Introducing ‘Making’ to Elementary and Secondary Preservice Science Teachers Across Two University Settings

by Shelly R. Rodriguez, The University of Texas, Austin; Steven S. Fletcher, St. Edwards University; & Jason R. Harron, The University of Texas, Austin
Abstract

‘Making’ describes a process of iterative fabrication that draws on a DIY mindset, is collaborative, and allows for student expression through the creation of meaningful products. While making and its associated practices have made their way into many K-12 settings, teacher preparation programs are still working to integrate making and maker activities into their courses. This paper describes an end-of-semester maker project designed to introduce preservice science teachers to making as an educational movement. The project was implemented in two different higher education contexts, a public university secondary STEM introduction to teaching course and a private university elementary science methods course. The purpose of this article is to share this work by articulating the fundamental elements of the project, describing how it was enacted in each of the two settings, reviewing insights gained, and discussing possibilities for future iterations. The project’s instructional strategies, materials, and insights will be useful for those interested in bringing making into science teacher preparation.

Keywords: constructionism; making; preservice; project-based; science education

Piloting an Adaptive Learning Platform with Elementary/Middle Science Methods

by Matthew E. Vick, University of Wisconsin-Whitewater
Abstract

Adaptive learning allows students to learn in customized, non-linear pathways. Students demonstrate prior knowledge and thus focus their learning on challenging content. They are continually assessed with low stakes questions allowing for identification of content mastery levels. A science methods course for preservice teachers piloted the use of adaptive learning. Design and implementation are described. Instructors need to realistically consider the time required to redesign a course in an adaptive learning system and to develop varied and numerous assessment questions. Overall, students had positive feelings toward the use of adaptive learning. Their mastery levels were not as high as anticipated by the instructor. The student outcomes on their summative assessment did not show high levels of transfer of the key content.

Keywords: Adaptive Learning, Science Methods, Pedagogy, Course Design

Lessons Learned from Going Global: Infusing Classroom-based Global Collaboration (CBGC) into STEM Preservice Teacher Preparation

by M. Kate York, The University of Texas at Dallas; Rebecca Hite, Texas Tech University; & Katie Donaldson, The University of Texas at Dallas
Abstract

There are many affordances of integrating classroom-based global collaboration (CBGC) experiences into the K-12 STEM classroom, yet few opportunities for STEM preservice teachers (PST) to participate in these strategies during their teacher preparation program (TPP). We describe the experiences of 12 STEM PSTs enrolled in a CBGC-enhanced course in a TPP. PSTs participated in one limited communication CBGC (using mathematics content to make origami for a global audience), two sustained engaged CBGCs (with STEM PSTs and in-service graduate students at universities in Belarus and South Korea), and an individual capstone CBGC-infused project-based learning (PBL) project. Participating STEM PSTs reported positive outcomes for themselves as teachers in their 21st century skills development and increased pedagogical content knowledge. Participants also discussed potential benefits for their students in cultural understanding and open-mindedness. Implementation of each of these CBGCs in the STEM PST course, as well as STEM PST instructors’ reactions and thoughts, are discussed.