Volume 4: Issue 3 [2019]
Science Units of Study with a Language Lens: Preparing Teachers for Diverse Classrooms
- Categories: Biological Sciences, Elementary Education, High School, Inservice Teacher Preparation, Middle School, and Physical Sciences
- Tags: academic language, backward design, culturally responsive practice, English learners, instructional design, language development, linguistically responsive practice, and Understanding by Design
- Publication: Issue 3 and Volume 4
Recent educational policy reforms have reinvigorated the conversation regarding the role of language in the science classroom. In schools, the Next Generation Science Standards have prompted pedagogical shifts yielding language-rich science and engineering practices. At universities, newly required performance-based assessments have led teacher educators to consider the role of academic language in subject-specific teaching and learning. Simultaneous to these policy changes, the population has continued to diversify, with schools welcoming students who speak hundreds of different languages and language varieties at home, despite English continuing as the primary medium of instruction in science classrooms. Responding to these policy and demographic shifts, we have designed an innovation to prepare teachers and teacher candidates to design instruction that promotes students’ disciplinary language development during rigorous and meaningful science instruction. We add a language lens to the widely used Understanding by Design® framework, emphasizing inclusion and integration with what teachers already do to design science curriculum and instruction, rather than an add-on initiative that silos language development apart from content learning. This language lens merges the principles of culturally and linguistically responsive practice with the three stages of backward instructional design to support educators in designing effective and engaging science instruction that promotes language development and is accessible to the growing number of students from linguistically diverse backgrounds.
Scaffolding Preservice Science Teacher Learning of Effective English Learner Instruction: A Principle-Based Lesson Cycle
- Categories: Biology, Chemistry, High School, Middle School, Physics, and Preservice Teacher Preparation
- Tags: English learners, preservice teacher education, reform-based instruction, and science education
- Publication: Issue 3 and Volume 4
This paper examines a lesson development, implementation, revision, and reflection cycle used to support preservice secondary science teachers in learning to teach English learners (ELs) effectively. We begin with a discussion of our framework for teaching reform-based science to ELs – four principles of effective EL instruction and three levels of language – that shaped both our science methods course, more generally, and the lesson cycle, in particular. We then present a model lesson implemented in the methods course that highlighted these principles and levels for our preservice teachers. Next, we describe how preservice teachers used their participation in and analysis of this model lesson as a starting point to develop their own lessons, engaging in a process of development, implementation, revision, and reflection around our EL principles and language levels. We close with a description of our course innovation, viewed through the lens of the preservice teachers. We attempt to provide practical insight into how other science teacher educators can better support their preservice teachers in effectively teaching ELs.
The Great Ice Investigation: Preparing Pre-Service Elementary Teachers for a Sensemaking Approach of Science Instruction
- Categories: Earth/Space Science, Elementary Education, Middle School, Physics, and Preservice Teacher Preparation
- Tags: elementary science, Next Generation Science Standards (NGSS), preservice science teachers, and science teacher educators
- Publication: Issue 3 and Volume 4
The current article describes a sequence of lessons, readings, and resources aimed to prepare elementary preservice teachers for science instruction wherein student sensemaking, rather than vocabulary memorization, is prioritized. Within the article, I describe how the prompts, questions, and logistics of the The Great Ice Investigation drive my students’ in-class and out-of-class learning to start out every science methods course I teach. The readings and resources detailed that compliment the Great Ice Investigation should benefit both preservice as well as in-service elementary teachers just beginning to align their instruction with the Next Generation Science Standards. The lessons, readings, and resources described should be of value to science teacher educators looking to modify and improve how they prepare their students for next generation science instruction.