Supporting Preservice Elementary Teachers in Teaching Science for Equity and Justice: A Practical Framework

by Elizabeth A. Davis, University of Michigan
Abstract

Preservice elementary teachers bring many strengths to science teaching but may not get extensive support in learning to work toward equity and justice in their science teaching. Drawing on four approaches to equity from a recent report from the National Academies of Sciences, Engineering, and Medicine (2022), this article presents a practical framework for helping preservice elementary teachers in this challenging work. The article first explores each approach, suggesting interpretive frames and teaching moves that preservice teachers could use in moving from a relatively abstract call for equity to making concrete decisions in elementary science instruction. A practical framework is developed based on that exploration, with a description of how the framework has been used instructionally in an elementary science methods class. Then, the article presents the results of a pilot study of 31 preservice elementary teachers’ use of a pilot framework, illustrating how these participants’ lesson plans readily reflected teaching moves focused on increasing children’s opportunity and access to science learning and increasing achievement, representation, and identification but less often reflected moves oriented toward broadening what counts as science or bringing science and justice together. The article concludes by noting that research is needed to further explore the utility of this framework and how equity can be supported in science teacher education more generally. The article also urges the field to develop representations of practice and elementary science curriculum materials that would support teachers in this challenging, lifelong work to advance equity and justice.

Engaging Preservice Teachers in Collaborative Inquiry Projects During Remote Instruction

by Julie Robinson, University of North Dakota; & Rebekah Hammack, Montana State University
Abstract

We implemented a remote collaborative inquiry project with elementary preservice teachers who were enrolled in their science methods course during the 2020–2021 academic year. The courses were taught in one of three modalities: (1) fully online and asynchronous (graduate students seeking initial licensure), (2) fully online with synchronous and asynchronous components (undergraduate students), and (3) blended with face-to-face and asynchronous online components (undergraduate students). During the project, groups of two to four preservice teachers engaged remotely in collaborative, hands-on inquiry projects and documented their communication throughout the process. The remote collaborative inquiry projects were adapted from existing course assignments that had previously been used in face-to-face settings. We found that despite encountering some unexpected challenges with implementation, most participants recognized the value of group work for learning science. However, many preservice teachers, especially undergraduate students, focused on completing a quality end product rather than the learning that occurred throughout the process of collaboration and inquiry. It was also clear that many did not differentiate between collaborative and cooperative learning and often utilized a divide-and-conquer cooperative strategy. Future implementations of the project should intentionally provide opportunities for preservice teachers to discuss the differences between collaboration and cooperation and how these strategies impact learning in addition to the completion of a final product.

Facilitating Preservice Teachers’ Socioscientific Issues Curriculum Design in Teacher Education

by Jaimie A. Foulk, University of Missouri - Columbia; Troy D. Sadler, University of North Carolina – Chapel Hill; & Patricia M. Friedrichsen, University of Missouri - Columbia
Abstract

Socioscientific issues (SSI) are contentious and ill-structured societal issues with substantive connections to science, which require an understanding of science, but are unable to be solved by science alone. Consistent with current K-12 science education reforms, SSI based teaching uses SSI as a context for science learning and has been shown to offer numerous student benefits. While K-12 teachers have expressed positive perceptions of SSI for science learning, they cite uncertainty about how to teach with SSI and lack of access to SSI based curricular materials as reasons for not utilizing a SSI based teaching approach. In response to this need we developed and taught a multi-phase SSI Teaching Module during a Science Methods course for pre-service secondary teachers (PSTs), designed to 1) engage PSTs as learners in an authentic SSI science unit; 2) guide PSTs in making sense of an SSI approach to teaching and learning; and 3) support PSTs in designing SSI-based curricular units. To share our experience with the Teaching Module and encourage teacher educators to consider ways of adapting such an approach to their pre-service teacher education contexts, we present our design and resources from the SSI Teaching Module and describe some of the ways PSTs described their challenges, successes, and responses to the experience, as well as considerations for teacher educators interested in introducing PSTs to SSI.

Food Pedagogy as an Instructional Resource in a Science Methods Course

by William Medina-Jerez, University of Texas at El Paso; & Lucia Dura, University of Texas at El Paso
Abstract

This article explores the integration of culturally relevant practices and student expertise into lesson planning in a university-level science methods course for preservice elementary teachers (PSETs). The project utilized a conceptual framework that combines food pedagogy and funds of knowledge, modeling an approach to lesson design that PSETs can use in their future classrooms to bring students’ worldviews to the forefront of science learning. The article gives an overview of the conceptual framework and the origins of the project. It describes the steps involved in the design, review, and delivery of lessons by PSETs and discusses implications for instructional practices in science teacher education and science learning in elementary schools. The article concludes with a discussion of major outcomes of the use of this framework, as evidenced by PSET pre- and post- project reflections: student-centered curriculum development, increased PSET self-confidence, integrated learning for both PSET and the students, and sustained levels of engagement.​

Connecting Preservice Teachers and Scientists Through Notebooks

by Ingrid Carter, Metropolitan State University of Denver; & Sarah Schliemann, Metropolitan State University
Abstract

The use of science notebooks in an elementary methods course can encourage preservice teachers’ engagement in collaborative work and participation in science through writing (Morrison, 2008). In this paper we describe how we, a teacher educator and a scientist, collaborated to focus on how scientists use notebooks in their work, and how this compares and contrasts to how notebooks can be used in both a preservice elementary methods course and in the elementary classroom. We describe our facilitation of notebooks with preservice teachers and how we emphasize professional scientists’ use of notebooks. Additionally, we offer recommendations based on our experiences in our collaboration and facilitation of notebook use with preservice teachers. Our intention is to provide recommendations that can be applied in a variety of university contexts, such as emphasizing the Science and Engineering Practices and the Nature of Science, including discussion about the work of professional engineers, and making connections to literacy.

Lessons Learned from Going Global: Infusing Classroom-based Global Collaboration (CBGC) into STEM Preservice Teacher Preparation

by M. Kate York, The University of Texas at Dallas; Rebecca Hite, Texas Tech University; & Katie Donaldson, The University of Texas at Dallas
Abstract

There are many affordances of integrating classroom-based global collaboration (CBGC) experiences into the K-12 STEM classroom, yet few opportunities for STEM preservice teachers (PST) to participate in these strategies during their teacher preparation program (TPP). We describe the experiences of 12 STEM PSTs enrolled in a CBGC-enhanced course in a TPP. PSTs participated in one limited communication CBGC (using mathematics content to make origami for a global audience), two sustained engaged CBGCs (with STEM PSTs and in-service graduate students at universities in Belarus and South Korea), and an individual capstone CBGC-infused project-based learning (PBL) project. Participating STEM PSTs reported positive outcomes for themselves as teachers in their 21st century skills development and increased pedagogical content knowledge. Participants also discussed potential benefits for their students in cultural understanding and open-mindedness. Implementation of each of these CBGCs in the STEM PST course, as well as STEM PST instructors’ reactions and thoughts, are discussed.