Promises and Pitfalls: Using an AI Chatbot as a Tool in 5E Lesson Planning

by Jeff Goodman, Appalachian State University; Vicente Handa, Appalachian State University; Rachel E. Wilson, Appalachian State University; & Leslie U. Bradbury, Appalachian State University

The authors describe how we approached using an AI chatbot, ChatGPT, during the spring 2023 semester with preservice elementary education students as an exercise in thinking about planning 5E lessons. We report here how we explored the tool with four different sections of preservice teachers and what we found about using this particular AI chatbot to help them develop planning skills for inquiry-based science instruction. Specifically, we found that when using a single prompt, the tool was not reliably accurate or realistic in planning for real classrooms or creating quality 5E lessons. However, when we employed techniques to focus and refine our prompts, we found value in using the chatbot as a part of brainstorming, and we determined that ChatGPT was particularly useful for generating high-quality, open-ended questions. Our overall conclusion from the experience is the importance of scaffolding students to use AI chatbots in an iterative process, focusing on creating high-quality prompts and successive questioning to get useful output information. Opportunities and cautions for using such tools in education are reviewed.

Promoting Understanding of Three Dimensions of Science Learning Plus Nature of Science Using Phenomenon-Based Learning

by Maryam Saberi, Ministry of Education of Iran; & Noushin Nouri, University of Texas Rio Grande Valley

The utilization of phenomenon-based learning (PhBL) for science instruction remains limited despite its alignment with the goals outlined in the Next Generation Science Standards (NGSS; NGSS Lead States, 2013) due to the lack of exemplary materials and inadequate training opportunities for teachers. The aim of this article is to illustrate the steps of the PhBL method by providing an exploratory learning experience as it was implemented in a preservice setting. In this study, we provide an innovative perspective by illuminating how this kind of instruction can be used as a context to explicitly discuss the three dimensions of learning (i.e., Disciplinary Core Ideas, Science and Engineering Practices, and Crosscutting Concepts; NGSS Lead States, 2013) as well as the nature of science (NOS). Using PhBL to teach NOS is an answer to the concern of teachers who think teaching NOS would take time from their content teaching. Hopefully, this article provides a comprehensive guideline for science educators to facilitate the inclusion of PhBL in their science methods courses and use it to clarify the three dimensions of NGSS and the incorporation of NOS within these dimensions for preservice teachers.

A Framework to Guide Science Educators’ Efforts in Confronting Misinformation

by Lara Smetana, Loyola University Chicago; Jack Gorman, Critica; Sara Gorman, Critica; & David Scales, Critica

This article synthesizes background research, presents a framework, and shares a frequently updated resource guide (see Science Educator Response to Misinformation: Framework and Resource Collection) for science educators’ multifaceted response to science and health misinformation. We developed this framework and guide as a tool to help science teachers and teacher educators think about the complexity of the issue of science and health misinformation, visualize the connected and interrelated avenues to confront the issue, and identify opportunities to take action in their courses.