by Rebekka Darner, Center for Mathematics, Science, & Technology, Illinois State University; & Kristi Sutter, Thomas Metcalf School, Illinois State University
The Covid-19 pandemic resulted in a pivot to online instruction for our university and the surrounding K–12 schools. The instructors of the Classroom Interactions course faced the challenge of developing an online version of a course we had never taught that included a class-based field experience. During the fall semester, we struggled to recruit secondary students to participate in preservice teacher (PST) lessons, so we invited homeschool students to participate in the spring semester. This article outlines our approach to inviting homeschool students to participate in online PST-developed lessons. We outline our approach to utilizing the 5 Practices for Orchestrating Task-Based Discussions in Science (Cartier et al., 2013) to develop lessons, and we share PST and parent feedback on the experience. Additionally, we share the lessons we learned from this experience and suggestions for other teacher educators who may be interested in inviting homeschool students to participate in PST-developed field experiences. PSTs were able to focus on their lesson objective, instruction, and discourse moves for leading productive discussions because the PSTs and students did not experience many of the typical classroom distractions or behavioral issues that can occur during in-person learning in a school setting. Teacher educators interested in having more autonomy and input into how course-based field placements are implemented are encouraged to explore options to include homeschool students in-person or virtually.
The importance of attending to teachers’ transition from student to teacher (i.e., induction period) is increasingly recognized. This article describes efforts to develop, implement, and iteratively revise a mentoring program for beginning secondary science and mathematics teachers. We explain the conceptualization of the program in terms of four dimensions of teachers’ professional practice and varying mentoring approaches and formats. Examples of mentoring program components illustrate the program design. Lessons learned from the first 2 years are explored utilizing participant data as evidence. Plans for our program are discussed as well as implications for other teacher education programs.
by Sharon A. Brusic, Millersville University of Pennsylvania; Nanette Marcum-Dietrich, Millersville University of Pennsylvania; Jennifer Shettel, Millersville University of Pennsylvania; & Janet White, Millersville University of Pennsylvania
Preservice teachers in early childhood (pre-K–4) education teacher preparation programs typically experience content-specific pedagogy courses that operate in isolation from each other. In addition, preservice teachers are rarely given the opportunity to learn about integrative teaching in science, technology, engineering, and mathematics (STEM). In this article, the authors describe how Millersville University of Pennsylvania, a midsized regional public university in the Mid-Atlantic Region, addressed this issue in their teacher preparation program by creating an integrative STEM (iSTEM) minor that provided preservice teachers with five additional courses that explored how to implement STEM in early childhood classrooms in developmentally appropriate ways with a design-based pedagogy. This article introduces the program, including the specific coursework that preservice teachers engage in as well as other programmatic features that contribute to the success of the minor in increasing the confidence and skill levels of future teachers in successful STEM integration techniques. Photographs and artifacts are included to provide readers with a clearer picture of the types of learning activities and assignments in which students engaged. The article concludes with qualitative comments from students who participated in this program.
As an important aspect of teacher expertise, noticing skills need to be learned and practiced in teacher education programs. Although noticing literature has reported on the effectiveness of videos with associated scaffolding structures and the significant role that practical experiences play in teachers’ development of noticing skills, research on ways to support prospective teachers’ noticing in both video-based and authentic classroom settings in the field of science education is scarce. Building on teacher noticing research and the critical incident framework, this article describes a model that engages a group of prospective elementary teachers in the practice of noticing first in a 2-week, online, video-based training module and then in dynamic and complex classrooms when they attend a practicum associated with a science methods course. Detailed descriptions of the model, prospective teachers’ learning outcomes, and thoughts and considerations for implementing the model are shared. Differences between prospective teachers’ noticing journal entries prior to the video-based training module and immediately after, along with their noticing patterns in the practicum classrooms, show the development of prospective teachers’ noticing skills during the semester. Factors that were found to impact prospective teachers’ noticing in video-based and authentic classroom settings include: (a) using the adapted critical incident framework as a scaffolding guideline, (b) providing continuous feedback on prospective teacher noticing journals, and (c) having opportunities to observe science instruction in practicum classrooms.