Science Units of Study with a Language Lens: Preparing Teachers for Diverse Classrooms

by Amy J. Heineke, Loyola University Chicago; & Jay McTighe, McTighe & Associates Consulting
Show Abstract
Abstract

Recent educational policy reforms have reinvigorated the conversation regarding the role of language in the science classroom. In schools, the Next Generation Science Standards have prompted pedagogical shifts yielding language-rich science and engineering practices. At universities, newly required performance-based assessments have led teacher educators to consider the role of academic language in subject-specific teaching and learning. Simultaneous to these policy changes, the population has continued to diversify, with schools welcoming students who speak hundreds of different languages and language varieties at home, despite English continuing as the primary medium of instruction in science classrooms. Responding to these policy and demographic shifts, we have designed an innovation to prepare teachers and teacher candidates to design instruction that promotes students’ disciplinary language development during rigorous and meaningful science instruction. We add a language lens to the widely used Understanding by Design® framework, emphasizing inclusion and integration with what teachers already do to design science curriculum and instruction, rather than an add-on initiative that silos language development apart from content learning. This language lens merges the principles of culturally and linguistically responsive practice with the three stages of backward instructional design to support educators in designing effective and engaging science instruction that promotes language development and is accessible to the growing number of students from linguistically diverse backgrounds.

Scaffolding Preservice Science Teacher Learning of Effective English Learner Instruction: A Principle-Based Lesson Cycle

by Sarah A. Roberts, University of California, Santa Barbara; & Julie A. Bianchini, University of California, Santa Barbara
Show Abstract
Abstract

This paper examines a lesson development, implementation, revision, and reflection cycle used to support preservice secondary science teachers in learning to teach English learners (ELs) effectively. We begin with a discussion of our framework for teaching reform-based science to ELs – four principles of effective EL instruction and three levels of language – that shaped both our science methods course, more generally, and the lesson cycle, in particular. We then present a model lesson implemented in the methods course that highlighted these principles and levels for our preservice teachers. Next, we describe how preservice teachers used their participation in and analysis of this model lesson as a starting point to develop their own lessons, engaging in a process of development, implementation, revision, and reflection around our EL principles and language levels. We close with a description of our course innovation, viewed through the lens of the preservice teachers. We attempt to provide practical insight into how other science teacher educators can better support their preservice teachers in effectively teaching ELs.

The Great Ice Investigation: Preparing Pre-Service Elementary Teachers for a Sensemaking Approach of Science Instruction

by Justin R. McFadden, University of Louisville
Show Abstract
Abstract

The current article describes a sequence of lessons, readings, and resources aimed to prepare elementary preservice teachers for science instruction wherein student sensemaking, rather than vocabulary memorization, is prioritized. Within the article, I describe how the prompts, questions, and logistics of the The Great Ice Investigation drive my students’ in-class and out-of-class learning to start out every science methods course I teach. The readings and resources detailed that compliment the Great Ice Investigation should benefit both preservice as well as in-service elementary teachers just beginning to align their instruction with the Next Generation Science Standards. The lessons, readings, and resources described should be of value to science teacher educators looking to modify and improve how they prepare their students for next generation science instruction.

Learning About Science Practices: Concurrent Reflection on Classroom Investigations and Scientific Works

by Mo A. Basir, University of Central Missouri
Show Abstract
Abstract

The NRC (2012) emphasizes eight science practices as a constitutive part of science teaching and learning. Pre-service teachers should be able to perform those practices at least in an introductory-level science investigation. Additionally, they also need to be able to elicit and interpret those science practices in the work of students. Through the integration of doing science and reading about how scientists do science, this article provides a practical teaching approach encouraging critical thinking about science practices. The instructional approach emphasizes on performing science practices, explicitly thinking about how students and scientists do science, and reflecting on similarities and differences between how students and scientists perform science practices. The article provides examples and tools for the proposed instructional approach.

Partnering for Engineering Teacher Education

by Lara K. Smetana, Loyola University Chicago; Cynthia Nelson, Loyola University Chicago; Patricia Whitehouse, William C. Goudy Technology Academy; & Kim Koin, Chicago Children's Museum
Show Abstract
Abstract

The aim of this article is to describe a specific approach to preparing elementary teacher candidates to teach engineering through a field-based undergraduate course that incorporates various engineering experiences. First, candidates visit a children’s museum to engage in engineering challenges and reflect on their experiences as learners as well as teachers. The majority of course sessions occur on-site in a neighborhood elementary school with a dedicated engineering lab space and teacher, where candidates help facilitate small group work to develop their own understandings about engineering and instructional practices specific to science and engineering. Candidates also have the option to attend the elementary school’s Family STEM Night which serves as another example of how informal engineering experiences can complement formal school-day experiences as well as how teachers and schools work with families to support children’s learning. Overall, candidates have shown increased confidence in engineering education as demonstrated by quantitative data collected through a survey instrument measuring teacher beliefs regarding teaching engineering self-efficacy. The survey data was complemented by qualitative data collected through candidates’ written reflections and interviews. This approach to introducing elementary teacher candidates to engineering highlights the value of a) capitalizing on partnerships, b) immersing candidates as learners in various educational settings with expert educators, c) providing opportunities to observe, enact, and analyze the enactment of high-leverage instructional practices, and d) incorporating opportunities for independent and collaborative reflection.

Providing Clinical Experience for Preservice Chemistry Teachers Through a Homeschool Association Collaboration

by Sarah B. Boesdorfer, Illinois State University
Show Abstract
Abstract

The number of students homeschooled in the United States is steadily increasing, and parents of these students continue to look to community resources for their curriculum as they educate their children. As clinical experiences associated with two of their methods courses, preservice chemistry teachers teach a chemistry course twice a week to homeschooled students under the supervision of their methods instructor. The course is a collaboration between the Department of Chemistry and the local homeschool association (HSA), providing the homeschool students with high school chemistry instruction and experiences in the chemistry laboratory and providing preservice teachers with experiences teaching high school aged chemistry students. This article describes the design of this collaboration aligning it with the research literature of successful clinical experiences for the development of preservice teachers. In addition, initial evidence and feedback from teachers provides support for this collaboration as an effective alternative to traditional clinical experiences in typical high school settings for preservice science teachers. Challenges to carrying out this type of clinical experience are discussed along with tips for teacher educators looking for a different form of effective clinical experiences for their preservice teachers. While improvements continue to be made, the collaboration between the HSA and the methods courses has been successful for students, both homeschooled and preservice, and continues as a clinical experience at our university.

Preparing Preservice Early Childhood Teachers to Teach Nature of Science: Writing Children’s Books

by Valarie L. Akerson, Indiana University; Naime Elcan Kaynak, Erciyes University; & Banu Avsar Erumit, Recep Tayyip Erdogan University
Show Abstract
Abstract

Preparing preservice early childhood teachers to teach about Nature of Science (NOS) in their science lessons can provide challenges to the methods course instructor. Early childhood science methods course instructors generally agree that early childhood preservice teachers enjoy using children’s literature in their instruction. Preservice teachers can write and design children’s books that can help them to not only refine their own understandings of NOS aspects, but also to consider how to introduce these ideas to young children through their stories. These stories can support the teaching of NOS through hands-on activities in the classroom. The authors tracked a class of early childhood preservice teachers over the course of a semester to determine their ideas about NOS and their depictions of NOS in a storybook they designed for young children. The authors determined whether these NOS ideas were depicted accurately and in a way that could be conceptualized by young children. It was found that nearly all of the preservice teachers were able to portray the NOS aspects accurately through their stories, and that not only did the stories hold promise of introducing these NOS ideas in an engaging manner for early childhood students, but the preservice early childhood teachers also refined their own understandings of NOS through the assignment.

Theory to Process to Practice: A Collaborative, Reflective, Practical Strategy Supporting Inservice Teacher Growth

by Martha Inouye, University of Wyoming; & Ana Houseal, University of Wyoming
Show Abstract
Abstract

To successfully implement the Next Generation Science Standards (NGSS), more than 3.4 million in-service educators in the United States will have to understand the instructional shifts needed to adopt these new standards. Here, based on our recent experiences with teachers, we introduce a professional learning (PL) strategy that employs collaborative video analysis to help teachers adjust their instruction to promote the vision and learning objectives of the Standards. Building on effective professional development characteristics, we created and piloted it with teachers who were working on making student thinking visible. In our setting, it has been effective in providing relevant, sustainable changes to in-service teachers' classroom instruction.