Preservice Elementary Teachers Using Graphing as a Tool for Learning, Teaching, and Assessing Science

by Deena L. Gould, University of New Mexico; Rolando Robles, Arizona State University; & Peter Rillero, Arizona State University
Abstract

Graphing is an important tool for seeing patterns, analyzing data, and building models of scientific phenomena. Teachers of elementary school children use graphs to display data but rarely as tools for analyzing or making sense of data (Coleman, McTigue, & Smolkin, 2011). We provide a set of lessons that guide preservice elementary school teachers to analyze their conceptions about graphing and use graphing to (a) see patterns in data, (b) discuss and analyze data, (c) model scientific phenomena, and (d) teach and assess inquiry-based science. Examples are adduced for how we guided and supported preservice elementary teachers in their conceptual understanding and deeper use of graphing.

Supporting Schoolyard Pedagogy in Elementary Methods Courses

by Kelly Feille, University of Oklahoma; & Stephanie Hathcock, Oklahoma State University
Abstract

Schoolyard pedagogy illustrates the theories, methods, and practices of teaching that extend beyond the four walls of a classroom and capitalize on the teaching tools available in the surrounding schoolyard. In this article, we describe the schoolyard pedagogy framework, which includes intense pedagogical experiences, opportunities and frequent access, and continuous support. We then provide an overview of how we are intentionally working toward developing schoolyard pedagogy in elementary preservice teachers at two universities. This includes providing collaborative experiences in the university schoolyard and nearby schools, individual experiences in nature, opportunities to see the possibilities in local schoolyards, and lesson planning that utilizes the schoolyard. We also discuss potential barriers and catalysts for schoolyard pedagogy during the induction years, future needs, and potential for continuous support.

Using Critical Case Studies to Cultivate Inservice Teachers’ Critical Science Consciousness

by Lenora M. Crabtree, University of North Carolina Charlotte; & Michelle Stephan, University of North Carolina Charlotte
Abstract

Culturally relevant and responsive science instruction includes support of students’ socio-political, or critical, consciousness. A lack of experience with marginalization, and limited attention to critical perspectives in science content and methods courses, however, may leave educators ill-equipped to address intersections of diversity, equity, and science instruction. Curriculum is needed that supports critical consciousness development among science teachers and their students. We describe an innovation, a critical inquiry case study, designed to address this essential facet of culturally relevant pedagogy. Design research methodology guided our development of an interrupted, historical case study employed as part of a four-day professional development workshop for secondary science teachers. In addition to provoking critical awareness and agency, the case study was designed to highlight ways that science itself may create or perpetuate inequities, or serve as a tool for liberation, a content-specific construct we call critical science consciousness. Implementation of the critical case study and participating teachers’ interactions with case materials are described. In addition, we highlight learning goals developed to support critical science consciousness and provide insights into ways teachers exhibited growth in each area. Teachers report heightened understanding of the role science plays in perpetuating inequities, transformations in ways they think about systemic inequities that impact students and families, and growing awareness of the possibilities inherent in teaching science for liberation.

Critical Response Protocol: Supporting Preservice Science Teachers in Facilitating Inclusive Whole-Class Discussions

by Charlene L. Ellingson, Minnesota State University, Mankato; Dr. Jeanna Wieselmann, Caruth Institute for Engineering Education; & Dr. Felicia Dawn Leammukda, Minnesota State University, St. Cloud
Abstract

Despite a large body of research on effective discussion in science classrooms, teachers continue to struggle to engage all students in such discussions. Whole-class discussions are particularly challenging to facilitate effectively and, therefore, often have a teacher-centered participation pattern. This article describes the Critical Response Protocol (CRP), a tool that disrupts teacher-centered discussion patterns in favor of a more student-centered structure that honors students’ science ideas. CRP originated in the arts community as a method for giving and receiving feedback to deepen critical dialog between artists and their audiences. In science classrooms, CRP can be used to elicit student ideas about scientific phenomena and invite wide participation while reducing the focus on “correct” responses. In this article, we describe our use of CRP with preservice science teachers. We first modeled the CRP process as it would be used with high school students in science classrooms, then discussed pedagogical considerations for implementing CRP within the preservice teachers’ classrooms. We conclude this article with a discussion of our insights about the opportunities and challenges of using CRP in science teacher education to support preservice teachers in leading effective whole-class discussion and attending to inclusive participation structures.

Using Student Actors and Video-Mediated Reflection to Promote Preservice Teachers’ Ability to Enact Responsive Teaching

by Kennedy Kam Ho Chan, The University of Hong Kong; Steven Ka Kit Yu, The University of Hong Kong; & Roy Ka Ho Sin, The University of Hong Kong
Abstract

This paper describes a teaching intervention that promotes secondary preservice science teachers’ (PSTs’) ability to enact responsive teaching. The intervention uses a modified version of rehearsals (Lampert et al., 2013) to enhance PSTs’ ability to enact a core practice: eliciting, interpreting, and using student thinking. In the intervention, PSTs have opportunities to decompose the core practice represented in classroom video clips and to approximate the practice in rehearsals. The intervention has three unique features: (1) student actors who simulate the complex classroom interactions inherent in responsive classrooms; (2) opportunities to view and analyze how different teachers (i.e., own, peers, and unfamiliar teachers) enact the core practice; and (3) opportunities for PSTs to reflect upon their own rehearsal videos filmed from multiple vantage points in the same classroom using innovative video technology such as point-of-view (POV) camera goggles. We describe what we have learnt from analyzing the PSTs’ views on the intervention in terms of their perceived learning from the intervention as well as whether and how the unique features of the intervention supported their learning. We also share the lessons learned and advice that we would like to share with other science teacher educators, especially in terms of how to better use and integrate innovative video technology such as POV footage into the teaching interventions to promote responsive teaching.