NGSS Scientific Practices in an Elementary Science Methods Course: Preservice Teachers Doing Science

by Judith Morrison, Washington State University Tri-Cities
Abstract

To engage elementary preservice teachers enrolled in a science methods course in authentically doing science, I developed an assignment focused on the NGSS scientific practices. Unless preservice teachers engage in some type of authentic science, they will never understand the scientific practices and will be ill-equipped to communicate these practices to their future students or engage future students in authentic science. The two main objectives for this assignment were for the PSTs to gain a more realistic understanding of how science is done and gain confidence in conducting investigations incorporating the scientific practices to implement in their future classrooms. To obtain evidence about how these objectives were met, I posed the following questions: What do PSTs learn about using the practices of science from this experience, and what do they predict they will implement in their future teaching relevant to authentic investigations using the scientific practices? Quotes from preservice teachers demonstrating their (a) learning relevant to doing science, (b) their struggles doing this type of investigation, and (c) predictions of how they might incorporate the scientific practices in their future teaching are included. The assignment and the challenges encountered implementing this assignment in a science methods course are also described.

Participatory Action Research as Pedagogy in Elementary Science Methods

by Rachel Askew, Vanderbilt University
Abstract

Participatory action research (PAR) is a methodology where the traditional lines dividing researchers and participants are blurred. In this article, a description of how PAR was used to cocreate a science methods course is explored with specific focus on the challenges and benefits it can bring to teacher education. Using PAR as pedagogy provided a way of teaching that centered students’ questions, experiences, ideas, and perceived needs as future science teachers. This way of teaching impacted our class community and opened space for students to create their own meanings of science and views of themselves as science teachers.

Supporting Inservice Teachers’ Skills for Implementing Phenomenon-Based Science Using Instructional Routines That Prioritize Student Sense-making

by Amy E. Trauth, University of Delaware; & Kimberly Mulvena, Colonial School District
Abstract

Widespread implementation of phenomenon-based science instruction aligned with the Next Generation Science Standards (NGSS) remains low. One reason for the disparity between teachers’ instructional practice and NGSS adoption is the lack of comprehensive, high-quality curriculum materials that are educative for teachers. To counter this, we configured a set of instructional routines that prioritize student sensemaking and then modeled these routines with grades 6–12 inservice science teachers during a 3-hour professional learning workshop that included reflection and planning time for teachers. These instructional routines included: (1) engaging students in asking questions and making observations of a phenomenon, (2) using a driving question board to document students’ questions and key concepts learned from the lesson, (3) prompting students to develop initial models of the phenomenon to elicit their background knowledge, (4) coherent sequencing of student-led investigations related to the phenomenon, (5) using a summary table as a tool for students to track their learning over time, and (6) constructing a class consensus model and scientific explanation of the phenomenon. This workshop was part of a larger professional learning partnership aimed at improving secondary science teachers’ knowledge and skills for planning and implementing phenomenon-based science. We found that sequencing these instructional routines as a scalable model of instruction was helpful for teachers because it could be replicated by any secondary science teacher during lesson planning. Teachers were able to work collaboratively with their grade- or course-level colleagues to develop lessons that incorporated these instructional routines and made phenomenon-based science learning more central in classrooms.

Experiential Learning in an Online Science Methods Course

by Danielle E. Dani, Ohio University; & Dave Donnelly, Ohio University
Abstract

Although demand for online courses and degree programs is high, trends in online instruction point to lecture- and discussion-heavy courses as well as a general wariness towards online science education. This article outlines the challenges of online teaching and describes a pedagogical model for e-learning that leverages multimedia to support experiential learning in science teacher education. End-of-course evaluations are used as data sources to inform reflections and conclusions about the affordances of the model. Examples of how the model is being used in an online science methods course are provided.