Personal Science Story Podcasts: Enhancing Literacy and Science Content

by Jennifer K. Frisch, University of Minnesota Duluth
Show Abstract
Abstract

Podcasts (like “You are Not So Smart”, “99% Invisible”, or “Radiolab”) are becoming a popular way to communicate about science. Podcasts often use personal stories to connect with listeners and engage empathy, which can be a key ingredient in communicating about science effectively. Why not have your students create their own podcasts? Personal science stories can be useful to students as they try to connect abstract science concepts with real life. These kinds of stories can also help pre-service elementary or secondary teachers as they work towards understanding how to connect science concepts, real life, and literacy. Podcasts can be powerful in teaching academic language in science because through producing a podcast, the student must write, speak, and listen, and think about how science is communicated. This paper describes the personal science podcast assignment that I have been using in my methods courses, including the literature base supporting it and the steps I take to support my teacher candidates in developing, writing, and sharing their own science story podcasts.

An Innovative Integrated STEM Program for PreK-6 Teachers

by Pamela S. Lottero-Perdue, Towson University; Sarah Haines, Towson University; Honi J. Bamberger, Towson University; & Rommel J. Miranda, Towson University
Show Abstract
Abstract

In this article, we describe an innovative, 6-course, 18-credit post-baccalaureate certificate (PBC) program for pre-kindergarten through grade six teachers (PreK-6) in Integrated Science, Technology, Engineering and Mathematics (iSTEM) Instructional Leadership. Here, the acronym, “iSTEM,” refers to education that not only addresses each of the S, T, E and M subjects, but also emphasizes the connections among them. We collaboratively contributed to the development of the program, and teach courses within it. The program graduated its pilot cohort of teachers in 2015, is running its second cohort, and is recruiting for a third. The article summarizes the program’s origins and integration approach and key aspects of program design. Those key aspects include: make-up of the program team; a deliberate course sequence; decrease in structure (and increase in more open-ended, student-centered learning approaches) over time in the program; and movement in the program from growth as an iSTEM teacher towards growth as iSTEM teacher leader. Each of the courses is described in greater detail, followed by a discussion of program assessment and evaluation. The article concludes with our reflections about the program’s challenges and successes thus far.

Supporting Science Teachers In Creating Lessons With Explicit Conceptual Storylines

by Dante Cisterna, University of Nebraska-Lincoln; Kelsey Lipsitz, University of Missouri; Deborah Hanuscin, Western Washington University; Zandra de Araujo, University of Missouri; & Delinda van Garderen, University of Missouri
Show Abstract
Abstract

We describe a four-step strategy used in our professional development program to help elementary science teachers recognize and create lesson plans with coherent conceptual storylines. The conceptual storyline of a lesson refers to sequencing its scientific concepts and activities to help students develop a main scientific idea and, often, is an implicit component of a lesson plan. The four steps of this learning strategy are, 1) Building awareness of conceptual storylines; (2) Analyze the coherence of the conceptual storyline of existing lessons; (3) Creating an explicit conceptual storyline as part of the planning process; and (4) Promote conceptual coherence throughout the storyline. We provide examples of how these steps were developed in our professional development program as well as evidence of teachers’ learning. We also discuss practical implications for using conceptual storylines in professional development for science teachers.

Designing a Third Space Science Methods Course

by Matthew E. Vick, University of Wisconsin-Whitewater
Show Abstract
Abstract

The third space of teacher education (Zeichner, 2010) bridges the academic pedagogical knowledge of the university and the practical knowledge of the inservice K-12 teacher.  A third space elementary science methods class was taught at a local elementary school with inservice teachers acting as mentors and allowing preservice teachers into their classes each week.  Preservice teachers applied the pedagogical knowledge from the course in their elementary classrooms.  The course has been revised constantly over six semesters to improve its logistics and the pre-service teacher experience.  This article summarizes how the course has been developed and improved.

Supporting Preservice Teachers’ Use of Modeling: Building a Water Purifier

by Young Ae Kim, University of Georgia; & J. Steve Oliver, University of Georgia
Show Abstract
Abstract

Research has shown the value of modeling as an instructional practice. As such, instruction that includes modeling can be an authentic and effective means to illustrate scientific and engineering practices as well as a motivating force in science learning. Preservice science teachers need to learn how to incorporate modeling strategies in lessons on specific scientific topics to implement modeling practice effectively. In this article, we share an activity designed to model how the effectiveness and efficiency of a water purifier is impacted by creating a primary purification medium using different grain sizes and different amounts of activated charcoal. We seek for the preservice science teachers to learn how modeling is a process that requires revision in response to evidence. The water purifier activities in this paper were adapted for use in a secondary science teacher preparation program during the fall semesters of 2015 and 2016 as a means to introduce an effective modeling activity that is in the spirit of NGSS. These activities also support preservice teachers’ development of teacher knowledge relative to ‘model-based inquiry’ as well as teaching systems thinking. In addition, preservice science teachers learn how to think of modeling as an assessment tool through which they might gauge students’ understanding. Modeling may be used as a form of authentic assessment where student accomplishment is measured while in the act of constructing a model, revising a model or any of the other modeling related processes.