“How Are My Talk Moves?” Supporting Inservice Teachers Through Vertical Collaborative Coaching and Learning of Science Communities

by Joineé Taylor, University of Missouri-Columbia; & Marcelle Siegel, University of Missouri-Columbia
Abstract

Talk moves are dialogic pedagogical tools used to enhance purposeful discussion and support student learning. However, employing talk moves has proven challenging for some inservice teachers because they struggle with things like student participation and time. In this article, we describe a professional development program’s adaptation of professional learning communities to support a cohort of K–12 science teachers from different school districts in improving their teaching practice and effectiveness. We discuss the structure of the program and the use of collaborative reflection, and we also provide teacher reflection notes Specifically, we focus on one vertically integrated community, including elementary, middle, and high school teachers, who chose to focus on enhancing their pedagogical practice of talk moves. Ultimately, the teacher reflection notes revealed that being a part of such a community motivated them to enhance their teaching practices, boosted confidence, and also provided them networking opportunities with other teachers.

Supporting Preservice Elementary Teachers in Teaching Science for Equity and Justice: A Practical Framework

by Elizabeth A. Davis, University of Michigan
Abstract

Preservice elementary teachers bring many strengths to science teaching but may not get extensive support in learning to work toward equity and justice in their science teaching. Drawing on four approaches to equity from a recent report from the National Academies of Sciences, Engineering, and Medicine (2022), this article presents a practical framework for helping preservice elementary teachers in this challenging work. The article first explores each approach, suggesting interpretive frames and teaching moves that preservice teachers could use in moving from a relatively abstract call for equity to making concrete decisions in elementary science instruction. A practical framework is developed based on that exploration, with a description of how the framework has been used instructionally in an elementary science methods class. Then, the article presents the results of a pilot study of 31 preservice elementary teachers’ use of a pilot framework, illustrating how these participants’ lesson plans readily reflected teaching moves focused on increasing children’s opportunity and access to science learning and increasing achievement, representation, and identification but less often reflected moves oriented toward broadening what counts as science or bringing science and justice together. The article concludes by noting that research is needed to further explore the utility of this framework and how equity can be supported in science teacher education more generally. The article also urges the field to develop representations of practice and elementary science curriculum materials that would support teachers in this challenging, lifelong work to advance equity and justice.

Moving Practice-Based, Secondary Science Teacher Education Online: The Case of Inquiry-Based Labs

by Alice Waldron, Relay Graduate School of Education; Cole Entress, Teachers College, Columbia University; & Daniel Sonrouille, Relay Graduate School of Education
Abstract

Online coursework in science teacher education is becoming increasingly common. However, some content in science teacher education—how to skillfully (and safely) lead laboratory investigations, for instance—can pose a particular challenge when converted to an online format. We describe how we met this challenge in the creation of an online version of a practice-based science methods course focused on leading inquiry-based labs. Specifically, we articulate the design principles that guided our transition to a fully online course that produced student outcomes comparable to in-person sections and generated consistent, highly positive feedback from our graduate students. Additionally, by designing an online course that retained the teaching of lab competencies classically taught in person, we positioned the institution to better support students and instructors who found themselves suddenly online when the COVID-19 pandemic struck in the spring of 2020.

Is This an Authentic Engineering Activity? Resources for Addressing the Nature of Engineering With Teachers

by Jacob Pleasants, University of Oklahoma
Abstract

Including engineering as part of K–12 science instruction has many potential benefits for students, but achieving those benefits depends on having classroom teachers who are well prepared to effectively implement engineering instruction. Science teacher educators, therefore, have an essential role to play in ensuring that engineering is incorporated into science instruction in productive ways. An important component of that work is developing teachers’ understanding of the nature of engineering: what engineering is, what engineers do, and how engineering is both related to yet separate from science. Teachers must understand these concepts to implement engineering design activities that authentically reflect the field. In this article, I describe a sequence of instructional activities designed to help teachers, either preservice or inservice, develop their knowledge of the nature of engineering. At the core of the instructional sequence is a set of stories that provide teachers with descriptions of authentic engineering work. Surrounding the stories are activities that help teachers draw accurate conclusions about the nature of engineering and draw out the implications of those conclusions for instructional decision-making. I provide an overview of the instructional sequence and also share details from my own work with teachers, including transcripts of classroom conversations and the impact of instruction on teachers’ knowledge.

The Periodic Tile Project: Exploring the Elements With Teacher Candidates Through Science and Art

by Franklin S. Allaire, University of Houston-Downtown
Abstract

Studies have shown that teacher candidates enrolled in teacher preparation programs, particularly those in early childhood and elementary certification tracks, do not feel comfortable with science content or feel confident in their ability to teach science effectively as they enter student teaching. The Periodic Tile Project is an interdisciplinary project and performance assessment that takes an essential component of the chemistry curriculum that is often treated as a static tool to be memorized and brings the dynamic facets of the elements to life through the integration of science and art. Integrating science and art in performance-based assessments has been shown to increase engagement, self-motivation, and sense of ownership and enhance expression and communication skills in K–12 students. It can provide the same benefits to science teacher candidates. This article describes the use of the Periodic Tile Project with teacher candidates to explore the elements in a fun, meaningful, and memorable way.

STEM Teacher Leader Collaborative: A Responsive Professional Learning Network With Radical Hope

by Alison Mercier, University of Wyoming
Abstract

Many elementary teachers in the United States receive little to no STEM-focused professional learning during an average school year. When elementary teachers do participate in professional learning opportunities focused solely on STEM teaching and learning, they are often positioned as novices in need of improvement or instruction rather than colearners and cocontributors to the learning community. In this article, I describe the STEM Teacher Leader Collaborative as one way to address current challenges in STEM-focused professional learning and as an infrastructure for responsive teacher learning. I highlight the STEM Teacher Leader Collaborative as a model of a responsive professional learning network with radical hope, describing its guiding principles and the meanings teachers make of their experience within the network.

CURating Science Literacy and Professional Identity Among Biology and Science Education Majors

by Tonia A. Dousay, University of Idaho; Brant G. Miller, University of Idaho; & Christine E. Parent, University of Idaho
Abstract

In this article, we discuss a novel approach to course-based undergraduate research experiences (CURE) by exploring the impact of a near-peer configuration within three courses: the Elementary Science Education and Secondary Science Methods courses for education students and the Dimensions of Biodiversity course for students in the biological sciences. We were interested in understanding how students from education would benefit from partnering with students from the sciences and vice versa. We discuss our approach to designing and implementing the near-peer approach along with extended details regarding the process for research groups. We used a modified Undergraduate Research Student Self-Assessment (URSSA) to understand how science and science education majors influence one another in developing researcher identity, including scientific literacy and communication skills, after engaging in a near-peer structured CURE. Our results show that most science education students reported increased interest in conducting research in the future and some biology students reported an increased interest in teaching science. Logistical and interpersonal relationships were noted as the primary adverse challenges to implementation. Future programming and research efforts should expand to include other scientific disciplines and pay close attention to interpersonal dynamics, especially during the matchmaking phase.

Engaging Preservice Teachers in Collaborative Inquiry Projects During Remote Instruction

by Julie Robinson, University of North Dakota; & Rebekah Hammack, Montana State University
Abstract

We implemented a remote collaborative inquiry project with elementary preservice teachers who were enrolled in their science methods course during the 2020–2021 academic year. The courses were taught in one of three modalities: (1) fully online and asynchronous (graduate students seeking initial licensure), (2) fully online with synchronous and asynchronous components (undergraduate students), and (3) blended with face-to-face and asynchronous online components (undergraduate students). During the project, groups of two to four preservice teachers engaged remotely in collaborative, hands-on inquiry projects and documented their communication throughout the process. The remote collaborative inquiry projects were adapted from existing course assignments that had previously been used in face-to-face settings. We found that despite encountering some unexpected challenges with implementation, most participants recognized the value of group work for learning science. However, many preservice teachers, especially undergraduate students, focused on completing a quality end product rather than the learning that occurred throughout the process of collaboration and inquiry. It was also clear that many did not differentiate between collaborative and cooperative learning and often utilized a divide-and-conquer cooperative strategy. Future implementations of the project should intentionally provide opportunities for preservice teachers to discuss the differences between collaboration and cooperation and how these strategies impact learning in addition to the completion of a final product.