A 20-year Journey in Elementary and Early Childhood Science and Engineering Education: A Cycle of Reflection, Refinement, and Redesign

Print Friendly, PDF & Email

Sandifer, C., Lottero-Perdue, P., & Miranda, R.J. (2020). A 20-year journey in elementary and early childhood science and engineering education: A cycle of reflection, refinement, and redesign. Innovations in Science Teacher Education, 5(4). Retrieved from https://innovations.theaste.org/a-20-year-journey-in-elementary-and-early-childhood-science-and-engineering-education-a-cycle-of-reflection-refinement-and-redesign/

by Cody Sandifer, Towson University; Pamela S. Lottero-Perdue, Towson University; & Rommel J. Miranda, Towson University


Over the past two decades, science and engineering education faculty at Towson University have implemented a number of course innovations in our elementary and early childhood education content, internship, and methods courses. The purposes of this paper are to: (1) describe these innovations so that faculty looking to make similar changes might discover activities or instructional approaches to adapt for use at their own institutions and (2) provide a comprehensive list of lessons learned so that others can share in our successes and avoid our mistakes. The innovations in our content courses can be categorized as changes to our inquiry approach, the addition of new out-of-class activities and projects, and the introduction of engineering design challenges. The innovations in our internship and methods courses consist of a broad array of improvements, including supporting consistency across course sections, having current interns generate advice documents for future interns, switching focus to the NGSS science and engineering practices (and modifying them, if necessary, for early childhood), and creating new field placement lessons.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership


Banchi, H., & Bell, R. (2008). The many levels of inquiry. Science and Children, 46(2), 26-29.

Center for Educational Research. (1967). Conceptually Oriented Program in Elementary Science.  New York, NY: New York Center for Field Research and School Services, New York University.

Cunningham, C. M., & Kelly, G. J. (2017). Epistemic practices of engineering for education. Science Education, 101(3), 486-505. doi:10.1002/sce.21271

Elementary School Science Project. (1966). Elementary Science Study. Berkeley, CA: University of California, Berkeley.

Engineering is Elementary (EiE). (2011b). A stick in the mud: Evaluating a landscape. Boston, MA: Museum of Science.

Engineering is Elementary (EiE). (2011b). A sticky situation: Designing walls. Boston, MA: Museum of Science.

Engineering is Elementary (EiE). (2011c). The best of bugs: Designing hand pollinators. Boston, MA: Museum of Science.

Engineering is Elementary (EiE). (2011d). Lighten up: Designing lighting systems. Boston, MA: Museum of Science.

Engineering is Elementary (EiE). (2019). The engineering design process: A five-step process Retrieved January 28, 2019 from https://eie.org/overview/engineering-design-process

Goldberg, F., Robinson, S., Price, E., Harlow, D., Andrew, J., & McKean, M. (2018).  Next Generation Physical Science and Everyday Thinking.  Greenwich, CT: Activate Learning

Karplus, R. (1964). Science Curriculum Improvement Study. Journal of Research in Science Teaching, 2(4), 293-303.

Lave, J. & Wegner, E. (1991). Situated learning: Legitimate peripheral practice. New York: Cambridge University Press.

Lottero-Perdue, P.S. (2017a). Engineering design into science classrooms. In Settlage, J., Southerland, S., Smetana, L., & Lottero-Perdue, P.S. Teaching Science to Every Child: Using Culture as a Starting Point. (Third Edition). (pp. 207-266). New York, NY: Routledge.

Lottero-Perdue, P.S. (2017b). Pre-service elementary teachers learning to teach science-integrated engineering design PBL. In Saye, J. & Brush, T. (Eds.), Developing and supporting PBL practice: Research in K-12 and teacher education settings. (pp. 105-131). West Lafayette, IN: Purdue University Press.

Lottero-Perdue, P.S., Bolotin, S., Benyameen, R., Brock, E., and Metzger, E. (September 2015). The EDP-5E: A rethinking of the 5E replaces exploration with engineering design. Science and Children 53(1), 60-66.

Lottero-Perdue, P.S., Bowditch, M. Kagan, M. Robinson-Cheek, L., Webb, T., Meller, M. & Nosek, T. (November, 2016) An engineering design process for early childhood: Trying (again) to engineer an egg package. Science and Children, 54(3), 70-76.

Lottero-Perdue P.S., Haines, S., Baranowski, A. & Kenny, P. (2020). Designing a model shoreline: Creating habitat for terrapins and reducing erosion into the bay. Science and Children, 57 (7), 40-45.

Lottero-Perdue, P.S. & Parry, E. (2019, March). Scaffolding for failure: Upper elementary students navigate engineering design failure. Science and Children, 56(7), 86-89.

Lottero-Perdue, P. & Sandifer, C. (in press). Using engineering to explore the Moon’s height in the sky with future teachers. Science & Children.

Lottero-Perdue, P.S., Sandifer, C. & Grabia, K. (2017, December) “Oh No! Henrietta got out! Kindergarteners investigate forces and use engineering to corral an unpredictable robot.” Science and Children, 55(4), 46-53.

Michaels, S., Shouse, A.W., & Schweingruber, H. A. (2008). Ready, Set, Science. Washington, D.C.: National Academies Press.

National Governors Association Center for Best Practices and Council of Chief State School Officers (NGAC and CCSSO). 2010. Common core state standards. Washington, DC: NGAC and CCSSO.

National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.

National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and learning. Washington, DC: National Academy Press.

National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, D.C.: The National Academies Press.

NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.

Sandifer, C. (2010, January).  Interns helping interns: Advice documents as meaningful authentic assessments. Talk presented at the meeting of the Association for Science Teacher Education, Sacramento, CA.

Sandifer, C. (2018). Activities in physical science. Unpublished course text.

Sandifer, C., Hermann, R. S., Cimino, K., & Selway, J. (2015). Early teaching experiences at Towson University: Challenges, lessons, and innovations. In C. Sandifer & E. Brewe (Eds.), Recruiting and Educating Future Physics Teachers: Case Studies and Effective Practices (pp. 129-145). College Park, MD: American Physical Society.

Sandifer, C., Lising, L., & Renwick, E.  (2007). Towson’s PhysTEC course improvement project, Years 1 and 2: Results and lessons learned. 2007 Conference Proceedings of the Association for Science Teacher Education.

Sandifer, C., Lising, L., & Tirocchi, L.  (2006). Our PhysTEC project:  Collaborating with a classroom teacher to improve an elementary science practicum.  2006 Conference Proceedings of the Association for Science Teacher Education.

Sandifer, C., Lising, L., Tirocchi, L, & Renwick, E.  (2019, February 28). Towson University’s Elementary PhysTEC project: Final report. Retrieved from https://www.phystec.org/institutions/Institution.cfm?ID=1275

Sandifer, C., & Lottero-Perdue, P.  (2014, April). When practice doesn’t make perfect: Common misunderstandings of the NGSS scientific practices. Workshop presented at the meeting of the National Science Teachers Association, Boston, MA.

Sandifer, C., & Lottero-Perdue, P. S.  (2019). Activities in Earth and space science and integrated engineering (2nd ed.). Unpublished course text.



Scaffolding Preservice Science Teacher Learning of Effective English Learner Instruction: A Principle-Based Lesson Cycle

Print Friendly, PDF & Email

Roberts, S.A., & Bianchini, J.A. (2019). Scaffolding preservice science teacher learning of effective english learner instruction: A principle-based lesson cycle. Innovations in Science Teacher Education, 4(3). Retrieved from https://innovations.theaste.org/scaffolding-preservice-science-teacher-learning-of-effective-english-learner-instruction-a-principle-based-lesson-cycle/

by Sarah A. Roberts, University of California, Santa Barbara; & Julie A. Bianchini, University of California, Santa Barbara


This paper examines a lesson development, implementation, revision, and reflection cycle used to support preservice secondary science teachers in learning to teach English learners (ELs) effectively. We begin with a discussion of our framework for teaching reform-based science to ELs – four principles of effective EL instruction and three levels of language – that shaped both our science methods course, more generally, and the lesson cycle, in particular. We then present a model lesson implemented in the methods course that highlighted these principles and levels for our preservice teachers. Next, we describe how preservice teachers used their participation in and analysis of this model lesson as a starting point to develop their own lessons, engaging in a process of development, implementation, revision, and reflection around our EL principles and language levels. We close with a description of our course innovation, viewed through the lens of the preservice teachers. We attempt to provide practical insight into how other science teacher educators can better support their preservice teachers in effectively teaching ELs.

Innovations Journal articles, beyond each issue's featured article, are included with ASTE membership. If your membership is current please login at the upper right.

Become a member or renew your membership


Aguirre, J. M. & Bunch, G. C. (2012). What’s language got to do with it?: Identifying language demands in mathematics instruction for English language learners. In S. Celedón-Pattichis & N. Ramirez (Eds.), Beyond good teaching: Advancing mathematics education for ELLs. (pp. 183-194). Reston, VA: National Council of Teachers of Mathematics.

Bleicher, R. E., Tobin, K. G., & McRobbie, C. J. (2003). Opportunities to talk science in a high school chemistry classroom. Research in Science Education, 33, 319-339. doi:10.1023/A:1025480311414

Bravo, M. A., Mosqueda, E., Solís, J. L., & Stoddart, T. (2014). Possibilities and limits of integrating science and diversity education in preservice elementary teacher preparation. Journal of Science Teacher Education, 25, 601-619. doi:10.1007/s10972-013-9374-8

Buck, G., Mast, C., Ehlers, N., & Franklin, E. (2005). Preparing teachers to create a mainstream science classroom conducive to the needs of English-language learners: A feminist action research project. Journal of Research in Science Teaching, 42, 1013–1031. doi:10.1002/tea.20085

Bunch, G. C. (2014). The language of ideas and the language of display: Reconceptualizing academic language in linguistically diverse classrooms. International Multilingual Research Journal, 8(1), 70-86. https://doi.org/10.1080/19313152.2014.852431

Calabrese Barton, A., & Tan, E. (2018). Teacher learning and practices toward equitably consequential science education. In H. Kang (Chair), Pre-service science teacher education symposium: Re-framing problems of practice in preparing new science teachers for equity in the NGSS era. Symposium conducted at the meeting of the National Association for Research in Science Teaching, Atlanta, GA.

Cohen, E. G., & Lotan, R. (2014). Designing groupwork: Strategies for the heterogeneous classroom (3rd ed.). New York, NY: Teachers College.

Dutro, S., & Moran, C. (2003). Rethinking English language instruction: An architectural approach. In G. Garcia (Ed.), English learners: Reaching the highest level of English literacy (pp. 227-258). Newark, DE: International Reading Association.

Fang, Z. (2005). Scientific literacy: A systemic functional linguistics perspective. Science Education, 89, 335–347. doi:10.1002/sce.20050

Goldenberg, C. (2008). Teaching English language learners: What the research does – and does not – say. American Educator, 32, 8-23, 42-44.

Iddings, A. C. D. (2005). Linguistic access and participation: English language learners in an English-dominant community of practice. Bilingual Research Journal, 29, 165-183. http://dx.doi.org/10.1080/15235882.2005.10162829

Johnson, C. C., Bolshakova, V. L. J., & Waldron, T. (2016). When good intentions and reality meet: Large-scale reform of science teaching in urban schools with predominantly Latino ELL students. Urban Education, 51, 476-513. doi:10.1177/0042085914543114

Khisty, L. L., & Chval, K. B. (2002). Pedagogic discourse and equity in mathematics: When teachers’ talk matters. Mathematics Education Research Journal, 14, 154-168. doi:10.1007/BF03217360

Lee, O., & Buxton, C. A. (2013). Teacher professional development to improve science and literacy achievement of English language learners. Theory Into Practice, 52, 110-117. http://dx.doi.org/10.1080/00405841.2013.770328

Lee, O., Deaktor, R., Enders, C., & Lambert, J. (2008). Impact of a multiyear professional development intervention on science achievement of culturally and linguistically diverse elementary students. Journal of Research in Science Teaching45, 726-747. doi:10.1002/tea.20231

Lee, O., Quinn, H., & Valdés, G. (2013). Science and language for English language learners in relation to Next Generation Science Standards and with implications for Common Core State Standards for English Language Arts and Mathematics. Educational Researcher, 42, 223-233. doi:10.3102/0013189X13480524

Lyon, E. G., Tolbert, S., Stoddart, P., Solis, J., & Bunch, G. C. (2016). Secondary science teaching for English learners: Developing supportive and responsive learning contexts for sense-making and language development. New York, NY: Rowman & Littlefield.

Moll, L. C., Amanti, C., Neff, D., & Gonzalez, N. (1992). Funds of knowledge for teaching: Using a qualitative approach to connect homes and schools. Theory into Practice, 31, 132-141. http://dx.doi.org/10.1080/00405849209543534

Moschkovich, J. (2002). A situated and sociocultural perspective on bilingual mathematics learners. Mathematical Thinking and Learning, 4, 189-212. http://dx.doi.org/10.1207/S15327833MTL04023_5

Moschkovich, J. (2007). Using two languages when learning mathematics. Educational Studies in Mathematics, 64, 121-144. doi:10.1007/s10649-005-9005-1

National Clearinghouse for English Language Acquisition. (2009). How has the limited English proficient student population changed in recent years? Washington, DC: NCELA. Retrieved from http://www.ncela.us/files/rcd/BE021773/How_Has_The_Limited_English.pdf

NGSS Lead States. (2013). Next generation science standards: For states, by states. Retrieved from http://www.nextgenscience.org/next-generation-science-standards

National Research Council. (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, D.C.: National Academies Press.

National School Reform Faculty. (2014). ATLAS: Learning from student work. Retrieved from https://www.nsrfharmony.org/system/files/protocols/atlas_lfsw_0.pdf

Planas, N., & Gorgorió, N. (2004). Are different students expected to learn norms differently in the mathematics classroom? Mathematics Education Research Journal, 16, 19-40. doi:10.1007/BF03217389

Quinn, H., Lee, O., & Valdés, G. (2012). Language demands and opportunities in relation to next generation science standards for English language learners: What teachers need to know. Retrieved from http://ell.stanford.edu/publication/language-demands-and-opportunities-relation-next-generation-science-standards-ells

Richardson Bruna, K., Vann, R., & Escudero, M. P. (2007). What’s language got to do with it?: A case study of academic language instruction in a high school “English learner science” class. Journal of English for Academic Purposes, 6(1), 36-54.

Roberts, S. A., Bianchini, J. A., Lee, J. S., Hough, S., & Carpenter, S. (2017). Developing an adaptive disposition for supporting English language learners in science: A capstone science methods course. In A. Oliveira & M. Weinburgh (Eds.), Science Teacher Preparation in Content-Based Second Language Acquisition (pp. 79-96). Columbus, OH: Association of Science Teacher Educators.

Rosebery, A. S., & Warren, B. (Eds.). (2008). Teaching science to English language learners: Building on students’ strengths. Arlington, VA: NSTA Press.

Schleppegrell, M. J. (2004). The language of schooling: A functional linguistics perspective. Mahwah, NJ: Lawrence Erlbaum Associates.

Tekkumru‐Kisa, M., Stein, M. K., & Schunn, C. (2015). A framework for analyzing cognitive demand and content‐practices integration: Task analysis guide in science. Journal of Research in Science Teaching52, 659-685. doi:10.1002/tea.21208

Tobin, K. G., & Kahle, J. B. (1990). Windows into science classrooms: Problems associated with higher-level cognitive learning. Bristol, PA: The Falmer Press, Taylor & Francis Group.

Understanding Language. (2013). Six key principles for ELL instruction. Retrieved from Stanford University, Graduate School of Education, Understanding Language website http://ell.stanford.edu/content/six-key-principles-ell-instruction

Warnock, A., Berkowitz, A., Blank, B., Cano, A., Caplan, B., Covitt, B., . . . Whitmer, A. (2012). School water pathways. Retrieved from http://www.pathwaysproject.kbs.msu.edu/?page_id=49

Windschitl, M., Thompson, J., & Braaten, M. (2018). Ambitious science teaching. Cambridge, MA: Harvard University.

Zwiers, J., O’Hara, S., & Pritchard, R. (2014). Essential practices for developing academic language and disciplinary literacy. Portland, ME: Stenhouse Publishers.