Collaborating with Virtual Visiting Scientists to Address Students’ Perceptions of Scientists and their Work

Print Friendly, PDF & Email
Grossman, B.T., & Farland-Smith, D. (2020). Collaborating with virtual visiting scientists to address students’ perceptions of scientists and their work. Innovations in Science Teacher Education, 5(3). Retrieved from https://innovations.theaste.org/collaborating-with-virtual-visiting-scientists-to-address-students-perceptions-of-scientists-and-their-work/
by Brandon T. Grossman, University of Colorado Boulder; & Donna Farland-Smith, Ohio State University

Abstract

The idea that middle school students hold stereotypic representations or impressions of scientists is not new to the field of science education (Barman, 1997; Finson, 2002; Fort & Varney, 1989; Steinke et al., 2007). These representations may match the way scientists are often portrayed in the media in terms of their race (i.e., white), gender (i.e., male), the way they dress (i.e., lab coat, glasses, wild hair), their demeanor (i.e., nerdy, eccentric, anti-social), and where they work (i.e., in a laboratory by themselves). Bringing scientists into classrooms to collaborate with students and teachers has been shown to positively influence students’ perceptions of scientists and their work (Bodzin & Gerhinger, 2001; Flick, 1990). However, the planning and collaboration involved in this in-person work can be challenging, complex, and time consuming for both teachers and visiting scientists. Advances in classroom technologies have opened up new opportunities for disrupting problematic representations and supporting students in developing more expansive perceptions of science and scientists. This paper explores the collaboration between a middle school science teacher, five visiting scientists, and a science teacher educator around the development and implementation of a week long virtual visiting scientist program for middle school students. The impact the program had on the teacher’s ongoing practice and on students’ self-reported perceptions of science and scientists is also examined.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Angell, C., Henriksen, E., Isnes, K., & Isnes, A. (2003). Why learn physics? Others can take care of that! Physics in Norwegian Education: Content-perceptions-choices. Science Education Perspectives, Research & Development Oslo: Akademisk, 165-198.

Barman, C. (1997). Students’ views of scientists and science: Results from a national study. Science and Children, 35(1), 18-23.

Bodzin, A. & Gehringer, M. (2001). Breaking science stereotypes: Can meeting actual scientists change students’ perceptions of scientists? Science & Children, 38, 24-27.

Erb, T. O. (1981). Attitudes of early adolescents toward science, women in science, and science careers. Middle School Research Selected Studies, 6, 108-118.

Farland‐Smith, D. (2009). Exploring middle school girls’ science identities: Examining attitudes and perceptions of scientists when working “side‐by‐side” with scientists. School Science and Mathematics109, 415-427.

Finson, K.D. (2002). A multicultural comparison of draw-a-scientist test drawings of eighth graders. Paper Presented at the Annual Meeting of the International Conference of the Association of Educators of Teachers of Science, Charlotte, NC.

Flick, L. (1990). Scientist in Residence program: Improving children’s images of science and scientists. School Science Mathematics, 90, 205-214.

Fort, D.C. & Varney, H.L. (1989). How students see scientists: Mostly male, mostly white, mostly benevolent. Science & Children, 26 (8), 8-13.

Gettys, L. D., & Cann, A. (1981). Children’s perceptions of occupational sex stereotypes. Sex Roles, 7, 301-308.

Lindahl, B. (2003). Pupils’ responses to school science and technology? A longitudinal study of pathways to upper secondary school. Göteborg Studies in Educational Sciences, 196, 1-18.

Maltese, A. V., & Tai, R. H. (2010). Eyeballs on the fridge: Sources of early interest in science. International Journal of Science Education, 32, 669-685.

Steinke, J., Lapinski, M.K., Crocker, N., Zietsman-Thomas, A., Williams, Y., Evergreen, S.H., & Kuchibhotla, S. (2007). Assessing media influences on middle school-aged children’s perceptions of women in science using the Draw-A-Scientist Test (DAST). Science Communication, 29, 35-64.