Preservice Teachers Facilitating a Discussion With Elementary Student Avatars Before Facilitating It With Real Students

by Pamela S. Lottero-Perdue, Towson University; Karen Cimino, Towson University; & Julia Brandeberry, Towson University
Abstract

In this article, we share our innovation in which we used backward design to develop a scenario for use within the Mursion mixed-reality (MR) upper elementary simulated classroom environment to enable preservice teachers (PSTs) to practice facilitating an ambitious group discussion before facilitating that discussion to students in their field placement. The third-year elementary PSTs were enrolled in a course in which they taught a fourth-grade, NGSS-aligned unit that focused on the external and internal structures of sea turtles and how an injury to one or more of those structures could impact their growth, survival, behavior, or reproduction. To enhance the unit, we added a nonfiction text, Karl’s New Beak (Nargi & Popham, 2019), that examines the ramifications on survival, behavior, and reproduction faced by an Abyssinian ground hornbill missing most of his lower beak. At the end of the unit, each PST facilitated a discussion to elicit connections their students made between key ideas in the unit and text about how an injury to an animal impacts its survival, behavior, or reproduction. We share key elements of scenario design and how the PSTs prepared for, implemented, and debriefed from the MR simulated discussion. We also summarize and provide examples from the PSTs’ reflections on how the simulated experience prepared them to facilitate the same discussion with their small groups of fourth graders. For teacher educators who have access to the Mursion system, we provide our scenario and recommendations on how to begin utilizing this technology.

Science Units of Study with a Language Lens: Preparing Teachers for Diverse Classrooms

by Amy J. Heineke, Loyola University Chicago; & Jay McTighe, McTighe & Associates Consulting
Abstract

Recent educational policy reforms have reinvigorated the conversation regarding the role of language in the science classroom. In schools, the Next Generation Science Standards have prompted pedagogical shifts yielding language-rich science and engineering practices. At universities, newly required performance-based assessments have led teacher educators to consider the role of academic language in subject-specific teaching and learning. Simultaneous to these policy changes, the population has continued to diversify, with schools welcoming students who speak hundreds of different languages and language varieties at home, despite English continuing as the primary medium of instruction in science classrooms. Responding to these policy and demographic shifts, we have designed an innovation to prepare teachers and teacher candidates to design instruction that promotes students’ disciplinary language development during rigorous and meaningful science instruction. We add a language lens to the widely used Understanding by Design® framework, emphasizing inclusion and integration with what teachers already do to design science curriculum and instruction, rather than an add-on initiative that silos language development apart from content learning. This language lens merges the principles of culturally and linguistically responsive practice with the three stages of backward instructional design to support educators in designing effective and engaging science instruction that promotes language development and is accessible to the growing number of students from linguistically diverse backgrounds.