Providing High-Quality Professional Learning Opportunities Through a Lesson Study Conference

Citation
Print Friendly, PDF & Email

Dotger, S., Whisher-Hehl, J., Heckathorn, J., Moquin, F. K. (2021). Providing High-Quality Professional Learning Opportunities Through a Lesson Study Conference. Innovations in Science Teacher Education, 6(4). Retrieved from https://innovations.theaste.org/providing-high-quality-professional-learning-opportunities-through-a-lesson-study-conference/

by Sharon Dotger, Syracuse University; Jessica Whisher-Hehl, Syracuse University; Jennifer Heckathorn, Syracuse University; & F. Kevin Moquin, Syracuse University

Abstract

We report on the development and implementation of a conference designed to highlight the Next Generation Science Standards (NGSS Lead States, 2013) using lesson study as an effective professional-development practice for inservice teachers. The purpose of this article is to highlight details from the development and implementation that can be used by others wishing to replicate the conference. First, we give an overview of the practice of lesson study and explain how it was used by one of four lesson study teams that taught their research lesson publicly at the conference in front of 80 observers. Then, we describe a sample research proposal and share specific information about the processes used to coach the lesson study teams and plan the conference, and we share conference agendas and diagrams of lesson implementations to support readers’ visualization of the implementation. Finally, we conclude with three planning components that were vital to our ability to execute the conference and link the design to existing lesson study literature.

Introduction

Science education has sought to improve student learning since its inception as a discipline. The publication of A Framework for K-12 Science Education (National Research Council, 2012) seeks to advance that agenda with equitable outcomes for all students; however, wide-spread implementation of instructional practices that breathe life into its vision and those of the Next Generation Science Standards (NGSS; NGSS Lead States, 2013) has yet to be realized. One means to improve student learning is to improve teachers’ instruction, which necessitates teachers’ learning. Yet, opportunities for teachers to learn in science remain infrequent, especially in the elementary grades (Plumley, 2019).

A recent meta-analysis identified five evidence-based conditions for teachers to improve instructional quality: Learning opportunities must (1) be sustained, (2) focus on daily problems of teaching, (3) support teachers’ focus on student thinking, (4) develop teacher communities, and (5) study and enact particular instructional routines and practices (Gibbons & Cobb, 2017). Lesson study was identified as one of six potentially productive coaching activities that met all five of the conditions (Gibbons & Cobb, 2017). As a practice, lesson study foregrounds collaborative teacher research into the intersections between standards, research findings, and instructional materials, resulting in a lesson designed to test an instructional hypothesis. Therefore, lesson study provides a structure for teachers to dig into the fundamental goals of the National Research Council’s (2012) framework and the NGSS and test if and how their best instructional ideas yield student learning outcomes in the classroom.

To provide teachers with training in the NGSS and to spark a catalyst for the growth of lesson study beyond a single classroom or school, we developed and implemented three lesson-study conferences. The goal of this article is to report on the first-year conference design and the lesson study process used to facilitate it. We chose to focus on the first year of the conference to highlight the details of the foundational design to assist others in replication, should they choose to do so. To prepare this article, we conducted a retrospective analysis of artifacts from the first year.

In addition to organizing the conference, most of the authors doubled as lesson study coaches for the teaching teams. This positionality allows us to report on aspects of the lesson study process and the conference design. We analyzed information from records, including notes from team meetings, conference organizer meetings, artifacts, news coverage, and photographs. The utilization of cloud-based documents and the tracking of changes to documents (in this case, Google Docs) facilitated this process.

 

Lesson Study

The origins of lesson study have been traced to interactions between Japanese and U.S. teacher educators in the 1870s (Makinae, 2019). Lesson study took root in Japan and continues to provide a structure for teachers to collaboratively study and improve their standards, curriculum, instructional materials, and pedagogy (Dotger, 2015; Fernandez & Yoshida, 2012; Lewis et al., 2012; Takahashi & McDougal, 2016). Through a research cycle, a team of teachers and other educators, such as instructional coaches or administrators, work together through a four-phase process: study, plan, teach, and reflect. During the study phase, the teaching team selects a topic of interest and articulates a research theme, which states the instructional moves and tools that teachers will use in the research lesson and the hypothesized student learning that will be evident as a result. The team investigates their own and their students’ knowledge of the concept. The team then shifts to the plan phase, designing a lesson that will elicit the students’ thinking that the participants will review to evaluate their research hypothesis.

An example of a research hypothesis might be as follows: By using board work, student writing, and discourse practices, more students will contribute to building a consensus model. The research hypothesis drives the team’s study of the curriculum materials and their plan for instruction. The studying and planning should be integrated with one another. Teams are often facilitated through the process by a knowledgeable other or “coach” with experience in the content area and lesson study. Collectively, the team and coach plan a research lesson embedded within the larger unit of study that will be taught by one member of the team while the other members and the coach collect evidence of student thinking in real time. This evidence is used following the lesson to evaluate the research hypothesis. When additional observers who are not members of the teaching team help gather data, the research lesson is “public.” To these observers, the research lesson may seem like a singular event in the lesson study process. However, the research lesson cannot be divorced from its context within the larger unit of study, especially because the team’s work during the study and plan phases expanded not only their knowledge of the instructional actions contained in the research lesson but also their knowledge of the whole unit. For the sake of organization and brevity, we point interested readers to in-depth descriptions of the lesson study process as described in other works (e.g., Seleznyov, 2018; Takahashi & McDougal, 2016, 2019).

 

A Science Lesson Study Conference

In 2016, the state’s adoption of an adapted set of standards based on the NGSS drove teachers’ need for professional development opportunities. Our team included a science teacher educator, a coordinator of science professional development for the region’s state-endorsed educational agency, an assistant superintendent of instructional support, and a classroom teacher experienced with lesson study. The varied professional roles of our team members positioned us to notice and respond to that need for professional development. We envisioned using lesson study as a means to improve teachers’ instructional practice and familiarity with the NGSS. Further, we brought multiple teaching teams together in a lesson study conference to share that learning with others. To meet these goals, we took on multiple roles, including planning the conference and coaching the teams. Given the cyclical nature of lesson study and the overlapping responsibilities of roles, reporting on these practices simultaneously is difficult. To provide insight into both, we first discuss the experience of one teaching team and their research lesson, and then we discuss the preparation for and implementation of the conference.

 

The Experience of a Teaching Team

Several criteria were considered for selection, including the team’s previous experience with teaching a live research lesson, the team’s familiarity with the instructional units, and the proposed grade level focus for the lesson study cycle. These criteria allowed us to narrow our focus in three ways. First, this limited the span of grade levels that would be represented at the conference, which allowed for an in-depth focus on the changes required by the new standards for elementary science. Second, because these teams had at least some members who had previously participated in lesson study, we focused more on the standards and instructional materials than on the lesson study process. Likewise, given the size and scope of the conference, we believed that teams with experience would feel more confident about their participation than those without experience. Table 1 provides information on the grade level focus for the research lessons, the coaches, the size of the teaching teams, and the number of people on each team with prior lesson study experience.

 

Table 1

Lesson Study Team Information

Once recruited, teams participated in a full lesson study cycle. To illustrate, we focus here on the experience of the fourth-grade teaching team. This team consisted of four elementary teachers, two of whom had prior lesson study experience, and was coached by the first author. She oversaw the lesson study cycle and assisted the teaching team in finding instructional resources, developing their research theme, and studying the content. Like all other teams, they attended the summer jumpstart institute held in August, which was designed and facilitated by the first two authors. During this time, the teaching teams refined their lesson study ideas and studied the NGSS, related documents, and instructional materials. By the end of the summer meeting, each teaching team began planning their unit and the lesson they felt would best allow them to investigate their research hypothesis.

At the conclusion of the summer jumpstart, the teaching team and coach scheduled ongoing meetings (approximately every 7–10 days) to continue their study of materials and the preparation for the public research lesson. Once the school year started, these meetings were held after school, and members of the teaching team received minimal compensation for their time.

Figure 1 provides details of the work undertaken by the fourth-grade team and their coach as they progressed through lesson study’s study, plan, teach, and reflect stages. The figure shows that a great deal of lesson study work occurred prior to the research lesson and that the public research lesson was only a small portion of the whole cycle. In the context of the conference, however, the research lesson was the most public component.

 

Figure 1

Timeline of a Lesson Study Cycle

Because this team taught their research lesson publicly, they created a presentation for the attendees who observed the lesson. They emailed their lesson research proposal to the conference attendees a few days prior to the conference. The purpose of the presentation was to update observers on any changes, introduce them to lesson study, introduce observation procedures and norms, and answer questions. Following the presentation, one member of the teaching team taught the research lesson. After the research lesson, the team held the post-lesson discussion.

 

A Sample Research Lesson

For the sample research lesson, we continue to use the fourth-grade team from the first year as an example case. Unlike the other teams in the first year, this team did not have a new set of instructional materials to work from; therefore, they adjusted their old materials. Their research theme focused on whether the use of science notebooks and careful planning of whiteboard space by the teachers could enhance the students’ learning. They hypothesized that by using notebook writing, students would be able to better explain their reasoning to others and generate claims that connected observations together to answer the research question. When the teachers set their research theme, they noted that in prior years, their students seemed to struggle with explaining themselves to their peers or comparing their ideas to those of their classmates. Further, they hypothesized that careful use of the board to document student thinking would create an exemplar for students to draw from in constructing their own notebook entries and make their thinking visible to one another. Because the research lesson was a continuation from a lesson that they began in their home classroom, the board helped students link ideas across lessons.

The research lesson took 2 days to complete—only the second day was public at the conference. The lesson goal was for students to be able to answer the focus question: How do objects change during an interaction? In the first half of the lesson, they observed a hand boiler as a class and then discussed what they noticed before, during, and after the interaction between a hand and a hand boiler. Students then worked in four teams at three stations to record their observations in their science notebooks. In the second half of the lesson, the students observed three more stations, recorded their observations, and then discussed as a class how they could answer the focus question and support their answer with evidence from multiple interactions among the seven that they studied.

In their research proposal, the team articulated multiple questions to guide lesson observers in gathering helpful evidence of student reasoning. One of the key questions that the team had when planning was the degree to which they should structure students’ exploration of manipulatives and records in the science notebook. To gather information from the research lesson to address this question, the teaching team posed several questions to the observers to guide their observations of students. These questions included: How are the students observing the objects and their interactions? How are the students recording their observations? What language are the students using to describe their thinking? The teaching team wanted to use this evidence to evaluate the efficacy of the structure they provided students in bringing together multiple observations to build an explanation.

 The Conference Experience

Preparation for the conference began 10 months prior to the date it was held with the recruitment of the teaching teams. Figure 2 provides a detailed account of the tasks undertaken to prepare for and conduct the conference and outlines which tasks fell to which groups. The colors in the chart are used to clarify the tasks for each group and show the interactions between groups over time. For example, the work of the conference planners, shown in yellow, intersected with the coaches’ work, shown in blue, over the summer. This overlapping effort is shown in green to demonstrate this cooperation. Because the coaches worked so closely with the teaching teams, much of their combined work is shown in purple.

 

Figure 2

Workflow Chart for Lesson Study Conference Planning

We held the conference on a regional professional development day when classes were not in session. This enabled the conference to be held at a local school, which reduced costs and provided the multiple, large, open meeting spaces needed. Additionally, teachers did not require substitute teacher coverage, administrators were able to attend, and students could participate in the live research lessons without missing class time. Teaching team members recruited students at the grade level of their live research lesson to participate. The team sent a letter to parents informing them of the conference agenda, planned activities for the students, and the transportation plan. This letter also requested their permission for their child to attend and be photographed or interviewed by local media and inquired about medical needs. Each team was able to recruit the majority of students in the focal class to participate in the conference so that the lesson mimicked a typical class day. Teaching assistants from the students’ districts accompanied them for the day, and students were bussed to the conference location from their home school. When students were not in the live research lesson, they attended enrichment experiences at the conference location with local children’s programs from museums, the zoo, and a local gym. Elements like color-coded classroom t-shirts and bagged lunches helped to make the day special for students, and the students also received a big round of applause from the conference attendees.

Conference participants were recruited from over 20 public K–12 school districts in the region. Although the research lessons were limited to Grades 2–6 content, participants from across the K–12 spectrum were encouraged to attend due to the novelty of the standards and the lack of experience most teachers had with them. For many conference participants, this was the first opportunity they had to see lessons designed for the NGSS. Additionally, school and district administrators, including instructional coaches, curriculum coordinators, principals, and superintendents, attended the conference, as did some preservice teachers and faculty from a local university. In the first year, 338 participants attended the conference.

The full agenda for the conference is shown in Figure 3. To begin the day, the conference organizers introduced the audience to the agenda and explained their vision for the conference design. Immediately following, all attendees listened to a keynote address given by a director of a national center focused on science education. She explained the purpose of her center and how it responded to the NGSS and gave an overview of evidence on the efficacy of the center’s teacher professional development and instructional materials design projects.

 

Figure 3

Conference Agenda

Following the keynote address, the conference shifted to the research lessons. Each conference participant was assigned to one of four research lesson introductions based on grade-level preferences gathered during registration. The introduction oriented the observers to the teaching team’s goals and provided an overview of the lessons the students experienced leading up to the research lesson. The teaching teams also shared their research hypotheses and the rationale for their lesson design and gave guidance to the observers on gathering specific evidence of student thinking that would be used in the post-lesson discussion to evaluate the research theme. Figure 4 shows the layout of one of the gymnasium spaces for the research lesson introduction, research lesson, and post-lesson discussion. The intent of the figure is to show the multiple uses of the space as well as assist the reader in visualizing the interactions between the teaching teams, facilitators, coaches, keynote speakers, conference participants, and students. Facilitators were assigned to each research lesson to act as moderators, upholding discussion norms and guidelines for observations. Facilitators were colleagues with prior knowledge of lesson study and prior experience with teacher professional development.

 

Figure 4

Lesson Introduction, Research Lesson, and Post-lesson Discussion Layout

Each of the four teaching teams taught their lesson twice with different student groups. The teachers had recruited enough students from the appropriate grade level at their school to split between the two lessons. At the conclusion of the lesson and the second keynote, the two groups switched; the group that came from the keynote went to the second iteration of the research lesson, and the group that came from the research lesson went to the third keynote presentation (Keynote 3).

The keynote speeches that ran opposite of the research lessons were given by a science teacher educator with two decades of experience in elementary science education and a classroom teacher from another state who had already been teaching using the NGSS. The teacher educator spoke to the kind of teacher learning that was required for teachers to implement the NGSS, whereas the classroom teacher shared her experiences and advice for transitioning to NGSS-aligned instruction and attending to associated assessment demands. Each was selected to further the conference’s goal to connect local classroom-level work with national initiatives in improving science teaching and learning. The design decision to have two different keynotes was based on two key considerations. First, we wanted to limit the number of observers present in any research lesson. By offering the lesson twice, each lesson was observed by approximately 40 educators rather than 80. Second, we wanted the keynote speakers to be able to observe a research lesson to facilitate their opportunity to connect their expertise to the learning experience for the students. Therefore, the second keynote speaker observed the first lesson iteration, and the third keynote speaker observed the second lesson iteration.

Following the second iteration of the research lesson, Groups A and B reconvened in the same space where the lesson introduction took place. The facilitator led the post-lesson discussion using established protocols (Lewis et al., 2019; Takahashi & McDougal, 2016). The teacher of the research lesson shared their thinking about the lesson first, followed by their teammates, and then the facilitator invited observations of student thinking from conference participants and final comments from the attending keynote speaker. Through this collaborative approach, the group collectively evaluated the teaching team’s research theme and discussed its implications for future instruction.

To conclude the conference, everyone gathered for a panel discussion in the auditorium. The goal of the panel discussion was to connect the topics raised in the keynotes, the research lessons, and our collective observations of student thinking. The panel members included the first two authors, two conference organizers, the keynote speakers, and a member of each of the four teaching teams. The third author facilitated the panel discussion, allowing time for panelists to comment on the goals of the conference and taking questions and comments from the audience. During the closing and next steps, participants were asked to complete a Google evaluation form. The evaluation included six Likert-scale questions with the option to add comments to each response. Of the conference participants, 273 completed the evaluation form.

Overall, conference participants provided generally positive feedback about their experience. The results are summarized in Table 2. As we compare the responses across the questions, we notice that participants were most positive about attending additional professional development at the regional science center that focused on the new standards. Participants were more interested in conducting lesson study with colleagues as opposed to studying standards with colleagues. One way to interpret this difference is that the participants need additional opportunities to learn about lesson study to understand that studying standards with colleagues is a core component of the study phase.

 

Table 2

Likert-Scale Evaluation Responses (n = 273)

Survey respondents added 40 comments about conducting lesson study with colleagues that ranged from “All teachers should do this” to “Not at this time” or “Time to work with others is limited.” When asked if they would attend another conference like this in the future, 38 respondents added comments. More than a third asked for there to be lessons that focused on middle and high school contexts—which we did in subsequent years. Other isolated comments included, “It was amazing to be able to watch and discuss authentic student learning,” and “I was on one of the teaching teams and would definitely participate again.” Fortunately, members of teaching teams did return for additional work in subsequent years and brought additional colleagues with them. Although this may not be a direct measure of their learning, teachers’ continued participation is a signal of their interest and that they found the process valuable.

 

Discussion and Conclusion

The purpose of this article was to report on the first-year conference design and the lesson study process used to facilitate it. To that end, here we expand on three components that we consider crucial to the success of the conference. First, we decided to hold the conference on a professional development day, which meant that classes were not in session. This decision had implications for the entire conference design, including the number and type of participants we were able to recruit. Additionally, we used a school as the conference location, which gave us access to multiple large instructional spaces (e.g., auditorium, gymnasiums, music rooms, and library). If we held the conference during a typical school day, we would have had to limit the number of public lessons and the number of participants who could attend the conference. However, because the conference took place on a professional development day, we needed to recruit students to participate in a learning opportunity on a “day off” at a different location. Therefore, as Figure 2 clarifies, we created a student schedule that mimicked a traditional school day, including providing transportation, supervision, and enrichment activities for the students when they were not in the research lessons.

Second, the progression of the lesson study cycle for the teaching teams was influenced by several factors. Once the conference date was identified, the coaches collaborated with the lesson study teams during the summer jumpstart to set a progression of meetings during September and October that allowed them to complete the study and plan phases of their cycle. Each of the research lessons was embedded within larger instructional units. Because the research lessons were not isolated events, teaching teams had to carefully implement their lessons so that students would be in the right place and last-minute edits to the lesson research proposals would be minimized. Each of these factors influenced the pace at which the research proposals were constructed and shared with conference participants. Additionally, teachers wanted to build on the learning of their students from the research lesson, which implicated the remaining lessons in the unit that they taught.

Finally, the collaborative nature of lesson study and conference design and implementation cannot be overstated. Although Figure 2 demonstrates the collaboration required between various stakeholders involved in the conference, it does not illustrate the additional collaboration and communication required to host the conference. This collaboration included meetings with the host-site school principal and custodial staff to arrange for the setup of the instructional spaces, communication with audio-visual specialists to assist with technology and sound needs, and getting access to the school the night before the conference to allow for setup and for the teaching teams to orient themselves to new instructional spaces. Multiple teaching teams elected to practice their research lesson in their revised instructional space the evening before to visualize how the delivery of the lesson would feel for them and how they wanted to orient tables, chairs, rugs, and whiteboards for their students.

There is little doubt that inservice teachers require high-quality professional development experiences in order to implement the rigorous instructional shifts required of the NGSS. Our state’s shift in science standards and the subsequent changes in instructional materials presented opportunities for educators across the region to engage in professional development. We contributed to those opportunities by designing and facilitating a conference featuring public research lessons that were taught as the result of teaching teams’ engagement in systematic study of standards, content, and pedagogy through lesson study. The conference provided an avenue to simultaneously center both the voices of experts—those who have contributed to the authorship of the NGSS, designed instructional materials to bring them to life, or field tested newly developed assessments of students learning—and the expertise of local, practicing teachers who engaged in a lesson study cycle about those standards, using those instructional materials, and enacting instructional practices meant to make students’ thinking visible and audible to lesson observers. By making their practice public, the teaching teams offered conference participants an opportunity to see how elementary science instruction could develop and also allowed them to discuss lesson efficacy considering evidence of learning gathered as a lesson unfolded rather than only via an end-of-year summative assessment with underspecified connectivity to instruction.

In one of the first papers written in English that reintroduced lesson study to Western audiences, Lewis and Tsuchida (1998) suggested that “research lessons provide an opportunity for teachers to discuss big ideas currently shaping national educational debate, think them through, and bring them to life in the actual classroom” (p. 16). We sought to design a conference that would actualize this description of Japanese practice in a U.S. context, particularly at a time when stepping up to the potential of the NGSS would require the alteration of standard classroom practice and revitalization of elementary science instruction. We hope that by describing a conference designed to use public research lessons as a mechanism for studying the NGSS, we might encourage other teacher educators to use lesson study and their research lessons to publicly advance the goals of equitable science education for all learners.

References

References

Dotger, S. (2015). Methodological understandings from elementary science lesson study facilitation and research. Journal of Science Teacher Education, 26(4), 349–369. https://doi.org/10.1007/s10972-015-9427-2

Dotger, S. & McQuitty, V. (2014). Describing teachers’ operative systems: A case study. Elementary School Journal, 115(1), 73-96. https://doi.org/10.1086/676945

Dotger, S. & Walsh, D. (2015). Elementary art & science: Observational drawing in lesson study. International Journal for Lesson and Learning Studies, 4(1), 26-38.Fernandez, C., & Yoshida, M. (2012). Lesson study: A Japanese approach to improving mathematics teaching and learning. Routledge.

Gibbons, L. K., & Cobb, P. (2017). Focusing on teacher learning opportunities to identify potentially productive coaching activities. Journal of Teacher Education, 68(4), 411–425. https://doi.org/10.1177/0022487117702579

Lewis, C. C., Perry, R. R., Friedkin, S., & Roth, J. R. (2012). Improving teaching does improve teachers: Evidence from lesson study. Journal of Teacher Education, 63(5), 368–375. https://doi.org/10.1177/0022487112446633

Lewis, C. C., & Tsuchida, I. (1998). A lesson is like a swiftly flowing river: Research lessons and the improvement of Japanese education. American Educator, 22(4), 12–17, 50–52. https://www.aft.org/sites/default/files/periodicals/Lewis.pdf

Makinae, N. (2019). The origin and development of lesson study in Japan. In R. Huang, A. Takahashi, & J. P. da Ponte (Eds.), Theory and practice of lesson study in mathematics: An international perspective (pp. 169–181). Springer. https://doi.org/10.1007/978-3-030-04031-4_9

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press. https://doi.org/10.17226/13165

NGSS Lead States. (2013). Next generation science standards: For states, by states. National Academies Press. https://doi.org/10.17226/18290

Plumley, C. L. (2019). 2018 NSSME+: Status of elementary school science. Horizon Research. http://horizon-research.com/NSSME/wp-content/uploads/2019/05/2018-NSSME-Status-of-Elementary-Science.pdf

Seleznyov, S. (2018). Lesson study: An exploration of its translation beyond Japan. International Journal for Lesson and Learning Studies, 7(3), 217–229. https://doi.org/10.1108/IJLLS-04-2018-0020

Takahashi, A., & McDougal, T. (2016). Collaborative lesson research: Maximizing the impact of lesson study. ZDM: Mathematics Education, 48(4), 513–526. https://doi.org/10.1007/s11858-015-0752-x

Takahashi, A., & McDougal, T. (2019). Using school-wide collaborative lesson research to implement standards and improve student learning: Models and preliminary results. In R. Huang, A. Takahashi, & J. P. da Ponte (Eds.), Theory and practice of lesson study in mathematics: An international perspective (pp. 263–284). Springer. https://doi.org/10.1007/978-3-030-04031-4_14

 

 

 

 

 

Eliciting and Refining Conceptions of STEM Education: A Series of Activities for Professional Development

Citation
Print Friendly, PDF & Email

Dare, E. A. & Ring-Whalen, E. A. (2021). Eliciting and refining conceptions of STEM education: A series of activities for professional development. Innovations in Science Teacher Education, 6(2). Retrieved from https://innovations.theaste.org/eliciting-and-refining-conceptions-of-stem-education-a-series-of-activities-for-professional-development/

by Emily A. Dare, Florida International University; & Elizabeth A. Ring-Whalen, St. Catherine University

Abstract

Integrated STEM (science, technology, engineering, and mathematics) education is becoming increasingly common in K–12 classrooms. However, various definitions of STEM education exist that make it challenging for teachers to know what to implement and how to do so in their classrooms. In this article, we describe a series of activities used in a week-long professional development workshop designed to elicit K–12 teachers’ conceptions of STEM and the roles that science, technology, engineering, and mathematics play in STEM education. These activities not only engage teachers in conversations with peers and colleagues in a professional development setting but also enable teachers to reflect on their learning related to STEM education in the context of creating lesson plans and considering future teaching. In addition to describing these activities, we share suggestions related to how these activities may be used in venues outside of professional development.

Introduction

Current policy documents have called for K–12 science classrooms to employ integrated science, technology, engineering, and mathematics (STEM) strategies that provide a more authentic learning environment for students (Honey et al., 2014). Although the Next Generation Science Standards (NGSS; NGSS Lead States, 2013) and state standards that include engineering (Moore et al., 2013) strongly support the incorporation of engineering into science classrooms, the nature of engineering and how to effectively integrate it into science teaching is typically outside of most teachers’ knowledge bases (Cunningham & Carlsen, 2014). Although national policy documents strongly support the integration of STEM education, there remains disagreement on models and effective approaches for integrated STEM instruction (e.g., Breiner et al., 2012; Moore et al., 2020; Martín‐Páez et al., 2019).

Because of this disagreement, there is a need to better understand what integrated STEM education is in order to implement it in practice. The literature reveals a wide variety of approaches that include: STEM as a replacement term for science and mathematics (Breiner et al., 2012; Sanders, 2009), STEM as a pedagogical shift toward an integrated approach (Breiner et al., 2012; English, 2016; Honey et al., 2014; Kelley & Knowles, 2016), curriculum changes that reflect the work of STEM professionals (Breiner et al., 2012; Labov et al., 2010; Sanders, 2009), and curricula that emphasize engineering design challenges (Bryan et al., 2015). Despite these variations in definitions, there are common elements across these approaches to STEM, such as the inclusion of an engaging, real-world context (e.g., Breiner et al., 2012; Brown et al., 2011; Moore et al., 2020); explicit connections between science, technology, engineering, and mathematics and modeling those connections as they would be observed in STEM careers (e.g., English, 2016; Herschbach, 2011; Honey et al., 2014; Kelley & Knowles, 2016; Moore et al., 2020); the intentional development of 21st-century competencies (e.g., Bryan et al., 2015; Honey et al., 2014); and an emphasis on student-centered pedagogies (e.g., Bryan et al., 2015; Breiner et al., 2012; Labov et al., 2010; Sanders, 2009). In short, integrated STEM education is a complex combination of content and pedagogy, which makes it difficult to define.

This creates an additional challenge for teachers who are asked to implement integrated STEM. Professional development (PD) is one way to assist teachers not only in learning integrated STEM education instructional practices but also in helping them conceptualize what integrated STEM education means within their particular context. This is especially important given that “PD programs have the best chance of impact on teacher and student outcomes when the goals of the PD program are aligned with policies at the school, district, and state levels, as well as existing teacher beliefs regarding STEM” (Johnson & Sondergeld, 2015, p. 204). By eliciting teachers’ conceptions of integrated STEM education at the beginning of a STEM-focused PD through drawing conceptual models, facilitators can help teachers move from undefined or vague models to better defined models (Dare et al., 2019; Ring et al., 2017); similar activities have been included in preservice teacher education (Radloff & Guzey, 2016). Furthermore, teachers can reference these drawings during the PD to help them conceptualize integrated STEM curricula and recognize when their conceptual model has changed.

In our previous work analyzing teacher’s conceptual models of STEM, we found that K–12 science teachers’ understanding of what STEM education is varied greatly (Ring et al., 2017). These models ranged from simply using STEM as an acronym to prioritizing science or engineering to focusing on real-world problem-solving. We found that teachers’ conceptions reflected the variety of definitions that exist in the literature (e.g., Bybee, 2013) and that these conceptions can change through PD, curriculum writing, and implementation. Our prior research allowed us to meaningfully redesign previously used activities and design new activities for use in PD settings that would allow teachers to confront their conceptions of integrated STEM education, reflect on those conceptions, and collaborate with others to better define what STEM education is in their specific teaching context.

The work presented here highlights activities designed to elicit STEM conceptions during a week-long PD workshop on integrated STEM education. Informed by our prior work, the purpose of these activities was to elicit teachers’ conceptions of integrated STEM, share and reflect on those conceptions with others, use those conceptions as a foundation to guide the writing of curricular materials for classroom use, and ultimately develop new conceptions of STEM education through reflection. These activities may be used in a variety of settings, and we offer suggestions for alternative implementation.

 

Professional Development Context

The work described here is part of a larger 4-year funded project that seeks to improve the quality of K–12 integrated STEM education in science and engineering classrooms through the development and dissemination of a classroom observation protocol for integrated STEM instruction. The authors are two of the five principal investigators (PIs) on the project. As part of the project, three separate week-long (5-day) PD workshops were offered near the home institutions of project personnel, which include a large Southeastern city (Site 1) and a large Midwestern city (Site 2). One secondary (middle and high school) PD workshop was offered at Site 1, and two separate PD workshops were offered at Site 2: one elementary (K–5) and one secondary (high school). The professional development activities were planned jointly by project personnel from both sites, allowing for site-specific modifications as necessary. The project PIs designed and facilitated the PD with the assistance of several graduate research assistants and science and STEM coordinators from the local school and district. Within the context of the larger project, these workshops provided teachers with a foundational knowledge of integrated STEM; examples of integrated STEM activities, lessons, and units; and dedicated time to develop their own curriculum materials for classroom use. The teachers in these workshops were then expected to participate in classroom observations when they implemented their developed lessons (typically one or two 50-minute class periods) or curricular units (anywhere from week-long units to units that spanned several weeks) the following school year. The observations also allowed project personnel to continue supporting teachers’ learning and implementation of integrated STEM education because observations were followed by post-observation coaching conversations.

Participants. A total of 106 participants across the two sites participated in the three PD workshops (Table 1). Of these participants, 21 teachers participated in the secondary PD at Site 1; 58 teachers, two principals, and five instructional coaches participated in the elementary PD at Site 2; and 15 teachers, two administrators, and three instructional coaches participated in the secondary PD at Site 2. These teachers came from six different school districts. Two of these were large urban school districts, three were large suburban districts, and one was a smaller, rural district. The secondary teachers taught across multiple content areas: There were 12 middle school science teachers, eight biology/life science teachers, seven chemistry teachers, four physical science or physics teachers, one environmental science teacher, one photography teacher, one agriculture teacher, and one orchestra teacher.

 

Table 1

Professional Development Participants

PD participant descriptors across two sites

Our integrated STEM education framework. During the PD, we elicited teachers’ conceptions of integrated STEM education, exposed teachers to different approaches to integrated STEM instruction, actively engaged these teachers in example integrated STEM activities, and supported teachers in developing integrated STEM curricular materials for use in their classrooms. The definition of integrated STEM education that guided our work was adopted from Kelley and Knowles (2016) who defined integrated STEM education as “the approach to teaching the STEM content of two or more STEM domains, bound by STEM practices within an authentic context for the purpose of connecting these subjects to enhance student learning” (p. 3). This definition was selected due to its emphasis on student learning through context and making connections between disciplines and its flexibility as to how many domains were needed to “count” as integrated STEM. To reflect the states’ science standards and district initiatives, activities in the PD fore-fronted science and engineering, but mathematics and technology were integrated into the activities throughout the week.

In addition to the broad definition of STEM education shared above, we used a project-developed integrated STEM framework to guide the workshops’ activities. This framework consists of 13 components (Table 2) identified in the literature as being important within effective integrated STEM instruction (e.g., Breiner et al., 2012; Bryan et al., 2015; Martín‐Páez et al., 2019; Moore et al., 2020). These components have guided the development of the larger project’s observational protocol, which was still under development during the time of the PD. These components were grouped into three separate categories: STEM Concepts and Practices, STEM Pedagogies, and Contextualizing Learning. The concepts of “communicating understanding” and “collaboration” were identified as components that cut across the other three categories. Each of these 13 components was explicitly explored before, during, or immediately following at least one example of the integrated STEM activities in the PD, which is described below.

 

Table 2

Components of Integrated STEM Education Used in Professional Development

Descriptions of components of integrated STEM Education used in PD

Professional development design. The overall design of the PD utilized best practices to actively engage teachers in hands-on integrated STEM instruction as learners, reflect on their learning individually and with others, try out new practices through curriculum work while receiving feedback from peers and facilitators, receive feedback on their teaching, and reflect on their teaching (e.g., Banilower et al., 2007; Capps et al., 2012; Garet et al., 2001; Luft et al., 2020; Supovitz & Turner, 2000); the last of these two practices were incorporated into the coaching support during the school year. The purpose of the PD was not to improve content knowledge but to develop teachers’ understanding of STEM education as a pedagogy, which requires developing a conceptual understanding of integrated STEM as a whole. The collaboration with the teachers’ schools and districts ensured that our PD met their needs (Garet et al., 2001; Johnson & Sondergeld, 2015; Luft et al., 2020). Teachers were asked to come to the PD with curricular materials that they currently used in their classrooms. During the PD, we engaged teachers in modifying those curricular materials to transition them from a science-only focus to one that reflected integrated STEM. Teachers used project-supplied composition notebooks to respond to key reflective prompts throughout the week, which included explicit reflections on STEM conceptions, and to keep track of their own curricular ideas.

 

Conceptualizing Integrated STEM Education in Professional Development

As with most PD workshops, teachers were first introduced to the logistics of the week and what the following school year would look like in relation to the larger project (e.g., continued support through observations and coaching). Before introducing teachers to our STEM framework and a mix of facilitator-designed and published integrated STEM activities, we elicited teachers’ conceptions of STEM education through a series of activities and discussions. The sections that follow detail the activities used, which were revisited throughout the week as a means to reflect upon and revise teachers’ thinking related to STEM. These activities provided a foundation for teachers’ learning throughout the week. Although examples of integrated STEM activities are provided, the purpose of this manuscript is to share activities related to eliciting teachers’ STEM conceptions and to describe how teachers used these conceptions during reflection and curriculum-writing portions of the PD.

Initial STEM conceptions drawings. At the beginning of Day 1, we tasked teachers with creating individual, sketched representations of what integrated STEM education was to them. Our previous work has shown that teachers enter into professional development spaces with their own conceptions of STEM education (Ring et al., 2017). Since the intention of this activity was to elicit each teacher’s conception, we did not provide a definition or give any instruction prior to this exercise. After teachers drew their conceptions, they shared them with their self-selected table teams (approximately four or five members). As they shared, we asked teachers to identify similarities and differences among the various drawings they examined that were then shared in whole-group discussion. This exercise served to demonstrate the variety of conceptions that existed. Following this activity, the teachers responded to two prompts on the backside of their drawing: (1) “How does your STEM model compare to the other models at your table,” and (2) “after seeing other models, would you make any changes to yours?” Once teachers had individually responded to these prompts, they were asked to keep their drawings out for reference during the next activity.

STEM poster activity. After sharing their conceptions about integrated STEM, each teacher was provided with four sticky notes. We asked teachers to write down their ideas related to the roles of science, technology, engineering, and mathematics in STEM education, each on a separate sticky note. Those who wanted to add more than one idea for each area used additional sticky notes. Teachers then added their sticky notes to large poster papers corresponding to each area (science, technology, engineering, or mathematics) hanging around the room. We placed the teachers in four teams, and each team was assigned to one of the large poster papers. Because of the large size of the elementary group at Site 2, there were multiple sets of posters to keep the teams small. At their assigned posters, each team read the sticky notes and then arranged them into team-developed categories that were labeled with marker.

Once each team had created and labeled their categories, teams rotated from poster to poster. While reading through the other posters, we asked teachers to reflect upon what they noticed about the identified categories, note any changes they would make to those categories, and identify how the categories across the posters related to one another, if at all. Once all teams had read through the other three posters, we facilitated a large group discussion in which the teachers shared their reflections, specifically focusing on the relationships across the posters. Teachers were then asked to individually reflect upon what it means to integrate science, technology, engineering, and mathematics using their personal conceptual models from the preceding activity by responding to the following prompt: “Using your model, explain what it means to integrate S-T-E and M.” Finally, the teachers shared their ideas about the integration of S-T-E and M with their small groups, and commonalities among ideas were recorded as a whole group. The large S-T-E-M posters remained in the workshop space for the remainder of the week, and after copies were made, the teachers held on to their individual conceptions of STEM education models, which were used throughout the rest of the week as described below.

Approach to integrated STEM activities. Each day of the PD focused on one or more of the 13 components of our integrated STEM framework that were highlighted in that day’s activities (an example from Site 1 in shown in Table 3). Because of the complexity of STEM education, it was important to slowly introduce these components within the context of example activities. Teachers engaged in a variety of examples of integrated STEM activities as learners followed by discussions about how to implement them into their own classrooms. Many of these activities were developed by project personnel, but some were adopted from published curricula. Appropriate state standards were shared to demonstrate alignment with curricular expectations. For each activity that was introduced, teachers first participated in the activity as students would. This allowed the teachers to encounter the same challenges that their own students might face in the classroom. Afterward, project personnel facilitated whole-group and small-group discussions to allow teachers to reflect both as learners and as educators. Each of the activities included built-in reflection time around the components emphasized during that activity, and each day concluded with a final, deeper reflection related to the days’ focal components of STEM. These reflections were completed individually and collaboratively and were recorded in the teachers’ STEM notebooks to document their growing conceptions of integrated STEM. As part of this, teachers spent time modifying their curriculum materials to reflect what they learned about integrated STEM education throughout the day. Teachers were encouraged to work with others who were focusing on similar science content and discuss ideas with workshop facilitators. The facilitators would frequently prompt teachers to refer back to their conception of STEM drawing as a formative self-assessment of their learning.

 

Table 3

Example Workshop Schedule From Site 1

Example PD schedule divided into morning and afternoon activities across 5 days

For example, after the STEM conceptions activities on Day 1, we introduced teachers to our project’s STEM framework and focused on one component: collaboration. To do this, we used the marshmallow challenge, a popular activity used to emphasize the importance of planning and communicating with peers (Wujec, 2010). After doing the activity as students would and discussing why collaboration was important in this activity, teachers were asked to use their STEM conceptions drawings to decide if this was an integrated STEM activity and, if not, how they might make it one. Teachers were quick to point out that the activity does not explicitly call for the inclusion of science content. They argued the value of an activity like this to engage students in collaboration and problem-solving skills, which could be the basis for introducing engineering. Even without a clear “right answer” of what STEM education is, teachers were able to think critically about what they valued. To this end, teachers reflected on whether or not their initial STEM models were robust enough to determine the difference between a STEM activity that helps students learn STEM content and one meant to develop STEM skills and practices. To end the day, we asked teachers to examine their curricular materials and reflect on where they would include collaboration. As facilitators, we checked in with teachers as they worked and encouraged them to reflect upon the presence of collaboration in their STEM conceptions drawings, modifying them as needed, and then use those drawings to guide their curriculum writing. Although collaboration had been included in some teachers’ initial models, this focus on collaboration prompted others to consider this as a new addition to their model.

This pattern of being introduced to target components of STEM education each day, participating in an example STEM activity, reflecting on that activity, and working on curriculum was repeated on Days 2–4. Day 2 emphasized the importance of real-world problems, STEM-specific technologies, and communicating understanding within the context of integrated STEM activities. As part of this, engineering and the engineering design process were introduced to teachers through an introductory engineering activity (e.g., creating tabletop hovercrafts in the Site 1 PD and reviewing Engineering is Elementary in the Site 2 elementary PD). As on Day 1, the last activity of the day included reflection on the key components and a review of their Day 1 STEM conceptions, modifying them as needed, to work on their curriculum materials.

By Day 3, we had provided the teachers with foundational knowledge of integrated STEM education, arming them with the tools needed to participate in a fully integrated STEM curriculum unit. We used the Save the Penguins curriculum (Schnittka, 2009) to engage teachers in examining the relationship between heat transfer and the engineering design challenge of creating a well-insulated habitat for penguins. This curriculum unit allowed us to emphasize the following components of our integrated STEM framework.

  • Real-world problems: The design challenge was framed broadly by global climate change.
  • STEM content integration: After first learning about the three forms of heat transfer through a series of hands-on, inquiry-based activities, teachers were tasked with using their knowledge of heat transfer to complete the design challenge.
  • Multiple solutions: Teachers worked in small groups to develop prototypes, build and test those prototypes, and then modify their designs to rebuild and retest their prototypes.
  • Evidence-based reasoning: Teachers were tasked with explaining their design solutions using evidence collected through a variety of hands-on activities.

At the end of the activity, we facilitated discussions about these components in connection to Save the Penguins as well as how these elements might be highlighted in (or added to) activities the teachers already use in their classrooms; teachers also made suggestions about alternative contexts that their students might find more relatable than penguins, such as making insulated dog houses. Once more, teachers were asked to consider how this activity compared to their own developing conceptions, modify their conceptions as needed, and work on their selected curriculum materials.

Day 4 started with revisiting the importance of multiple solutions and emphasizing the importance of allowing students to learn from their first designs. We also spent time reflecting on all of the activities from the week and how they could each be presented in ways that developed students’ interest in STEM careers. The afternoon was spent entirely on curriculum development. Because the teachers had been introduced to all 13 components of the integrated STEM framework, they were tasked with incorporating these into their curricular materials, using their modified conceptions and written reflections to guide their work. Many teachers chose to work with peers, even though they were not working on the same materials.

To end the week, Day 5 was spent primarily in unstructured curriculum work time during which teachers worked with each other and the workshop facilitators to continue modifying their curricular materials. We reminded teachers of the 13 components of STEM used during the workshop and encouraged them to use their STEM conceptions, written reflections, and the posters that still hung on the walls as they worked. After sharing the progress on the curricular materials and reviewing logistics for the coming year (including how to share curricular materials within the group), we ended the PD by repeating the STEM conceptions activity.

Revisiting the STEM conceptions activity. In the afternoon of Day 5, we asked teachers to examine their conceptual models and written reflections from Day 1 before drawing a new model of STEM education. We reminded teachers that (just as before) there were no wrong answers. If they felt that their model had not changed, they were not obligated to change it; however, they were required to draw it on a new sheet of paper. Similar to the Day 1 activity, teachers shared their new models with their tablemates and identified similarities and differences across the different models present at their tables. Additionally, we asked the teachers to compare their own two models. We specifically asked them to consider how their own models had changed (if at all) and how they planned to implement their model during the upcoming school year. We asked them to write their responses to the following questions on the back of their second model.

  1. “How does your STEM model from today compare to your previous model?”
  2. “Describe how your STEM thinking has both changed and stayed the same. What do you think or know that is new?”
  3. “What will be your approach to implementing this model into your classroom?”

Although these written reflections were done individually, teachers also shared their reflections with their peers during a whole-group discussion. These final models were collected and copied by facilitators.

 

Outcomes of STEM Conceptions Activities

Unsurprisingly, we observed that participating teachers came to the PD with different ideas related to what STEM education is. Because of this, teachers were able to engage in meaningful discussions with their peers to consider multiple perspectives. For instance, some teachers focused on the presence of multidisciplinary content, some focused on the engineering design process, and others focused on framing STEM as real-world problem-solving. These different models showcased how STEM was conceptualized by teachers as a mix of content and pedagogical considerations. The reflections that arose out of conversations with peers allowed teachers to identify similarities and differences across their conceptions of STEM, positioning them to understand that STEM does not have to be just one thing. Furthermore, they recognized that there were common features valued across the models and that no model was “wrong.” In reviewing the Day 1 reflections, we found that 75% of the 106 teachers noted that they would want to make changes after seeing other models, stressing the importance of multiple “correct” models. This supports the rest of the work during the week in which teachers engaged in activities that encouraged them to revise their thinking. The workshop activities emphasized the constant revision of thinking surrounding STEM education because each activity focused on different components of STEM education from our STEM education framework. At no point did we, as facilitators, suggest that there was one way to “do STEM.” By pointing to their Day 1 models throughout the week, we encouraged teachers to consider whether or not their model was still an accurate representation of their understanding of STEM education and to refine their thinking in the process.

The repeated STEM conceptions activity on Day 5 allowed teachers to consider their learning over the course of the week and think forward to the upcoming school year. Some teachers chose not to modify their drawings, but side-by-side comparisons revealed that 91% of the teachers made changes, many of which included the addition of pedagogical elements from the PD activities. For example, one high school teacher’s drawing changed from a complex model that focused on content to a simple model of STEM education that showcased STEM education as a strategy (Figure 1). One elementary teacher shifted from thinking STEM was equivalent to a linear engineering design process to recognizing that STEM includes real-world problems, collaboration, and multiple solutions (Figure 2). Through these side-by-side comparisons, it is clear that most teachers’ conceptions changed. Furthermore, the inclusion of some of the 13 components of our STEM framework in teachers’ models on Day 5 indicates that teachers saw value in the framework we shared. Because our own STEM framework shared with teachers was not prescriptive, teachers were able to highlight which components were of importance to them in their models.

 

Figure 1

Day 1 and Day 5 conceptions of STEM education from a high school teacher.

Drawings of conceptions of STEM with written reflections

 

Figure 2

Day 1 and Day 5 conceptions of STEM education from an elementary teacher.

Drawings of conceptions of STEM with written reflections

 

Although the first STEM conceptions activity is a modification of an activity that we had previously used in workshops, the “Roles of S-T-E-M” large poster activity was new (Figures 3, 4, 5, and 6). We designed this activity based on our experience in observing how science, technology, engineering, and mathematics are used in lessons tagged as integrated STEM such that often S, T, E, and M are present but not necessarily well-defined or explicitly connected to one another (Dare et al., 2019; Ring-Whalen et al., 2018). The third reflective prompt on Day 1 (“Using your model, explain what it means to integrate S-T-E and M”) aimed to help teachers consider how these roles might play out in their own models. By allowing teachers to first consider the various roles and purposes of science, technology, engineering, and mathematics, they were better prepared to consider how these disciplines might work together when considering an integrated STEM approach in their models. For instance, the Site 1 secondary science teachers conceptualized science in STEM education as the intersection of theory and practice that leads to innovation (Figure 3). They also positioned technology in STEM education as assisting with teaching strategies that provide students with hands-on applications to collect data and communicate. This activity explicitly asked teachers about the connections between S, T, E, and M, which is often not captured in drawn models alone (Dare et al., 2019) but is important when considering lesson planning and implementation.

 

Figure 3

Role of science in STEM poster by the secondary science teachers at Site 1.

Poster showing how practices and theory come together to generate innovation in science

Figure 4

Role of technology in STEM poster by the secondary science teachers at Site 1.

Poster show components of technology: data gathering, teaching strategies, application/hands-on, communication, presentation

Figure 5

Role of engineering in STEM poster by the secondary science teachers at Site 1.

Poster showing components of engineering: principles, problem-solving practices, specific outcomes

Figure 6

Role of mathematics in STEM poster by the secondary science teachers at Site 1.

Poster showing components of mathematics: data, logic, quantification, calculating, defining math

Facilitator Reflection on Activities

As facilitators, this set of activities allowed us to activate the different conceptions of STEM education teachers held before they engaged in STEM activities when they might assume there is one way to “do STEM.” Additionally, they allowed teachers to work with others to understand that STEM education is not just one prescribed way of teaching that has to be conducted in the same manner all the time. Through activities designed to elicit STEM conceptions, teachers engaged in rich conversations that allowed them to explore a variety of conceptions of STEM, thus, leading to a deeper understanding of what STEM can look like in different contexts. These conversations and explicit reflections on the integrated STEM activities helped the teachers further develop their own conceptions of STEM, as indicated by the changes from Day 1 to Day 5. We were able to help the teachers actualize and refine their conceptions of STEM as we guided the them in curriculum writing throughout each day of the PD.

Furthermore, these activities allowed teachers to confront what roles science, technology, engineering, and mathematics play in STEM education in their own classrooms. Our previous work noted that teachers’ interpretations of models of STEM failed to show how to “do STEM” (Dare et al., 2019), so these activities required teachers to specifically consider the mechanisms through which they might integrate across various content areas. This helped the teachers identify places where science, technology, engineering, and mathematics can be integrated more naturally, which resulted in conversations about what, specifically, that integration can look like. These conversations were important in helping the teachers develop curricula for their own classrooms that not only included two or more of the STEM disciplines but also included various elements addressed in the PD, such as collaboration and solving real-world problems.

Implementing these activities was not without challenges. Some teachers began the week looking for the “correct” way to “do STEM” and were initially disappointed that they would not be provided one answer, nor would they be blindly led through examples of integrated STEM curricula. Our approach required teachers to consider their own ideas and reflect on their learning. Additionally, the conceptions elicitation activities were inherently challenging and cognitively demanding tasks because they forced individuals to interrogate something that they were not necessarily confident about. Reminding the teachers that there was no wrong answer was key in eliminating some of their fears associated with being wrong; these fears were further ameliorated by sharing ideas in small groups first before opening up to the large group. Our openness to discussion, constant challenging of ideas, and adoption of high-quality PD practices (e.g., peer collaboration, engaging in activities as students, and dedicated curricular work time) allowed us to push teachers to question others and reflect on their own learning, which proved successful.

Teacher feedback solicited on the last day demonstrated that the overall design of the PD was well-received. Although differences existed across the three workshops, the positive feedback was echoed. For instance, one secondary science teacher from Site 1 shared:

 

The theory combined with the modeling followed by action and reflection made the PD very effective. I feel very confident in my ability to integrate STEM in my classroom because of the format in which this PD was presented. I also loved the time that we had to develop units and lessons that integrate STEM.

 

Site 2 was no different. The positive feedback from secondary and elementary teachers at Site 2 was very similar. One secondary science teacher shared the following:

 

Thank you for a great week of learning. I was very happy with the workshop and what I learned. Thank you for the time to work on lessons/units that are applicable to what we will do. The time to chat with others helped A LOT!

 

Elementary teachers at Site 2 also valued their new knowledge:

 

The time to collaborate and discuss our learning with colleagues was incredibly helpful. It allowed us to take the new information and apply it to our individual units, schools, etc. It also allowed us to digest the information and ask questions in a safe environment.

 

From these examples, it is clear that the ability to directly have a take-away product that teachers could immediately use in their classrooms and the conversations with others was beneficial.

Furthermore, these types of activities allowed us to address these very visual conceptions in the moment and to refer back to them throughout the PD to reflect on and refine their understanding of STEM. As they participated in the workshop activities, teachers often referenced the large poster papers that hung in the room as a reminder of different ways to incorporate each of the STEM disciplines while they worked on developing their own lesson plans. Additionally, when teachers requested assistance during curriculum writing, we frequently asked them to revisit their conceptions and consider if they needed modification or how they were being actualized in their planning. Full curriculum materials and observations are still being collected as part of the larger project; however, we anticipate that this may result in more cohesive and more well-integrated lessons and units. Future research will address how teachers’ conceptions of STEM were actualized in their curricular materials and implementation.

 

Implications for Future Practice

These activities were used primarily with inservice teachers, but they can also be used with administrators, preservice teachers, and teacher educators to better parse out what STEM education means and how to enact it. In schools and districts moving to become STEM schools or STEM districts, these activities could be used to develop a unified vision for STEM within the school or district, which is important for making forward progress. Participating administrators then have an opportunity to gain a realistic sense of what is being asked of their teachers when tasked with developing integrated STEM lessons and implementing them in the classroom. The conversations these activities promote are useful in helping to define STEM education within bounded contexts.

These activities can also be used for research, the primary motivation in the initial creation of the STEM conceptions activity (Ring et al., 2017). Post-PD comparisons of the teachers’ conceptions on Day 1 of the PD to their conceptions on Day 5 of the PD can help facilitators measure and evaluate the impact of the professional development’s activities, which aligns with our own future research plans. This research could then allow facilitators to adjust the activities to better serve the needs of professional development participants. Understanding the conceptions of STEM education held by teachers will allow administrators, professional development facilitators, and others involved in improving STEM education to better support teachers implementing STEM in their classrooms.

Acknowledgments

This work was supported by the National Science Foundation under Award Numbers 1854801, 1812794, and 1813342. The findings, conclusions, and opinions herein represent the views of the authors and do not necessarily represent the view of personnel affiliated with the National Science Foundation.

References

Bryan, L. A., Moore, T. J., Johnson, C. C., & Roehrig, G. H. (2015). Integrated STEM education. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds), STEM road map: A framework for integrated STEM education (pp. 23–37). Routledge. https://doi.org/10.4324/9781315753157-3

Breiner, J. M., Harkness, S. S., Johnson, C. C., & Koehler, C. M. (2012). What is STEM? A discussion about conceptions of STEM in education and partnerships. School Science and Mathematics, 112(1), 3–11. https://doi.org/10.1111/j.1949-8594.2011.00109.x

Brown, R., Brown, J., Reardon, K., & Merrill, C. (2011). Understanding STEM: Current perceptions. Technology and Engineering Teacher, 70(6), 5–9.

Bybee, R. W. (2013). The case for STEM education: Challenges and opportunities. NSTA Press.

Cunningham, C. M., & Carlsen, W. S. (2014) Teaching engineering practices. Journal of Science Teacher Education, 25(2), 197–210. https://doi.org/10.1007/s10972-014-9380-5

Dare, E. A., Ring-Whalen, E. A., & Roehrig, G. H. (2019). Creating a continuum of STEM models: Exploring how K-12 science teachers conceptualize STEM education. International Journal of Science Education, 41(12), 1701–1720. https://doi.org/10.1080/09500693.2019.1638531

English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3, Article 3. https://doi.org/10.1186/s40594-016-0036-1

Garet, M. S., Porter, A. C. , Desimone, L., Birman, B. F., & Yoon, K. S. (2001). What makes professional development effective? Results from a national sample of teachers. American Education Research Journal, 38(4), 915–945. https://doi.org/10.3102/00028312038004915

Herschbach, D. R. (2011). The STEM initiative: Constraints and challenges. Journal of STEM Teacher Education, 48(1), 96–122. https://doi.org/10.30707/JSTE48.1Herschbach

Honey, M., Pearson, G., & Schweingruber, H. (Eds.). (2014). STEM integration in K–12 education: Status, prospects, and an agenda for research. National Academies Press. https://doi.org/10.17226/18612

Johnson, C. C., & Sondergeld, T. A. (2015). Effective STEM professional development. In C. C. Johnson, E. E. Peters-Burton, & T. J. Moore (Eds.), STEM road map: A framework for integrated STEM education (pp. 203–210). Routledge.

Kelley, T. R., & Knowles, J. G. (2016). A conceptual framework for integrated STEM education. International Journal of STEM Education, 3, Article 11. https://doi.org/10.1186/s40594-016-0046-z

Labov, J. B., Reid, A. H., & Yamamoto, K. R. (2010). Integrated biology and undergraduate science education: A new biology education for the twenty-first century? CBE—Life Sciences Education, 9(1), 10–16. https://doi.org/10.1187/cbe.09-12-0092

Luft, J. A., Diamond, J. M., Zhang, C., & White, D . Y. (2020). Research on K-12 STEM professional development programs: An examination of program design and teacher knowledge and practice. In C. C. Johnson, M. J. Mohr-Schroeder, T. J. Moore, & L. D. English (Eds). Handbook of research on STEM education (pp. 361–374). Routledge. https://doi.org/10.4324/9780429021381-34

Martín‐Páez, T., Aguilera, D., Perales‐Palacios, F. J., & Vílchez‐González, J. M. (2019). What are we talking about when we talk about STEM education? A review of literature. Science Education, 103(4), 799–822. https://doi.org/10.1002/sce.21522

Moore, T. J., Johnston, A. C., & Glancy, A. W. (2020). STEM integration: A synthesis of conceptual frameworks and definitions. In C. C. Johnson, M. J. Mohr-Schroeder, T. J. Moore, & L. D. English (Eds). Handbook of research on STEM education (pp. 3–16). Routledge. https://doi.org/10.4324/9780429021381-2

Moore, T. J., Tank, K. M., Glancy, A. W., Kersten, J. A., & Ntow, F. D. (2013). The status of engineering in the current K-12 state science standards (research to practice). Paper presented at the 2013 ASEE Annual Conference & Exposition, Atlanta, GA. https://doi.org/10.18260/1-2–22619

NGSS Lead States. (2013). Next generation science standards: For states, by states. National Academies Press. https://doi.org/10.17226/18290

Radloff, J., & Guzey, S. (2016). Investigating preservice STEM teacher conceptions of STEM education. Journal of Science Education and Technology, 25(5), 759–774. https://doi.org/10.1007/s10956-016-9633-5

Ring, E. A., Dare, E. A., Crotty, E. A., & Roehrig, G. H. (2017). The evolution of teacher conceptions of STEM education throughout an intensive professional development experience. Journal of Science Teacher Education, 28(5), 444–467. https://doi.org/10.1080/1046560X.2017.1356671

Ring-Whalen, E., Dare, E., Roehrig, G., Titu, P., & Crotty, E. (2018). From conception to curricula: The role of science, technology, engineering, and mathematics in integrated STEM units. International Journal of Education in Mathematics, Science and Technology, 6(4), 343–362. https://www.ijemst.net/index.php/ijemst/article/view/257

Sanders, M. (2009). STEM, STEM education, STEMmania. The Technology Teacher, 68(4), 20–26.

Schnittka, C. G. (2009). Save the penguins STEM teaching kit: An introduction to thermodynamics and heat transfer. Auburn University. http://www.auburn.edu/~cgs0013/ETK/SaveThePenguinsETK.pdf

Wujec, T. (2010, February). Build a tower, build a team [Video]. TED Conferences.  https://www.ted.com/talks/tom_wujec_build_a_tower_build_a_team?language=en

Reflection in Action: Environmental Education Professional Development with Two Cohorts

Citation
Print Friendly, PDF & Email

Madden, L., Ammentorp, L., Heddy, E., Stanton, N., & McCotter, S. (2021). Reflection in action: Environmental education professional development with two cohorts. Innovations in Science Teacher Education. Retrieved from https://innovations.theaste.org/reflection-in-action-environmental-education-professional-development-with-two-cohorts/

by Lauren Madden, The College of New Jersey; Louise Ammentorp, The College of New Jersey; Eileen Heddy, The College of New Jersey; Nicole Stanton, The College of New Jersey; & Suzanne McCotter, The College of New Jersey

Abstract

This article shares lessons learned from a 2-year environmental education professional development initiative with two cohorts. Each cohort consisted of school-based teams of elementary teachers. The professional development included a series of five workshops aimed at integrating environmental education across the curriculum, and each teacher team developed and implemented a school-based project to put these ideas into practice. The project team modified their approach between Cohorts 1 and 2 based on strengths and shortcomings of the first experience. Key takeaways to inform future professional development efforts include ensuring the timeframe of the project allows teachers to build momentum in their work, recruiting teams of teachers with diverse classroom experiences, and including presenters who can offer tangible and actionable ideas to use in the classroom.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Álvarez-García, O., Sureda-Negre, J., & Comas-Forgas, R. (2015). Environmental education in pre-service teacher training: A literature review of existing evidence. Journal of Teacher Education for Sustainability, 17(1), 72–85. https://doi.org/10.1515/jtes-2015-0006

Ashmann, S., & Franzen, R. L. (2017). In what ways are teacher candidates being prepared to teach about the environment? A case study from Wisconsin. Environmental Education Research, 23(3), 299–323. https://doi.org/10.1080/13504622.2015.1101750

Banilower, E. R., Heck, D. J., & Weiss, I. R. (2007). Can professional development make the vision of the Standards a reality? The impact of the National Science Foundation’s Local Systemic Change through Teacher Enhancement Initiative. Journal of Research in Science Teaching, 44(3), 375–395. https://doi.org/10.1002/tea.20145

Bryk, A. S., Sebring, P. B., Allensworth, E., Luppescu, S., & Easton, J. Q.(2010). Organizing schools for Improvement: Lessons from Chicago. University of Chicago Press. https://doi.org/10.7208/chicago/9780226078014.001.0001

Crim, C., Moseley, C., & Desjean-Perrotta, B. (2017). Strategies toward the inclusion of environmental education in educator preparation programs: Results from a national survey. School Science & Mathematics, 117(3–4), 104–114. https://doi.org/10.1111/ssm.12211

Datnow, A. (2011). Collaboration and contrived collegiality: Revisiting Hargreaves in the age of accountability. Journal of Educational Change, 12(2), 147–158. https://doi.org/10.1007/s10833-011-9154-1

Desjean-Perrotta, B., Moseley, C., & Cantu, L. E. (2008). Preservice teacher’s perceptions of the environment: Does ethnicity or dominant residential experience matter? The Journal of Environmental Education, 39(2), 21–31. https://doi.org/10.3200/JOEE.39.2.21-32

Dyment, J. E., Davis, J. M., Nailon, D., Emery, S., Getenet, S., McCrea, N., & Hill, A. (2014). The impact of professional development on early childhood educators’ confidence, understanding and knowledge of education for sustainability. Environmental Education Research, 20(5), 660–679. https://doi.org/10.1080/13504622.2013.833591

European Commission. (2014, June). The Teaching and Learning International Survey (TALIS) 2013: Main findings from the survey and implications for education and training policies in Europe. https://ec.europa.eu/assets/eac/education/library/reports/2014/talis_en.pdf

Holdsworth, S., Wyborn, C., Bekessy, S., & Thomas, I. (2008). Professional development for education for sustainability: How advanced are Australian universities? International Journal of Sustainability in Higher Education, 9(2), 131–146. https://doi.org/10.1108/14676370810856288

Johnson, S. M. (2015). Will VAMs reinforce the walls of the egg-crate school? Educational Researcher, 44(2), 117–126. https://doi.org/10.3102/0013189X15573351

Moseley, C., Desjean-Perrota, B., & Crim, C. (2010). Exploring preservice teachers’ mental models of the environment. In A. M. Bodzin, B. S. Klein, & S. Weaver (Eds.), The inclusion of environmental education in science teacher education (pp. 209–223). Springer. https://doi.org/10.1007/978-90-481-9222-9_14

Parise, L. M., & Spillane, J. P. (2010). Teacher learning and instructional change: How formal and on-the-job learning opportunities predict change in elementary school teachers’ practice. The Elementary School Journal, 110(3), 323–346. https://doi.org/10.1086/648981

Powers, A. (2004). Teacher preparation for environmental education: Faculty perspectives on the infusion of environmental education into preservice methods courses. The Journal of Environmental Education, 35(3), 3–11.

Ronfeldt, M., Farmer, S. O., McQueen, K., & Grissom, J. A. (2015) Teacher collaboration in instructional teams and student achievement. American Educational Research Journal, 52(3), 475–514. https://doi.org/10.3102/0002831215585562

Schliefer, D., Rinehart, C., & Yanisch, T. (2017) Teacher collaboration in perspective: A guide to research. Spencer Foundation and Public Agenda. http://www.in-perspective.org/pages/teacher-collaboration-a-guide-to-research

Yavetz, B., Goldman, D., & Pe’er, S. (2014). How do preservice teachers perceive ‘environment’ and its relevance to their area of teaching? Environmental Education Research, 20(3), 354–371. https://doi.org/10.1080/13504622.2013.803038

A District-University Partnership to Support Teacher Development

Citation
Print Friendly, PDF & Email

Wade-Jaimes, K., Counsell, S., Caldwell, L., & Askew, R. (2020). A district-university partnership to support teacher development. Innovations in Science Teacher Education, 5(4). Retrieved from https://innovations.theaste.org/a-district-university-partnership-to-support-teacher-development/

by Katherine Wade-Jaimes, University of Memphis; Shelly Counsell, University of Memphis; Logan Caldwell, University of Memphis; & Rachel Askew, Vanderbilt University

Abstract

With the shifts in science teaching and learning suggested by the Framework for K-12 Science Education, in-service science teachers are being asked to re-envision their classroom practices, often with little support. This paper describes a unique partnership between a school district and a university College of Education, This partnership began as an effort to support in-service science teachers of all levels in the adoption of new science standards and shifts towards 3-dimensional science teaching. Through this partnership, we have implemented regular "Share-A-Thons," or professional development workshops for in-service science teachers. We present here the Share-A-Thons as a model for science teacher professional development as a partnership between schools, teachers, and university faculty. We discuss the logistics of running the Share-A-Thons, including challenges and next steps, provide teacher feedback, and include suggestions for implementation.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership

References

Counsell, S. (2011). GRADES K-6-Becoming Science” Experi-mentors”-Tenets of quality professional development and how they can reinvent early science learning experiences. Science and Children49(2), 52.

Ingersoll, R. E. (2004). Who controls teachers’ work? Power and accountability in America’s schools. Cambridge, MA: Harvard University Press.

Kennedy, M. M. (1999). Form and Substance in Mathematics and Science Professional Development. NISE brief3(2), n2.

Luft, J. A., & Hewson, P. W. (2014). Research on teacher professional development programs in science. Handbook of research on science education2, 889-909.

National Research Council (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, DC: National Academy Press.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. National Academies Press.

NGSS Lead States. 2013. Next Generation Science Standards: For States, By States. Washington, DC: The National Academies Press.

Opfer, V. D., & Pedder, D. (2011). Conceptualizing teacher professional learning. Review of educational research81, 376-407.

Palmer, D. (2004). Situational interest and the attitudes towards science of primary teacher education students. International Journal of Science Education26, 895-908.

Shapiro, B., & Last, S. (2002). Starting points for transformation resources to craft a philosophy to guide professional development in elementary science. Professional development of science teachers: Local insights with lessons for the global community, 1-20.

Supovitz, J. A., & Turner, H. M. (2000). The effects of professional development on science teaching practices and classroom culture. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching37, 963-980.

Tennessee State Board of Education. (n.d.). Science. Retrieved from https://www.tn.gov/sbe/committees-and-initiatives/standards-review/science.html

Wilson, S. M., & Berne, J. (1999). Chapter 6: Teacher Learning and the Acquisition of Professional Knowledge: An Examination of Research on Contemporary Professlonal Development. Review of research in education24(1), 173-209

 

Adapting a Model of Preservice Teacher Professional Development for Use in Other Contexts: Lessons Learned and Recommendations

Citation
Print Friendly, PDF & Email

Park Rogers, M., Carter, I., Amador, J., Galindo, E., & Akerson, V. (2020). Adapting a model of preservice teacher professional development for use in other contexts: Lessons learned and recommendations. Innovations in Science Teacher Education, 5(1). Retrieved from https://innovations.theaste.org/adapting-a-model-of-preservice-teacher-professional-development-for-use-in-other-contexts-lessons-learned-and-recommendations/

by Meredith Park Rogers, Indiana University - Bloomington; Ingrid Carter, Metropolitan State University of Denver; Julie Amador, University of Idaho; Enrique Galindo, Indiana University - Bloomington; & Valarie Akerson, Indiana University - Bloomington

Abstract

We discuss how an innovative field experience model initially developed at Indiana University - Bloomington (IUB) is adapted for use at two other institutions. The teacher preparation programs at the two adapting universities not only differ from IUB, but also from each other with respect to course structure and student population. We begin with describing the original model, referred to as Iterative Model Building (IMB), and how it is designed to incorporate on a variety of research-based teacher education methods (e.g., teaching experiment interviews and Lesson Study) for the purpose of supporting preservice teachers with constructing models of children’s thinking, using this information to inform lesson planning, and then participating in a modified form of lesson study for the purpose of reflecting on changes to the lesson taught and future lessons that will be taught in the field experience. The goal of these combined innovations is to initiate the development of preservice teachers’ knowledge and skill for focusing on children’s scientific and mathematical thinking. We then share how we utilize formative assessment interviews and model building with graduate level in-service teachers at one institution and how the component of lesson study is adapted for use with undergraduate preservice teachers at another institution. Finally, we provide recommendations for adapting the IMB approach further at other institutions.

Introduction

There is a clear consensus that teachers must learn to question, listen to, and respond to what and how students are thinking (Jacobs, Lamb, & Philipp, 2010; NRC, 2007; Russ & Luna, 2013).  With this information teachers can decide appropriate steps for instruction that will build on students’ current understandings and address misunderstandings.  At Indiana University – Bloomington (IUB) we received funding to rethink our approach to the early field experience that our elementary education majors take in order to emphasize this need for developing our preservice teachers’ knowledge and abilities to ask children productive questions (Harlen, 2015), interpret their understanding, and respond with appropriate instructional methods to develop students’ conceptual understanding about the topics being discussed (Carter, Park Rogers, Amador, Akerson, & Pongsanon, 2016).  Our field experience model titled, Iterative Model Building (IMB), is taken in a block with the elementary mathematics methods and science methods courses, and as such half of the field experience time (~5-6 weeks) is devoted to each subject area.  Over the course of the semester, the preservice teachers attend local schools for one afternoon a week.  In teams of four to six, the preservice teachers engage with elementary students through interviews and the teaching of lessons, and then experience various modes of reflection to begin developing an orientation towards teaching mathematics and science that is grounded in the notion that student thinking should drive instruction (National Research Council, 2007).  Thus, the IMB approach consists of four components that include weekly formative assessment interviews with children, discussions regarding models of the children’s thinking from the weekly interviews, lesson planning and teaching, and small group lesson reflections similar in nature to Lesson Study (Nargund-Joshi, Park Rogers, Wiebke, & Akerson., 2012; Carter et al., 2016). The intent of our approach is to teach preservice teachers to not only attend to student thinking, but to learn how to take this information and use it when designing lessons so they will make informed decisions about appropriate instructional strategies.

In this article we describe not only the original IMB approach, but also demonstrate the flexibility in the use of its components  with descriptions of how Authors 2 and 3 (Ingrid and Julie) have adapted aspects of the IMB to incorporate into their science and mathematics teacher education courses at different institutions.  Although this journal focuses on innovations for science teacher education, at the elementary level many teacher educators are asked to either teach both mathematics and science methods, or work collaboratively with colleagues in mathematics education, as students are often enrolled in both content area methods courses during the same semester.  Therefore, we believe sharing our stories of how this shared science and mathematics field experience model was initially developed and employed at IUB, but has been modified for use at two other institutions, has the potential for demonstrating how the components of the model can be used in other contexts.

To begin, we believe it is important to disclose that Ingrid and Julie, who made the adaptations we are sharing, attended or worked at IUB and held positions on the IMB Project for several years during the funded phases of research and development.  When they left IUB for academic positions, they took with them the premise of the IMB approach as foundational to developing quality mathematics and science teachers.  However, the structure of their current teacher education programs are not the same as at IUB, and thus they adapted the IMB approach to fit their institutional structure while trying to staying true to what they believed were core aspects of the approach for quality teacher development.

We begin with sharing an overview of the components of the IMB approach followed by descriptions from Ingrid and Julie about the context and course structure where they implement components of IMB.  In addition, we share examples of how their students discuss K-12 students’ mathematical and scientific ideas and relate this to instructional decision-making.  Through sharing our stories of adaptation of the IMB approach, we aim to inspire other teacher educators to consider how they may incorporate aspects of this approach into their professional development model for preparing or advancing teachers’ knowledge for teaching in STEM related disciplines.

Overview of IMB Approach – Indiana University (IUB)

As previously mentioned, IMB includes four components: (i) developing preservice teachers’ questioning abilities to analyze students’ thinking through the use of formative assessment interviews (FAIs); (ii) constructing models of students’ thinking about concepts that are asked about in the interviews (i.e., Model Building); (iii) developing and teaching lessons that take into consideration the evolving models of children’s thinking about the concepts being taught (i.e., Act of Teaching); (iv) learning to revise lessons using evidence gathered about children’s thinking from the lesson taught (i.e., Lesson Study). Although these components may not appear to be innovative to those in the field of teacher preparation, the unique feature of the IMB model is the iterative process, and weekly combination of all four components, within an early field experience for elementary education majors that we believe demonstrate innovative practice in preparing science and mathematics elementary teachers.  In addition, the field experience at IUB applies this four-step iterative process in the first 5-6 weeks with respect to teaching mathematics concepts, then continues for an additional 5-6 weeks on science concepts.  In the next few paragraphs, each of the IMB components are described in more detail.  We have grouped components according to those that Ingrid and Julie have adopted for use at their institutions.

Formative Assessment Interviews and Model Building

Formative assessment interviews (FAIs) are modified ‘clinical interviews’ that are aimed at understanding students’ conceptualizations of scientific phenomenon or mathematics problems (Steffe & Thompson, 2000).  From these video-recorded interviews, the preservice teachers identify short snippets that illustrate elementary students explaining their thinking about what a concepts is, how it works, and how they solved for it.  These explanations are then used to try to develop a predictive model to help the teachers consider how the students might respond to a related phenomenon, problem, or task (Norton, McCloskey, & Hudson, 2012).  The Model Building sessions require the preservice teachers to consider what is known about the students’ thinking on the concept or problem, based on the specific evidence given in the snippet of video, and identify what other information would be helpful to know. See Akerson, Carter, Park Rogers, & Pongsanon (2018) for further details on the purpose, structure and ability of preservice teachers to participate in a task where they are asked to make evidence-based predictions regarding students future responses to relate content (i.e., anticipate the student thinking).

With respect to the IMB approach, a secondary purpose of the FAI and Model Building sessions is to develop preservice teachers’ knowledge and abilities to think about how to improve their questioning of students’ thinking within the context of their teaching. This relates to being able to develop their professional noticing skills; a core aspect identified in the research literature (Jacobs, et al., 2010; van Es & Sherin, 2008) and critical to fostering the expert knowledge teachers possess (Shulman, 1987). See ‘Resources’ for examples of the post FAI Reflection Form (Document A) and Model Building Form (Document B) preservice teachers complete at IUB as part of their field experience requirements.

Act of Teaching and Lesson Study

Each week the teams develop a lesson plan using the information gathered from the FAIs, Model Building sessions, and as time goes on, their experience of teaching previous lessons to the students in their field classroom.  With respect to the mathematics portion of the field experience, the mathematics lessons are developed in conjunction with the field experience supervisor from week to week.  However, given the additional time that science has, because the science teaching in the field does not start until halfway through the semester, a first draft of all five science lessons are completed as part of the science methods course. Once the switch is made to science in the field, the preservice teachers then revise the drafted lessons from week to week using the information gathered through the IMB approach and with the guidance of the field instructor.

During the teaching of the lesson, two to three members of each team lead the instruction and the other two to three members of the team move around the room amongst the elementary students observing and gathering information about what the students are saying and doing related to the lesson objectives.  After the teaching experience, all members come together and follow the IMB’s modified lesson study approach that is adapted from the Japanese Lesson Study model (Lewis & Tsuchida, 1998)[1].  Using the Lesson Study Form developed for use in the IMB, the different members of the teaching team reflect on what the children understood about the concepts taught in the lesson and propose revisions for that lesson based on the children’s understandings and misunderstandings.  Possible strategies related to these understandings are also discussed with respect to the next lesson to be taught in the series of lessons.  Supporting them in this reflective process is the evidence some members of the team recorded using the Lesson Observation Form (see ‘Resources’, Document C), as well as what those who taught the lesson assessed while teaching.  The Lesson Study Form (see ‘Resources’, Document D) guides this evidence-based, collaborative, and reflective process.

Stories of Adaptation

In the following sections we describe how Ingrid and Julie have adapted components of the IMB approach for use in their teacher education programs.  To keep with the flow of how we described the IMB approach above, we begin with Julie’s story as she adapted the FAI and Model Building components for use at her institution.  Following her story is Ingrid’s, and her adaptation of the teaching and Lesson Study components of the IMB approach.  While neither of these stories demonstrates an adaptation of the complete IMB approach, demonstrating that type of transfer is not our intent with this article.  Rather, we want to share how aspects of the IMB approach could be adapted together for use in other institutional structures.  Table 1 provides a side-by-side comparison of how the IMB components were adapted for use at our different institutions to meet the needs of our students in our different contexts.

Table 1 (Click on image to enlarge)
Comparison of IMB components across Institutions

Julie’s Story of Adaptation at the University of Idaho (UI)

In the final two years of the five year IMB, Julie was a postdoctoral researcher and IMB manager for IMB. In this capacity, she taught the field experience course and coordinated with other instructors of the course. At the same time, she worked with participants after they had completed the field experience and moved to their student teaching or actual teaching placements. Julie was also involved with writing a manual to support others to implement the IMB field experience process.

At her current institution, Julie has incorporated FAIs and Model Building into a graduate course on K-12 mathematics education. The university is a medium-size doctoral granting institution in the upper Northwest of the United States. The course, for which the IMB approach has been adapted, engages masters and doctoral students in exploring: a) connections between research literature and practice (Lambdin & Lester, 2010; Lobato & Lester, 2010), b) the cognitive demand of tasks (Stein, Smith Henningsen, & Silver, 2009), and c) professional noticing (Jacobs et al., 2010; Sherin, Jacobs, & Philipp, 2011). The fully online course lasts sixteen weeks and students engage in weekly modules around these three core foci. Students in the course are primarily practicing teachers from across the state in which the university resides.

The IMB process of engaging teachers in FAIs and Model Building is followed in this course; however, the process spans over a longer period with a whole semester devoted solely to mathematics. Each person designs two FAIs on a specific mathematical topic and completes a Model Building session for each interview. This process is slightly different than the IMB approach because there are fewer students in the graduate class, and since many are practicing K-12 classroom teachers, they have access to students with whom they can easily conduct the FAIs. Despite the teacher population and logistical differences between IUB and UI, Julie used the supporting documents and implemented them in a manner very similar to how they were initially designed and employed for the IMB approach at IUB. For example, at UI each graduate student/teacher selects appropriate mathematics content for the interview based on the standards and learning objectives that are age appropriate for the K-12 student they will interview. They then plan a goal for the interview, along with five problematic questions to be asked during the interview and related follow-up questions. Based on the second focus of the graduate course, they are encouraged to consider the cognitive demand of the tasks they include in their questions. The interview is audio recorded and the graduate students are asked to reflect on the questions outlined on the FAI Reflection Form (see ‘Resources’, Document A).  Referring specifically to the second question on the reflection form, one graduate student responded, “During my post-FAI analysis of the student work and audio, my noticing, once again, improved as I began to consider the relationship between the student’s misconceptions and teaching strategies.” Comments like this were commonly found across the FAI reflection forms, indicating the value of this interview experience in preparing teachers mathematical knowledge of content and students’ understanding of the content (Ball, Thames, & Phelps, 2008).

Following the first FAI, the graduate students are tasked to create a model of the student’s thinking that again mirrors the model-building process of the IMB approach (see ‘Resources,’ Document B). To do this, they are asked to listen to their audio recording and select a clip that highlights what the student says or does as evidence of how the student thinks about particular ideas. They transcribe the segment of audio and conduct an analysis on what the student knows, does not know, and what further information would be helpful. As an example, the following task was given during one FAI conducted by a graduate student — . Going through the Model Building process, the graduate student who gave this question in their FAI highlighted the following portion of their transcript, and provided the accompanying image of the student’s work in solving this question.

Student: I did that because the equal sign is right there.  And so because these numbers are supposed to be at the beginning but they switched them around to the end and then you would add them together to get nine and then you would do plus two and then you write your answer (write 11 underneath the box).

Teacher: How could we check that this (points to the left side of the equation) equals this (points to the right side of the equation?  Is there a way we could check that?

Student: Umm… what do you mean?

Teacher:  So, I saw that you added these numbers together and placed the nine here.  Could we check or is there a way to check that these two things added together equals these numbers added together?

Student: I guess you could just add them together.

Teacher: Do they come out equal?

Student: No because this is eleven (points to left side of equation).  And then this goes three, four, five, six, seven, eight, nine.  Oh! So it goes eleven like that and then eleven, twelve, thirteen, like that and then that will equal nine.

Teacher: So I saw a light bulb go off.  Is that going to change he number you put in there (points to the box)?

Student: So if was eleven, wait, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, twenty-one, twenty-two and that equals twenty-two.  And that is your real answer.

Building on this evidence, the graduate student wrote the following model of the student’s thinking with this problem.  This model is the graduate student’s attempt at explaining the student’s thinking with the evidence provided from the task.

Given a numeric equation with values on each side of the equation but a missing value on one side (e.g. 17+5=___+4), the student added the numbers on one side of the equation and placed that sum into the blank space. The student then continued executing computations by placing another equal sign and adding the newly determined answer with the existing value on that side of the equation. This same action happened in two different tasks with the missing value on the left and right side of the equation. Thus, the student does not conceptually understand the meaning of the equal sign and/or the concept of equality. She does not understand that the equal sign describes the relationship between two expressions and that the correct answer should create two equal expressions.  Instead, the student views the equal sign as an indicator to perform computations to find answers.

This model describes what the student knows and understands with respect to different sides of an equation.

Following this first round of FAIs and Model Building, the graduate students then repeat this entire process again, with the same student. However, before the second round, the graduate students have an opportunity to first share their models and thinking in online discussion boards and receive written instructor feedback. Their peers are also required to comment and engage in dialogue with them through the virtual discussions. With the second FAI, the intent is for the mathematical content to align with the content of the first interview, but focus on revealing deeper understandings of this content from the same student. For example, if the first FAI asked questions that broadly addressed fractional understanding at grade three, and the graduate student recognized some misconceptions related to part-whole relationships and understanding, then the second FAI may be designed to focus entirely on part-whole relationships.  The purpose of the second FAI is to dive deeper into a child’s thinking about the concept to obtain a greater understanding of how the child conceptualizes part and whole.

As the graduate students conducted the series of two FAIs and two Model Building exercises, they focused on the same K-12 student to provide an in-depth understanding of that student’s knowledge. As a result, they were then asked to deeply study what they had learned about that student’s mathematical thinking and focus on that student as a case study. This is a component that is not included in the original IMB process.  Julie elected to add this component of a case study to provide her graduate students the opportunity to revisit both cycles of the FAIs and Model Building processes and formulate some ideas around supporting the student based on evidence from interactions across the two cycles. As a part of the case study, they write a formal paper about the student that includes an analysis of the students’ thinking and makes recommendations for supporting the students’ understanding in the classroom context—these components stem from the research literature on professional noticing and the importance of attending to thinking, interpreting thinking, and making instructional decisions of how to respond (Jacobs et al., 2010). In the final component of the case study paper, the graduate student situates the student’s understanding within the broader mathematics education literature. Therefore, Julie has adapted the FAI and Model Building process of the IMB to engage graduate students in the act of professional noticing through a specific focus on one child as a case study (Jacobs et al., 2010).  The following comment from one of the case study reports illustrates the value of this adapted experience for one student, but the same sentiment was echoed by others.

The student thinking uncovered during the formative assessment interviews and the learning from this course on noticing, cognitive demand, and teacher knowledge combined together to profoundly influence on my views of mathematics instruction. Slowing down to thoughtfully probe a struggling student’s thinking revealed so much more than my prior noticing ability would have allowed.

Ingrid’s Story of Adaptation at Metropolitan State University of Denver (MSU Denver)

Ingrid joined the IMB as a graduate teaching and research assistant in the second year of implementation. In her first year with the IMB, she instructed a section of the field experience with preservice elementary teachers. Later on in her doctoral program, she taught the affiliated science methods course that is taken in the cluster with the field experience, but was no longer an instructor of the field experience.  During this time however, she remained on the IMB as a research assistant. Therefore, throughout her time on the IMB project, Ingrid worked on many facets of the IMB and was integral in developing procedures and protocols for teaching the IMB approach.

At her current institution, Ingrid has adapted the Act of Teaching and Lesson Study components of the IMB, infusing it into her undergraduate elementary science and health methods course. Her institution is a large urban commuter campus with a large majority of students being undergraduates. The student body is diverse and most are from the expansive metropolitan area. For their field experience, which combines science, health, and mathematics, each preservice teacher is placed in an elementary classroom for 45 hours per semester. In most cases, this is usually the fourth field experience these preservice teachers have participated in for their program. The science and health methods course meets face-to-face for 15 weeks of classes and incorporates a teaching rehearsal experience in the methods course to provide the preservice teachers with the opportunity to practice a lesson they have planned and the Lesson Study component of the IMB approach before completing the teaching experience in the field with children.

The preservice teachers at MSU Denver are placed in separate classrooms for their field experience, thus they plan different lessons and teach the lessons independently.  Despite this independent teaching experience, Ingrid has tried to maintain the collaborative integrity of the Lesson Study component of the IMB by pairing preservice teachers that are placed at the same school or nearby schools.  The purpose of this pairing is so they can serve as peer observers for each other and participate in a shared Lesson Study experience. Unfortunately, this request cannot always be made, and in some instances the preservice teachers work with the mentor classroom teacher through the Act of Teaching and Lesson Study components.

Before the preservice teachers begin their teaching cycle in the field however, Ingrid has her preservice teachers participate in a type of teaching rehearsal (Lampert et al., 2013).  The preservice teachers are placed into teams of four or five and together they develop a learning plan (similar to a lesson) but with a focus on just the first three Es of a Learning Cycle (Engage, Explore, and Explain) and the learning objective.  Preservice teachers usually focus on science, but in some cases they elect to teach a health or engineering lesson. Two groups are then brought together to serve as the different members of the teaching cycle.  When one team is teaching, one member of the other team serves as the peer observer completing the Lesson Observation Form (see ‘Resources’, Document C) and all remaining members of the other group are acting as elementary students for the teaching of the lesson. The group then switches and they repeat the experience for another lesson. Following each rehearsal the two groups then walk through the Lesson Study Form and complete it for each rehearsed lesson.  Ingrid believes taking her students through this rehearsal of planning a lesson, teaching it, and practicing with the forms helps the preservice teachers to be more successful in all aspects of the Act of Teaching and Lesson Study when they conduct it in their smaller pairings and in the context of their field experience classrooms.

Due to the complex structure of field placement at Ingrid’s institution, with it being a commuter-based university serving a large urban/suburban area, Ingrid has made more adaptations to the IMB approach and documents than Julie, some of which are described above. Additional adaptations however, include Ingrid providing feedback on the each preservice teacher’s lesson and then having preservice teachers revise the lesson using this feedback, and having the preservice teacher partners participating in a Pre-Observation Conference.  The purpose of this conference is help the preservice teachers who are partnered for the Act of Teaching and Lesson Study (or the preservice teacher and the mentor teacher) to understand the learning objectives of the lesson and the intentions of the preservice teacher for structuring the lesson in the manner they did.  In addition, there is a section called “look-fors” that directs the preservice teachers to anticipate what the children should be able to do by the end of the lesson (with respect to the learning objective) and what evidence will be gathered to determine this goal was met. This is intended to support the preservice teachers to focus on students’ thinking in the Act of Teaching and Lesson Study processes in the field. The pair completes one Pre-Observation Conference Form (see ‘Resources’, Document E) together for each partner’s lesson. To complete the Act of Teaching and Lesson Study cycle, each preservice teacher is required to submit a packet to document the experience that includes: the Pre-Observation Conference Form, the Lesson Observation Form completed by their partner, their collaborative Lesson Study Form, a revised lesson that incorporates the color-coded revisions suggested in the Lesson Study, and a personal reflection paper about what they took away from the experience.

Lastly, Ingrid’s Act of Teaching/Lesson Study cycle concludes with a debriefing about the experience with all students in the class. She focuses much of the conversation on asking the preservice teachers to share what they reflected on in their individual papers about the experience and she guides the discussion with questions such as,

  • What did you think about the peer observation process?
  • How did participating in lesson study support your growth as a teacher?
    • What parts of the lesson study process were particularly helpful for you?
  • What would you do differently if you could do this again?
  • How did lesson study support you in focusing on students’ thinking?
  • What have you learned from the lesson study process that you will take with you in your future classroom?

From this class discussion she is able to glean how they view the whole process as supporting the preservice teachers’ understanding of how to focus their attention on children’s scientific thinking and use this information to inform their future instruction. ​

Reflecting on Our Stories of Adaptation: Lessons Learned

At Julie’s institution (University of Idaho [UI]), implementation using FAIs and Model Building have shown to be beneficial for the graduate students, as most of them are practicing classroom teachers. One accommodation from the IMB model is the time span for the FAIs and Model Building. In the modified version, two cycles are spread over six weeks, as opposed to having a new cycle each week. Additionally, one graduate student interviews one student in K-12, as opposed to working in pairs. This has afforded opportunities for greater flexibility with scheduling and diving in deeper around a specific mathematical topic. However, the graduate student has only one student with whom they work and do not develop a broader understanding of various students, which may lessen their opportunity for understanding the thinking of multiple students. Additionally, at UI, every graduate student selects the grade level and the student with whom they will work. The FAIs and Model Building then focus on their selected student and topic, which restricts collaboration across the graduate students and learning from one another; whereas with the original IMB model, the same mathematics topic (e.g., number sense) is covered by each team.  This modification affords teams experiencing the full IMB model the opportunity to learn from each other within their team, but also across the teams to learn about content progressions. Therefore, a possible limitation of the modification at UI is that every graduate student has a different topic and they are unable to share and discuss students’ thinking and ideas about a similar mathematical domain. Determining ways to work around this limitation depends on the intentions of the course instructor/teacher educator for using FAIs and Model Building.  For Julie, her focus is on developing individual teachers’ professional noticing, thus the limitations in collaborating with others does not prevent her from meeting her intentions.

Another accommodation from the IMB model is that Julie is unable to attend the FAI recordings in person unlike the field instructors at IUB who are present weekly.  The online nature of Julie’s course provided the graduate students with flexibility in accessing students and scheduling the recordings at times throughout the school day that worked for them and the students.  However, being disconnected to the context limited Julie’s abilities, she believes, in providing more targeted or individualized feedback regarding specific student’s thinking.  The inclusion of the case study however, is how Julie works around the limited contextual understanding she feels she has and it affords her the opportunity to dig more into an understanding of the ‘whole’ child that her graduate students’ are presenting to her.  The case study, while it includes evidence from the FAI and Model Building cycles, is only a portion of what is required for the case study paper.  Therefore, we suggest the FAI and Model Building be done not in isolation but merged with other tasks that can help foster deeper professional noticing, such as Julie has done with her Case Study assignment.

With respect to Ingrid’s story of adaptation at MSU Denver, the implementation of the IMB’s modified lesson study has been positively received. As previously described, two accommodations made by Ingrid were the implementation of a modified teaching rehearsal experience and the development of the Pre-Observation Conference Form (see ‘Resources’, Document E).  Considering her field placement arrangements, she learned she needed to include both of these modifications to give the preservice teachers practice with both the Act of Teaching and Lesson Study components before doing it in the field.  Also, because the preservice teachers are not placed in the same classroom (unlike IUB) they need the opportunity to first review each other’s lesson (i.e., Pre-Observation Conference) so they had some idea of what to expect when observing each other teach.

Overall, the preservice teachers at Ingrid’s institution mentioned they enjoy the “lower stakes” atmosphere of being observed by a peer (when possible) rather than a university supervisor and the opportunity to discuss possible revisions to the lesson with a peer considering their different participatory perspectives.  This arrangement can create a challenge however, as not all preservice teachers may provide the same level of constructive criticism for revising the lesson.  Ingrid has attempted to address this challenge by first providing the teaching rehearsal experience in class so students can gain experience in her methods course on how to complete the forms and provide constructive feedback on a lesson.

 Recommendations

There is consensus across both science and mathematics teacher education that for effective teaching to occur teachers must learn to recognize and build on students’ ideas and experiences (Bransford, Brown, &Cocking, 1999; Kang & Anderson, 2015, NRC, 2007; van Es & Sherin, 2008).  Considering this goal, preparation programs often design opportunities for prospective teachers to question and analyze students’ thinking, and when possible do so within the context of teaching science.  However, few programs offer a systematic and iterative experience such as the IMB approach, and this is due in part to the structural variation in teacher education programs and the varied constraints of these different models.  As Zeichner and Conklin (2005) explain,

there will always be a wide range of quality in any model of teacher education….The state policy context, type of institution, and institutional history and culture in which the program is located; the goals and capabilities of the teacher education faculty, and many other factors will affect the character and quality of programs (p. 700).

Therefore, our intent with this article is to show the potential for taking well-recognized practices for teacher education, such as those used in the IMB approach, and demonstrate how they can be combined for use in other science and mathematics teacher education models.  In particular, we wanted to highlight the adaptations made by Ingrid and Julie because their institutions and learner populations are very different from those where the IMB approach was initially developed, and this sort of variation in context is rarely described in the research (Zeichner & Conklin, 2005).  Despite the vast program differences at our three institutions, Ingrid and Julie were able to adapt key aspects of the IMB approach to fit the context and needs of their learners.

More specifically, although we recognize that individually the four aspects of the IMB approach are not innovative, it is the potential for combining features of the IMB, as Authors 2 and 3 have shared, that we believe demonstrates the innovation and potential of the IMB approach for impacting science and mathematics teacher learning. As such, we offer the following recommendations from lessons we have learned through our adaptive processes, with the hope of inspiring others to consider how they may combine features of the IMB for use at their institutions.

  1. Understand your own orientation toward teacher preparation. Begin with selecting aspects of the IMB approach that most align with your own beliefs as to core practices for developing teachers’ cognition about learning to attend to students’ thinking to inform practice. Ingrid and Julie made their selections based on what they viewed as critical practices given the professional development needs of their student teachers (i.e., their population of teacher), as well as the purpose of their course.
  2. Don’t lose sight of the goal! Make modifications to the sample documents provided (see Resources) or provide additional support documents (e.g., the Pre-Observation Conference form designed by Ingrid) to guide preservice or inservice teachers’ cognition of how to uncover K-12 students’ ideas and reflect on their ideas in order to identify rich and appropriate learning tasks.
  3. Choose the strategies that best fit your context. If some components of the IMB approach will not fit into your current program or university structure, select the one that will fit and be most appropriate for your own students and situation. The goal is to help preservice and inservice teachers understand their students’ thinking, and whatever strategies can best work for you and your students given your context are the ones to include.
  4. Remember that improvement is an iterative process. Continue to adapt and refine the approach as needed for your context. Once you have selected the aspect or aspects of IMB that you think will be most impactful, continue to reflect on and obtain feedback about the process from the students with whom you work, and then make modifications to support your goals.
  5. Collaboration is valuable and can take many forms. At the core of the IMB approach is the belief that collaboration leads to better understandings about learning to teach science and mathematics. Whether collaborating to plan, teach, and reflect on lessons taught, or the sharing of models of students’ thinking and engaging through discussion boards online, the notion of collaboration is still at the core of each of our pedagogical approaches to working with teachers. We recognize the structure of various institutions teacher education programs/courses may make it difficult to afford students the opportunity to collaborate in the same physical space (classroom, or school), as did Julie; however, it is worth exploring what technologies your institution may offer to arrange other means of collaborating in synchronous and asynchronous spaces.

[1] For further details comparing these two models of Lesson Study see Carter et al. (2016).

Supplemental Files

IMB-Supplementary-Materials.pdf

References

Akerson V.L., Carter I.S., Park Rogers, M.A. & Pongsanon, K. (2018). A video-based measure of preservice teachers’ abilities to predict elementary students’ scientific reasoning. International Journal of Education in Mathematics, Science and Technology (IJEMST), 6(1), 79-92. DOI:10.18404/ijemst.328335

Ball, D.L., Thames, M.H., Phelps, G.C. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59, 389-407.

Carter, I. S., Park Rogers, M. A., Amador, J. M., Akerson, V. L., & Pongsanon, K. (2016). Utilizing an iterative research-based lesson study approach to support preservice teachers’ professional noticing.  Electronic Journal of Science Education, 20 (8). Retrieved from http://ejse.southwestern.edu/article/view/16434/10861

Harlen, W. (2015). Teaching science for understanding in elementary and middle schools. Portsmouth, NH: Heinemann.

Jacobs, V., Lamb, L., & Philipp, R. (2010). Professional noticing of children’s mathematical thinking. Journal for Research in Mathematics Education, 41(2), 169-202.

Kang, H., & Anderson, C. W. (2015). Supporting preservice science teachers’ ability to attend and respond to student thinking by design. Science Education, 99, 863-895.

Lambdin, D., & Lester, F. (Eds.). (2010). Teaching and learning mathematics: Translating research for elementary school teachers. National Council of Teachers of Mathematics: Reston, Virginia.

Lampert, M., Franke, M., Kazemi, E., Ghousseini, H., Turrou, A., Beasley, H., & Crowe, K. (2013). Keeping it complex: Using rehearsals to support novice teacher learning of ambitious teaching. Journal of Teacher Education, 64, 226–243.

Lewis, C.C., & Tsuchida, I. (1998). A lesson is like a swiftly flowing river: How research lessons improve Japanese education. American Educator, 22(4), 12-14, 50-52.

Lobato, J., & Lester, F. (Eds.). (2010). Teaching and learning mathematics: Translating research for secondary school teachers. National Council of Teachers of Mathematics: Reston, Virginia. [Student should make decision based on area of interest/expertise]

Nargund-Joshi, V. Park Rogers, M. A. Wiebke, H., Akerson, V. L. (2012, March).  Re-thinking early field experiences for the purpose of preparing elementary preservice teachers’ pedagogical content knowledge.  National Association for Research in Science Teaching (NARST), Indianapolis, IN.

National Research Council. (2007).  Taking science to school: Learning and teaching science in grades K-8.  Committee on Science Learning, Kindergarten Through Eighth Grade. Richard A. Duschl, Heidi A. Schweingruber, and Andrew W. Shouse, Editors.  Board on Science Education, Center for Education.  Division of Behavioral and Social Sciences and Education.  Washington, DC: The National Academies Press.

Norton, A., McCloskey, A., & Hudson, R. A. (2011). Prediction assessments: Using video-based predictions to assess prospective teachers’ knowledge of students’ mathematical thinking. Journal of Mathematics Teacher Education, 14, 305-325.

Russ, R., & Luna, M. (2013). Inferring teacher epistemological framing from local patterns in teacher noticing. Journal of Research in Science Teaching, 50, 284-314.

Sherin, M. G., Jacobs, V., & Philipp, R. (Eds.). (2011). Mathematics teacher noticing: Seeing through teachers’ eyes. Routledge: New York.

Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57(1), 1-23.

Steffe, L., & Thompson, P. (2000). Teaching experiment methodology: Underlying principles and essential elements. In A. E. Kelley & R. A. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 267-306). Mahwah, NJ: Lawrence Erlbaum Associates.

Stein, M. K., Smith, M. S., Henningsen, M. A., & Silver, E. (2009). Implementing standards-based mathematics instruction: A casebook for professional development. Teachers College Press: New York.

van Es, E. A., & Sherin, M. G. (2008). Mathematics teachers’ “learning to notice” in the context of a video club. Teaching and Teacher Education, 24, 244–276.

Zeichner, K. M., & Conklin, H. G.  (2005). Teacher education programs. In M. Cochran-Smith & K. M. Zeichner (Eds.), Studying teacher education: The report of the AERA panel on research and teacher education (pp. 645-736). Mahwah, NJ: Lawrence Erlbaum Associates.