creative activity with a concrete product related to a science concept. Two additional goals relate to the original project from the secondary program: To introduce students to current knowledge around emerging trends in technology and science and to stimulate discussion around the value and challenges of authentic inquiry as a means for student learning and engagement. Since the act of making requires a personal commitment to the production of a product, the instructor hoped that this activity would enliven student curiosity and demonstrate the value of open-ended projects for their own elementary classrooms.

In class. As with the secondary STEM maker project, this project was framed as a culminating experience introduced near the end of the semester. Similarly, the first day of the lesson began with a video introduction to making. The lesson also included a rotating station activity with a supporting handout. Due to resource availability and focus on elementary school outcomes, the instructor modified the content of the stations. For this iteration, a paper circuits station and a bristlebot station were substituted for the Circuit Playground and Scratch stations. Emphasis was placed on exploration and play at each station and developing a sense of wonder around the materials or ideas. At the end of the class, groups shared what they noticed about the various activities in small groups and the instructor introduced the project options to the class. Students were given a choice to either: a) create a product that documented learning to use a tool or product that would demonstrate its possible usefulness in elementary science, or b) investigate an aspect of making, write a summary of the research, and create a visual product highlighting what they learned.

The second day of the lesson began with a recap of the project criteria. The criteria for this project, while open-ended to allow for authentic, personally meaningful work, included specific elements that related to state standards for elementary science, attention to safety, a projected calendar and a pre-assessment of how project goals and outcomes related to available tools, equipment, and resources to complete the work (see Appendix C). Students were given time to consider potential project options and discuss their ideas with their peers and instructor.

Out of class. Students were provided three weeks to complete the project before the culminating presentation. This timeframe included the Thanksgiving holiday and many students worked on their product at home.  During the last week of classes, the students were given an additional class day to share their projects in an unfinished state for feedback, to revise and refine their ideas, and to borrow tools from the supply cabinet for completion.

Presentation and reflection. During the final exam period, student products were set up and shared with peers and instructor in a maker exhibition. As in the secondary setting, the project presentations took place science fair style with half of the students presenting and half serving as the audience at any one time. Students also completed a written reflection discussing challenges, reiterating connections to science standards, and reflecting on lessons learned from the experience.

Insights from Project Implementation

While there was no formal data collection included as part of this project, student products and reflections from each setting provide initial insights. Figure 2 provides an overview of general insights as well as those specific to each context.

Figure 2 (Click on image to enlarge). An overview of maker project insights.

General Insights

The two contexts for maker project implementation differed significantly. However, insights emerged that were common to both settings. First, in both contexts, the preservice teachers developed a wide range of products including both high- and low-tech creations (see Appendix D). Figure 3 shows: a) a DIY water filtration system; b) an interactive neuron model; c) a series of origami swans; d) soldered paper circuit holiday cards e); a fluidized air bed; and f) an interactive model of a new “teacher” with makey makey fruit controls and related story.

Figure 3 (Click on image to enlarge). A range of student-generated maker projects.

The work produced for this project was personally connected to the interests and motivations of the makers and rooted in the students’ own lives. Second, reflections from preservice teachers in both courses indicate that, through this project, many students experienced the importance of persistence and adaptability when encountering challenges. The open-ended nature of the project turned out to be one of its most important elements as it challenged students develop an original idea and then persist and adapt to bring their idea to life. Third, in both contexts, many preservice teachers described a sense of accomplishment and enjoyment stemming from the creation and presentation of their work. Finally, students in both courses made connections between their maker experience and the process of teaching and learning. Table 2 shows comments from student reflections related to these themes.

Table 2 (Click on image to enlarge)
Student Comments From Both Maker Project Settings

Additionally, in both settings, the project encouraged some students to take making further. In the secondary setting, multiple students went on to join the maker micro-credentialing program offered by the teacher preparation program. In the elementary setting, several students completed independent projects in the area of making. For example, two students collected data, worked with university faculty and teachers at local makerspaces, and presented their findings on supporting special needs students in making at a local maker education conference.

Insights from an Introductory Secondary STEM Teacher Preparation Course

Written reflections indicate that many members of the secondary STEM teacher preparation course developed a deeper understanding of the nature of making. As an example, one student wrote that “I thought that making was all about electronics and coding but there is so much more…it generates your own creativity and interests.” Another student wrote, “Making is about putting one’s experiences and passions into a project. Making adds a sense of ownership and differentiation.” This was a first exposure to making for most students and their reflections indicate that the project helped them develop a personal conception of what it means to make.

Second, this project helped model the creation of a safe space for exploration and failure for these students. The class mantra during this project was “You can’t get it wrong” and student reflections illustrated their connection with this part of a maker mindset. For example, one student commented, “Making is about growing as an explorer. Making is not being afraid to fail! At the beginning I thought making was trivial but I now see the importance of hands on learning as a chance to really fail.”  Another student said, “During creating, I asked myself ‘Am I doing it right?’ ‘Is this fine?’ and when I was presenting I realized ‘this is totally fine, there is no right or wrong’.” This positive message about failure is not one that STEM undergraduates at large public universities often hear. Thus, for this group, the project provided an essential model for rewarding effort over the commonly prioritized final product.

Insights from an Elementary Science Methods Course

The elementary preservice teachers in the three-hour course showed increased confidence with a wide array of maker tools and equipment such as soldering irons, electronics, and woodworking equipment. The open-ended nature of the assignment allowed students in this course to make a range of high-level products, from a 2D model of a neural cell that used different colored LED’s to show how a neural impulse moves, to holiday cards, to a fluidized airbed. Reflections indicate that many students felt increased confidence with equipment related to their projects. One student commented, “I never thought I’d be able to solder, but after connecting the LED’s to the paper circuit holiday cards, I can do it!  Thanks for giving me the chance to learn this. I want to try making jewelry next.”

The students in the ESM course also made specific connections to teaching science in the elementary context. Student reflections show that they honed in on ideas of agency and engagement as central features of making that would motivate them to do projects of this kind with their future pupils. For example, one student said, “I am totally going to use making in my science classroom because it makes students take responsibility for their own learning and gives them ownership of their work.” Another student wrote, through making “you can make science fun and creative for students allowing them to take control of creating whatever they can dream of.” These reflections illustrate the potential of this project to influence the classroom instruction of these future teachers.

Finally, one unique outcome was that many members of the elementary group experienced making as an opportunity to create with friends and family. The project implementation in this setting coincided with the Thanksgiving holiday, giving many students the opportunity to work with parents or friends. For example, one student shared the specifics of her maker journey with permission.  When the project was introduced, she considered making something for her father as a holiday gift. She initially wanted to learn how to create fly-fishing flies based on her father’s love of fishing. However, the costs of buying materials were prohibitive. A chance visit to a website that showed a video demonstrating the non-Newtonian nature of a fluidized airbed then excited her to consider making her own model to demonstrate this fascinating phenomenon.  After checking that the proper equipment to make a small model was available in her family garage, she traveled home for Thanksgiving with initial instructions.  She worked with her father over the break to bring her creation to life. Like many maker projects, the initial results required refinement. Challenges included compressor issues as well as using the wrong substrate for the bed material. However, she persisted and was able to present her model at the maker exhibition with pride. The student’s build is documented in this video. It highlights her energy and enthusiasm for the work. She recently shared with Steve that she will be refining her initial attempt again, having secured a bigger compressor and better substrate.

While making is a journey that differs for each maker, many of the students in the ESM class included a significant other in their building process. This was an unexpected outcome and may have led to more collaborative and ambitious creations. This insight highlights the potential of making as a community-building endeavor.

Project Management

It should be noted that some students were challenged by the technical details and time required to produce a working product so it is important to provide extended time and to include out of class support. This might include additional office hours and partnering with more advanced students to provide technical support. Consider working with campus engineering, art, or instructional technology departments to find others willing to help with advice on construction and tool use. In addition, instructors should consult with appropriate university departments concerning risk management strategies to ensure student safety. Requiring students who plan to use equipment with potential risk in their projects (woodworking or metalworking equipment for example) to complete safety training is highly recommended. The Occupational Safety and Health Administration provides guidelines for safe hand and power tool use (OSHA, 2002).

Regular check-ins with students are also useful. Instructors implementing this type of activity might encourage students to complete weekly reflections and upload photos to document the evolution of their process. Including documentation practices of this kind models the use of electronic platforms, such as Blackboard or Canvas, now common in many school districts, as portfolio systems that can be used to capture and share the ongoing work of their K-12 pupils.

Discussion

The culminating maker project was an open-ended assignment where students were invited to: a) make an artifact related to STEM teaching; b) present their product publicly; c) reflect on their work; and d) consider classroom applications. In the process of creation and making, the students explored new digital, craft, and construction technologies and created a product of personal significance. Through making, students in the class experienced fundamental aspects of creativity, agency, persistence, and reflection.  These attributes are essential elements of 21st century learning and are traits that early-career K-12 science teachers are expected to model and train their own pupils to embody.  Furthermore, when students integrate scientific practices, disciplinary core ideas, and crosscutting concepts in the authentic products they create, then maker-centered instruction can facilitate NGSS three-dimensional learning principles in a personally meaningful way (National Research Council, n.d.).

This open-ended maker project is adaptable to varied contexts thus, the expertise and goals of the instructor or facilitator will likely shape the student experience. For example, in this project, students reflected on their growth as educators but with a different set of criteria in each setting. For the secondary students who were majoring in a STEM field, self-efficacy around science content was not an issue. Because the course was only one-credit hour, creativity and effort producing an open-ended product was emphasized. Additionally, the TA for this course was well-versed in maker-related electronics and provided extra support to students attempting novel projects with these tools. In the Elementary Science Methods course, the instructor focused on connections to science standards and building confidence in the use of basic tools, with which he had extensive experience. Thus, this project can be used to achieve a wide array of outcomes and instructors should be thoughtful about their project aims from the start, paying special attention to providing a wide range of practice, play, and examples from the maker world. Connecting to local makers, artisans, and craftsman can expand the project’s reach.

Furthermore, in both courses, equitable teaching and learning are addressed during other activities. However, because making is often situated in a privileged and gendered paradigm (Vossoughi, Hooper, & Escudé, 2016), future iterations of this activity could include an element that explicitly examines how students can negotiate the opportunities and challenges of the activity in diverse classroom settings. Explicit reflections on equity and readings on these issues as they relate to maker education would be productive additions for future iterations.

Conclusion

Tenacity in the face of adversity is a common trait among successful teachers who must evaluate and adapt their teaching to new situations on a daily basis, and who undoubtedly fail many times but use those failures to learn and grow. In the same way, this culminating maker project was scary, messy, exciting, and inspiring. While student projects rarely turned out as planned, student reflections suggest that the experience helped them to value and embrace this ill structured process. As future teachers, this maker experience may be critical in helping our newest practitioners envision a classroom space where students are personally connected to content, have ownership of their learning, are given the freedom to explore and create without fear, and are encouraged to persist in the face of challenges. In this way, including a project that addresses elements of making and fosters a maker mindset can be a valuable step toward preparing preservice teachers to bring innovative and inspirational practices to science education.

Acknowledgement

This article was developed in connection with the UTeach Maker program at The University of Texas at Austin. UTeach Maker is funded in part by a Robert Noyce Teacher Scholarship grant from the National Science Foundation (1557155). Opinions expressed in this submission are those of the authors and do not necessarily reflect the views of The National Science Foundation.

References

Bevan, B. (2017). The promise and the promises of making in science education. Studies in Science Education, 53(1), 75-103. doi:10.1080/03057267.2016.1275380

Clapp, E. P., Ross, J., Ryan, J. O., & Tishman, S. (2016). Maker-centered learning: Empowering young people to shape their worlds. San Francisco, CA: Jossey-Bass

Cohen, J. (2017). Maker principles and technologies in teacher education: A national survey. Journal of Technology in Teacher Education, 25(1), 5-30. Retrieved from https://www.learntechlib.org/p/172304

Fields, D. A., Kafai, Y., Nakajima, T., Goode, J., & Margolis, J. (2018). Putting making into high school computer science classrooms: Promoting equity in teaching and learning with electronic textiles in exploring computer science, Equity & Excellence in Education, 51(1), 21-35. doi:10.1080/10665684.2018.1436998

Halverson, E. R., & Sheridan, K. M. (2014). The maker movement in education. Harvard Educational Review, 84, 495-504. doi:10.17763/haer.84.4.34j1g68140382063

High Quality Project Based Learning (HQPBL) (2018). A framework for high quality project based learning. Retrieved from https://hqpbl.org/wp-content/uploads/2018/03/FrameworkforHQPBL.pdf

Make. (March 30, 2016). What is a maker? [Video file]. Retrieved from https://www.youtube.com/watch?v=rUoZwuSDikY

Maker Education Initiative (n.d.). Approach. Retrieved from http://makered.org/about-us/approach/

Martin, L. (2015). The promise of the maker movement for education. Journal of Pre-College Engineering Education Research, 5(1), 30-39. doi:10.7771/2157-9288.1099

Menon, D., & Sadler, T. D. (2016).  Preservice elementary teachers’ science self-efficacy beliefs and science content knowledge.  Journal of Science Teacher Education, 27, 649-673.  doi:10.1007/s10972-016-9479-y

National Research Council (NRC). (n.d.). Three Dimensional Learning. Retrieved from https://www.nextgenscience.org/three-dimensions

National Science Foundation (NSF). (2017). The National Science Foundation and making. Retrieved from https://www.nsf.gov/news/news_summ.jsp?cntn_id=131770

National Science Teacher Association (NSTA). (2013). Science and engineering practices. Arlington, VA: Achieve, Inc. Retrieved from http://static.nsta.org/ngss/MatrixOfScienceAndEngineeringPractices.pdf

Papert, S. (1991). Situating constructionism. In I. Harel & S. Papert (Eds.), Constructionism (pp. 1-11). Norwood, NJ: Ablex Publishing Corporation.

Peppler, K., Halverson, E., & Kafai, Y. B. (2016). Chapter 1: Introduction to this volume. In K. Peppler, E. Halverson, & Y. B. Kafai (Eds.), Makeology: Makerspaces as learning environments (Vol. 1, pp. 1-11). New York, NY: Routledge.

Rice, D. C., & Roychoudhury, A. (2003). Preparing more confident preservice elementary science teachers: One elementary science methods teacher’s self-study. Journal of Science Teacher Education, 14, 97–126. doi:10.1023/A:1023658028085

Rodriguez, S., Harron, J., Fletcher, S., & Spock, H. (2018). Elements of making: A framework to support making in the science classroom. The Science Teacher, 85(2), 24-30.

Rodriguez, S. R., Harron, J. R., & DeGraff, M. W. (2018). UTeach Maker: A micro-credentialing program for preservice teachers. Journal of Digital Learning in Teacher Education, 34(1), 6-17. doi:10.1080/21532974.2017.1387830

Qi, J., & Buechley, L. (2010, January). Electronic popables: Exploring paper-based computing through an interactive pop-up book. In Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction (pp. 121-128). ACM.

Qi, J., & Buechley, L. (2014, April). Sketching in circuits: Designing and building electronics on paper. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1713-1722). ACM.

Stager, G., and Martinez, S. L. (2013). Invent to learn: Making, tinkering, and engineering in the classroom. Torrance, CA: Constructing Modern Knowledge Press.

Tofel-Grehl, C., Fields, D., Searle, K., Maahs-Fladung, C., Feldon, D., Gu, G., & Sun, C. (2017). Electrifying engagement in middle school science class: Improving student interest through e-textiles. Journal of Science Education and Technology26, 406-417.

Vossoughi, S., Hooper, P. K., & Escudé, M. (2016). Making through the lens of culture and power: Toward transformative visions for educational equity. Harvard Educational Review86, 206-232. doi:10.17763/0017-8055.86.2.206

Windschitl, M. (2003). Inquiry projects in science teacher education: What can investigative experiences reveal about teacher thinking and eventual classroom practice?. Science education, 87(1), 112-143. doi:10.1002/sce.10044

Yoon, S., Pedretti, E., Pedretti, L., Hewitt, J., Perris, K., & Van Oostveen, R. (2006). Exploring the use of cases and case methods in influencing elementary preservice science teachers’ self-efficacy beliefs. Journal of Science Teacher Education, 17, 15–35. doi:10.1007/s10972-005-9005-0

 

Cobern and Loving’s Card Exchange Revisited: Using Literacy Strategies to Support and Enhance Teacher Candidates’ Understanding of NOS

Citation
Print Friendly, PDF & Email

Allaire, F.S. (2018). Cobern and Loving’s card exchange revisited: Using literacy strategies to support and enhance teacher candidates’ understanding of NOS. Innovations in Science Teacher Education, 3(3). Retrieved from https://innovations.theaste.org/cobern-and-lovings-card-exchange-revisited-using-literacy-strategies-to-support-and-enhance-teacher-candidates-understanding-of-nos/

by Franklin S. Allaire, University of Houston-Downtown

Abstract

The nature of science (NOS) has long been an essential part of science methods courses for elementary and secondary teachers. Consensus has grown among science educators and organizations that developing teacher candidate’s NOS knowledge should be one of the main objectives of science teaching and learning. Cobern and Loving’s (1998) Card Exchange is a method of introducing science teacher candidates to the NOS. Both elementary and secondary teacher candidates have enjoyed the activity and found it useful in addressing NOS - a topic they tend to avoid. However, the word usage and dense phrasing of NOS statements were an issue that caused the Card Exchange to less effective than intended. This article describes the integration of constructivist cross-curricular literacy strategies in the form of a NOS statement review based on Cobern and Loving’s Card Exchange statements. The use of literacy strategies transforms the Card Exchange into a more genuine, meaningful, student-centered activity to stimulate NOS discussions with teacher candidates.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

American Association for the Advancement of Science (AAAS). (1993). Benchmarks for Science Literacy: Project 2061. New York: Oxford University Press.

Ardasheva, Y., Norton-Meier, L., & Hand, B. (2015). Negotiation, embeddedness, and non-threatening learning environments as themes of science and language convergence for English language learners. Studies in Science Education, 51, 201-249.

Ardasheva, Y., & Tretter, T. (2017). Developing science-specific, technical vocabulary of high school newcomer English learners. International Journal of Bilingual Education and Bilingualism, 20, 252-271.

Clough, M. (2011). Teaching and Assessing the Nature of Science. The Science Teacher, 78(6), 56-60.

Cobern, W. W. (1991). Introducing Teachers to the Philosophy of Science: The Card Exchange. Journal of Science Teacher Education, 2(2), 45-47.

Collier, S., Burston, B., & Rhodes, A. (2016). Teaching STEM as a second language: Utilizing SLA to develop equitable learning for all students. Journal for Multicultural Education, 10, 257-273.

Harmon, J., Hedrick, W., & Wood, K. (2005). Research on Vocabulary Instruction in the Content Areas: Implications for Struggling Readers. Reading & Writing Quarterly, 21, 261-280.

Herman, B. C., Clough, M. P., & Olson, J. K. (2013). Teachers’ Nature of Science Implementation Practices 2–5 Years After Having Completed an Intensive Science Education Program. Science Education, 97, 271–309.

Jung, K., & Brown, J. (2016). Examining the Effectiveness of an Academic Language Planning Organizer as a Tool for Planning Science Academic Language Instruction and Supports. Journal of Science Teacher Education, 27, 847-872.

Miller, D., Scott, C., & McTigue, E. (2016). Writing in the Secondary-Level Disciplines: a Systematic Review of Context, Cognition, and Content. Educational Psychology Review, 1-38.

Moje, E. (2008). Foregrounding the disciplines in secondary literacy teaching and learning: A call for change. Journal of Adolescent & Adult Literacy, 52, 96-107.

Nagy, W. (1988). Teaching Vocabulary to Improve Reading Comprehension. Newark, DE: International Reading Association.

Nagy, W., & Townsend, D. (2012). Words as tools: Learning academic vocabulary as language acquisition. Reading Research Quarterly, 47(1), 91-108.

National Council for Accreditation of Teacher Education. (2008). Professional Standards for the Accreditation of Teacher Preparation Institutions. Retrieved from Washington, D.C.:

National Research Council. (2012). A Framework for K-12 Science Education: Practices, Crosscutting concepts, and Core Ideas. Retrieved from Washington, D.C.:

National Research Council. (2013). Next generation science standards: For states, by states.

National Science Foundation. (1996). Shaping the future: New expectations for undergraduate education in science, mathematics, engineering, and technology. Washington, D.C.: National Science Foundation.

National Science Teacher’s Association. (2012). NSTA Standards for Science Teacher Preparation. Retrieved from http://www.nsta.org/preservice/

NGSS Lead States. (2013). Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

Reed, D. K., Petscher, Y., & Truckenmiller, A. J. (2016). The Contribution of General Reading Ability to Science Achievement. Reading Research Quarterly.

Shanahan, T., & Shanahan, C. (2012). What is disciplinary literacy and why does it matter? Topics in language disorders, 32(1), 7-18.

Taboada, A. (2012). Relationships of general vocabulary, science vocabulary, and student questioning with science comprehension in students with varying levels of English proficiency. Instructional Science, 40, 901-923.

Vacca, R., Vacca, J., & Mraz, M. (2016). Content area reading: Literacy and learning across the curriculum: Pearson.

Van Laere, E., Aesaert, K., & van Braak, J. (2014). The role of students’ home language in science achievement: A multilevel approach. International Journal of Science Education, 36, 2772-2794.