Instructional Pathways to Considering Social Dimensions Within Socioscientific Issues

by Rebecca Rawson Lesnefsky, University of North Carolina – Chapel Hill; Troy Sadler, University of North Carolina; Li Ke, University of Nevada-Reno; & Pat Friedrichsen, University of Missouri

The Socioscientific Issues Teaching and Learning (SSI-TL) framework is a guide for developing an instructional approach to learning experiences focused on socioscientific issues (SSI). Despite the potential benefits of SSI learning, teachers often struggle to implement this approach in their classrooms (Sadler et al., 2006; Saunders & Rennie, 2013), and one of the most prominent reasons for this struggle is science teacher concerns and hesitation associated with incorporating social dimensions of the issues into their instruction (Friedrichsen et al., 2021). The purpose of this article is to provide science teacher educators with tools to help teachers better manage the integration of the social dimensions of SSI in issues-based teaching. In doing so, we suggest an expansion of the SSI-TL framework such that it more explicitly highlights pathways for focusing on the social dimensions of SSI within science learning environments. These pathways emerged as a result of a joint effort with nine high school science teachers as they developed a unit related to COVID-19; however, the pathways support science teachers as they implement science learning experiences that provide opportunities to negotiate social dimensions across most SSI. The pathways include systems mapping, connecting analysis to policy positions, media literacy, and social justice. We present how following each pathway integrates the social dimension of the focal issue, an example from the COVID-19 unit, evidence of success, and future considerations for science teacher educators as they help classroom teachers adopt an SSI approach.

Ditch the Debate: Preparing Preservice Teachers to Nurture Productive Discourse About Controversial Issues

by Eric A. Kirk, University of North Carolina at Chapel Hill; & Troy D. Sadler, University of North Carolina at Chapel Hill

This article showcases a lesson for preservice teachers designed to better prepare them in making instructional choices that support teaching and learning about complex socioscientific issues (SSI). Many of society’s most pressing social issues require the understanding and application of scientific knowledge. To do so, individuals must navigate not only the scientific dimensions of the issue, but also the moral considerations that arise from the application of scientific knowledge to these complex issues. We begin this article with a discussion of a framework for effective SSI-based teaching followed by a discussion of the unique challenges to teaching and learning that are posed by engaging students with complex, moral issues such as SSI. We then outline a lesson in which preservice teachers were exposed to two example SSI-based lessons. One lesson was designed to exacerbate challenges associated with engaging with morally fraught issues, whereas the other was designed to mitigate these challenges. Throughout this experience, students were encouraged to reflect on their experiences from their perspective as students and as developing teachers. This article concludes with recommendations for practitioners who may wish to implement this lesson, including suggestions for possible adaptations.

Preparing Preservice Teachers to Help Elementary Students Develop Persuasive Science Writing

by Keri-Anne Croce, Towson University; & Lucy Spence, University of South Carolina

To inspire change in the world, scientists must be agile communicators who can persuade different audiences around the globe. Persuasive science writing must reflect an understanding of how culture and language influence audiences in different ways. Examples of scientific writing designed for different audiences around the globe include pamphlets describing safe masking practices or public-service announcements about climate change. Preservice teachers must prepare the next generations of scientists to think of science content in conjunction with communication. This has created a high demand for university programs to prepare preservice teachers to teach elementary students how to create persuasive science writing. The International Science Text Analysis Protocols (ISTAP) teaching methodology was designed to help preservice teachers guide elementary students to develop tools for creating persuasive science writing. This article details how university programs may use ISTAP to support preservice teachers before, during, and after school placements. As linguistic and cultural diversity within science classrooms in the United States continues to expand, students will bring diverse resources into conversations centering on persuasive science writing. As university faculty guide preservice teachers through ISTAP, they are emphasizing diversity within science classrooms and supporting equity within STEM.

Research-Community Partnerships to Support Teacher Professional Learning

by Katherine Wade-Jaimes, University of Nevada Las Vegas; Rachel Askew, Freed-Hardeman University; Cullen Johnson, Memphis Teacher Residencey; & Chuck Butler, Memphis Teacher Residency

Providing ongoing support for inservice teachers is a challenge faced by school districts, educational organizations, and colleges of education everywhere. In this article, we describe a partnership between a community-based educational organization and educational researchers designed to provide professional development and support for science and math teachers while also supporting youth participating in a summer STEM program. Originating from an identified need of the community organization to better support youth STEM identity in their programming and rooted in a framework of STEM identity and equity in STEM, this partnership leveraged resources from different groups and was shown to be beneficial to the community organization, educational researchers, teachers, and youth. It this article, we discuss the logistics of this partnership and how it was implemented during a summer program, provide outcomes from youth and teachers, and include suggestions for the development of similar partnerships.