Introducing Preservice Science Teachers to Computer Science Concepts and Instruction Using Pseudocode

Citation
Print Friendly, PDF & Email

Brauer, K., Kruse, J., & Lauer, D. (2020). Introducing preservice science teachers to computer science concepts and instruction using pseudocode. Innovations in Science Teacher Education, 5(2). Retrieved from https://innovations.theaste.org/introducing-preservice-science-teachers-to-computer-science-concepts-and-instruction-using-pseudocode/

by Kayla Brauer, Drake University; Jerrid Kruse, Drake University; & David Lauer, Drake University

Abstract

Preservice science teachers are often asked to teach STEM content. While coding is one of the more popular aspects of the technology portion of STEM, many preservice science teachers are not prepared to authentically engage students in this content due to their lack of experience with coding. In an effort to remedy this situation, this article outlines an activity we developed to introduce preservice science teachers to computer science concepts such as pseudocode, looping, algorithms, conditional statements, problem decomposition, and debugging. The activity and discussion also support preservice teachers in developing pedagogical acumen for engaging K-12 students with computer science concepts. Examples of preservice science teachers’ work illustrate their engagement and struggles with the ideas and anecdotes provide insight into how the preservice science teachers practiced teaching computer science concepts with 6th grade science students. Explicit connections to the Next Generation Science Standards are made to illustrate how computer science lessons within a STEM course might be used to meet Engineering, Technology, and Application of Science standards within the NGSS.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

American Association for the Advancement of Science. (2000). Project 2061, Science for all Americans.

Ballen, S. (2007, December 26). Whac-a-mole [Video file]. Retrieved from https://www.youtube.com/watch?v=K-jaOfIHGko

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the development of computational thinking. Paper presented at the American Educational Research Association. Canada: British Columbia.

Kafai, Y. B., & Burke, Q. (2013). Computer programming goes back to school. Phi Delta Kappan, 95(1), 61.

Kotsopoulos, D., Floyd, L., Khan, S., Namukasa, I. K., Somanath, S., Weber, J., & Yiu, C. (2017). A pedagogical framework for computational thinking. Digital Experiences in Mathematics Education, 3, 154-171.

Kruse, J., Edgerly, H., Easter, J., & Wilcox, J. (2017). Myths about the nature of technology and engineering. The Science Teacher84(5), 39.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.

Papert, S., & Harel, I. (1991). Constructionism: Ablex publishing corporation.

Roggio, B. (2014, Dec 27). Pseudocode examples. Retrieved from https://www.unf.edu/~broggio/cop2221/2221pseu.htm

Rubinstein, A., & Chor, B. (2014). Computational thinking in life science education. PLoS computational biology, 10(11), e1003897.

Vygotsky, L. S. (1978). Mind in society. Cambridge: Harvard University Press.

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky, U. (2016). Defining computational thinking for mathematics and science classrooms. Journal of Science Education and Technology, 25(1), 127-147.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational thinking for all: pedagogical approaches to embedding 21st century problem solving in K-12 classrooms. TechTrends, 60, 565-568.

Introducing the NGSS in Preservice Teacher Education

Citation
Print Friendly, PDF & Email

Hill, T., Davis, J., Presley, M., & Hanuscin, D. (2020). Introducing the NGSS in preservice teacher education. Innovations in Science Teacher Education, 5(1). Retrieved from https://innovations.theaste.org/introducing-the-ngss-in-preservice-teacher-education/

by Tiffany Hill, Emporia State University; Jeni Davis, Salisbury University; Morgan Presley, Ozarks Technical Community College; & Deborah Hanuscin, Western Washington University

Abstract

While research has offered recommendations for supporting inservice teachers in learning to implement the NGSS, the literature provides fewer insights into supporting preservice teachers in this endeavor. In this article, we address this gap by sharing our collective wisdom generated through designing and implementing learning experiences in our methods courses. Through personal vignettes and sharing of instructional plans with the science teacher education community, we hope to contribute to the professional knowledge base and better understand what is both critical and possible for preservice teachers to learn about the NGSS.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Abell, S. K., Appleton, K., & Hanuscin, D. L. (2010) Designing and teaching the elementary science methods course. New York, NY: Routledge.

Bybee, R.W. (1997). Improving İnstruction. In Achieving scientific literacy: From purposes to practice. Portsmouth, NH: Heinemann.

Davis, E.A., Petish, D., Smithey, J. (2006). Challenges new science teachers face. Review of Educational Research, 76, 607-651.

Donnelly, L. A., & Sadler, T. D. (2009). High school science teachers’ views of standards and accountability. Science Education, 93, 1050-1075.

Duncan, R. G., & Cavera, V. L. (2015). DCIs, SEPs, and CCs, oh my! Understanding the three dimensions of the NGSS. Science and Children, 53(2), 16-20.

Donnelly, L. A., & Sadler, T. D. (2009). High school science teachers’ views of standards and accountability. Science Education, 93, 1050-1075.

Duschl, R. A. (2012). The second dimension–crosscutting concepts. Science and Children, 49(6), 34-38.

Feiman-Nemser, S. (2001). From preparation to practice: Designing a continuum to strengthen and sustain teaching. Teachers College Record, 103, 1013-1055.

Fisher, D. & Frey, N. (2008). Better learning through structured teaching: A framework for the gradual release of responsibility, Association for Supervision and Curriculum Development: Alexandria, VA.  

Hanuscin, D., Arnone, K.A., & Bautista, N. (2016a). Bridging the ‘next generation’ gap: Teacher educators implementing the NGSS. Innovations in Science Teacher Education, 1(1). Retrieved from https://innovations.theaste.org/bridging-the-next-generation-gap-teacher-educators-enacting-the-ngss/

Lee, E., Cite, S., & Hanuscin, D. (2014). Mystery powders: Taking the “mystery” out of argumentation. Science & Children, 52(1), 46-52.

Hanuscin, D. Cisterna, D. & Lipsitz, K. (2018). Elementary teachers’ pedagogical content knowledge for teaching the structure and properties of matter. Journal of Science Teacher Education, 29, 665-692. DOI 10.1080/1046560X.2018.1488486

Hanuscin, D. & Zangori, L. (2016b) Developing practical knowledge of the Next Generation Science Standards in elementary science teacher education. Journal of Science Teacher Education, 27, 799-818.

King, K., Hanuscin, D., & Cisterna, D. (In Press). What properties matter? Exploring essential properties of matter. Science & Children.

National Governors Association Center for Best Practices, Council of Chief State School Officers. (2010). Common core state standards. National Governors Association Center for Best Practices, Council of Chief State School Officers: Washington D.C.

National Research Council. 2012. A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

Little, J. W. (1990). The persistence of privacy: Autonomy and initiative in teachers’ professional relations. Teachers College Record, 91, 509-536.

Lynch, M. (1997). Scientific practice and ordinary action: Ethnomethodology and social studies of science. Cambridge, UK: Cambridge University Press.

National Research Council. (2012). A Framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press. https://doi.org/10.17226/13165.

Nollmeyer, G. E., & Bangert, A. (2015). Assessing K-5 elementary teachers understanding and readiness to teach the new framework for science education. The Researcher, 27(2), 7-13.

Putnam, R. T., & Borko, H. (2000). What do new views of knowledge and thinking have to say about research on teacher learning. Educational Researcher, 29(1), 4-15.

Reiser, B. J. (2013). What professional development strategies are needed for successful implementation of the Next Generation Science Standards? Invitational Research Symposium on Assessment, K-12 Center at ETS. Retrieved from http://www.k12center.org/rsc/pdf/reiser.pdf

Ricketts, A. (2014). Preservice elementary teachers’ ideas about scientific practices. Science & Education, 23, 2119-2135.

Smith, J., & Nadelson, L. (2017). Finding alignment: The perceptions and integration of the next generation science standards practices by elementary teachers. School Science and Mathematics, 117, 194-203.

van Drie., J. H., Bijaard, D., & Verloop, N. (2001). Professional development and reform in science education: The role of teachers’ practice and knowledge. Journal of Research in Science Teaching, 38, 137-158.

Windschitl, M., Schwarz, C., & Passmore, C. (2014). Supporting the implementation of the next generation science standards (NGSS) through research: Preservice teacher education. Retrieved from https://narst.org/ngsspapers/preservice.cfm

Winkler, A. (2002). Division in the ranks: Standardized testing draws lines between new and veteran teachers. Phi Delta Kappan, 84, 219-225.

 

The Great Ice Investigation: Preparing Pre-Service Elementary Teachers for a Sensemaking Approach of Science Instruction

Citation
Print Friendly, PDF & Email

McFadden, J.R. (2019). The great ice investigation: Preparing preservice elementary teachers for a sensemaking approach of science instruction. Innovations in Science Teacher Education, 4(3). Retrieved from https://innovations.theaste.org/the-great-ice-investigation-preparing-pre-service-elementary-teachers-for-a-sensemaking-approach-of-science-instruction/

by Justin R. McFadden, University of Louisville

Abstract

The current article describes a sequence of lessons, readings, and resources aimed to prepare elementary preservice teachers for science instruction wherein student sensemaking, rather than vocabulary memorization, is prioritized. Within the article, I describe how the prompts, questions, and logistics of the The Great Ice Investigation drive my students’ in-class and out-of-class learning to start out every science methods course I teach. The readings and resources detailed that compliment the Great Ice Investigation should benefit both preservice as well as in-service elementary teachers just beginning to align their instruction with the Next Generation Science Standards. The lessons, readings, and resources described should be of value to science teacher educators looking to modify and improve how they prepare their students for next generation science instruction.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Tretter, T. & McFadden, J. (2018). Modeling structure and properties of matter: People as particles. Science and Children, 56(4), 67-73.Tretter, T. & McFadden, J. (2018). Modeling Structure and Properties of Matter: People as Particles. Science and Children, 56(4), 67-73.

Bybee, R. W. (2013). Using the 5E Model to Implement the NGSS: Translating the NGSS for classroom instruction. NSTA Press, National Science Teachers Association.

Bybee, R. W. (2014). The BSCS 5E instructional model: Personal reflections and contemporary implications. Science and Children, 51(8), 10-13.

Duncan R., Krajcik, J., & Rivet, A. (2016). Disciplinary Core Ideas: Reshaping Teaching and Learning. NTSA Press, National Science Teachers Association. ISBN: 978-1-938946-41-7.

Duncan, R. G., & Cavera, V. L. (2015). DCIs, SEPs, and CCs, oh my!: Understanding the three dimensions of the NGSS. The Science Teacher, 82(7), 67.

Harlen, W. (2015). Teaching Science for Understanding in Elementary and Middle Schools. Heinemann: Portsmouth, NH. ISBN: 978-0-325-06159-7.

Metz, K. (2008). Narrowing the gulf between the practices of science and the elementary school classroom. Elementary School Journal, 109, 138–161.

Moscovici, H., & Nelson, T. H. (1998). Shifting from activitymania to inquiry. Science and Children, 35(4), 14.

National Research Council. (2012) A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

NGSS Lead States. 2013. Next Generation Science Standards: For states, by states. Washington, DC: National Academies Press. www.nextgenscience.org/ next-generation-science-standards.

Penuel, W., Van Horne, K. & Bell, P. (2016). Steps to designing a three-dimensional assessment. Downloaded from: http://stemteachingtools.org/assets/landscapes/STEM-Teaching-Tool-29-Steps-to-Designing-3D-Assessments.pdf

Reiser, B., Brody, L., Novak, M., Tipton, K., Adams, L. (2017).  Asking questions. In Schwarz, C. V., Passmore, C., & Reiser, B. J. (Eds.), Helping students make sense of the world using next generation science and engineering practices. (p. 87-108). NSTA Press.

Van Zee, E. H., & Roberts, D. (2001). Using pedagogical inquiries as a basis for learning to teach: Prospective teachers’ reflections upon positive science learning experiences. Science Education, 85(6), 733-757.